NERank: Ranking Named Entities in Document Collections

Chengyu Wang, Rong Zhang, Xiaofeng He, Aoying Zhou

Institute for Data Science and Engineering East China Normal University Shanghai, 200062, China

Introduction

- Named entity ranking is necessary to bring semantics to plain documents.
- Rank order of named entities should be determined by the relative importance considering the document collection.
- NERank is the first attempt to tackle the problem of named entity ranking directly from documents.

NERank Workflow

- Tripartite Graph Construction
- > The part aims to model the semantic relations between entities and documents indirectly by topic modeling. A weighted, tripartite graph is employed to represent < *document*, *topic*, *entity* > relations.

Random Walk Process

- \triangleright Select a topic $t_i \in T$ with probability $r_0(t_i)$ as the starting point. Make one of the following three transfers iteratively until the system reaches equilibrium (α and β are parameters where $\alpha > 0$, $\beta > 0$ and
 - $\alpha + \beta < 1$):
 - ▷ With probability α , the random surfer walks through the path $t_i \rightarrow d_j \rightarrow t_k$. $d_j \in D$ is selected with probability $\frac{\theta_{j,i}}{\sum_{d_k \in D} \theta_{k,i}}$. Next,
 - $t_k \in T$ is selected with probability $\theta_{i,k}$.
 - \triangleright With probability β , the random surfer walks through the path $t_i \rightarrow e_j \rightarrow t_k$. $e_j \in E$ is selected with probability $\frac{\phi_{i,j}}{\sum_{e_k \in E} \phi_{i,k}}$. Next,
 - $t_k \in T$ is selected with probability $\frac{\phi_{k,j}}{\sum_{t_m \in T} \phi_{m,j}}$.

- Prior Topic Rank Estimation
- ▷ The part is responsible for assigning prior ranks to each topic in the tripartite graph.
- Random Walk Process
- ▷ This part is designed to propagate prior topic ranks to documents and entities through a random walk process on the tripartite graph.

Tripartite Graph Construction

- Named Entity Recognition and Normalization
 - \triangleright Given a document collection D, perform NER and NEN to generate the entity set M and map each $m \in M$ to the normalized form $e \in E$.
- Entity-Aware Topic Modeling
 - \triangleright Model a document $d \in D$ as the union set of common words and normalized named entities in E.
 - \triangleright Estimate document-topic distribution Θ and topic-word distribution Φ by

- \triangleright With probability $1 \alpha \beta$, the random surfer jumps to a topic node t_i . t_i is selected with probability $r_0(t_i)$.
- \blacktriangleright Compute the rank of entity e_i :

$$r(e_i) = \frac{s(e_i)}{\sum_{e_j \in E} s(e_j)}$$

where $s(e_i)$ is the number of visits to e_i by random surfers.

Experiments

- Datasets: Newswire collections where each collection is related to a major international event.
- Metrics: Average Precision@K and MAP (with paired t-test).
- Methods: TF-IDF, TextRank, NERank_{Uni} (which assigns prior topic ranks uniformly), **NERank**_{$\alpha=0$} (which sets $\alpha = 0$ in random walk process) and **NERank**_{Full} (proposed approach).
- Results: NERank_{Full} outperforms all the baselines.

Table 1: Experimental Results (\star : p-value ≤ 0.05)

Method	AvgP@5	AvgP@10	AvgP@15	MAP
TF-IDF	0.85*	0.79*	0.73*	0.81*
TextRank	0.87*	0.83	0.73*	0.83*
NERank _{Uni}	0.80*	0.75*	0.71*	0.78*
NERank $\alpha = 0$	0.72*	0.61*	0.51*	0.62*
NERank <i>Full</i>	0.92	0.87	0.79	0.89

Gibbs sampling in LDA.

Graph Construction

- \triangleright Nodes: documents D, topics T and entities E.
- ▶ Edges: assign weights of < *document*, *topic* > and < topic, entity > edges by respective document-topic and topic-word probabilities.

Prior Topic Rank Estimation

- Estimate the prior rank for topic $t_i \in T$: $r_0(t_i)$.
- ► Three quality metrics:
- \triangleright Prior probability: the probability that topic t_i is discussed in D

$$pr(t_i) = \frac{1}{|D|} \sum_{j=1}^{|D|} \theta_{j,i}$$

where $\theta_{i,i}$ is the probability of topic t_i given document d_i . \triangleright Entity richness: the proportion of entities in words related to topic t_i

$$er(t_i) = \frac{1}{Z_{er}} \sum_{j=1}^{|E|} \phi_{i,j}$$

Conclusion and Future Work

- NERank is an effective method to rank named entities in documents with little human intervention.
- Future work includes:
- A general framework for entity ranking from different types of texts (i.e., documents, tweets, etc.).
- ▷ A complete benchmark for evaluating entity ranking.

References

[1] V. Jijkoun, M. A. Khalid, M. Marx, and M. de Rijke. Named entity normalization in user generated content. In AND, pages 23–30, 2008.

- where $\phi_{i,i}$ is the probability of entity e_i given topic t_i , and Z_{er} is a normalization constant.
- ▷ Topic specificity: whether the topic is specific about certain aspects or only provides background information

$$ts(t_i) = \frac{1}{Z_{ts}} \sum_{j=1}^{|D|} \theta_{j,i} \log_2 \theta_{j,i}$$

where Z_{ts} is a normalization constant.

Ranking topics by linear combination of quality metrics:

 $r_0(t_i) = \frac{1}{7}(w_1 \cdot pr(t_i) + w_2 \cdot er(t_i) + w_3 \cdot ts(t_i))$ where $Z = \sum_{t' \in T} r_0(t')$ is a normalization factor. $\forall i, w_i > 0$ and $\sum_{i} w_{i} = 1$. Weights are learned using a max-margin technique (a linear-SVM based supervised learning method).

[2] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In *EMNLP*, pages 404–411, 2004.

[3] W. Shen, J. Wang, P. Luo, and M. Wang. LINDEN: linking named entities with knowledge base via semantic knowledge. In *WWW*, pages 449–458, 2012.

[4] G. B. Tran, M. Alrifai, and E. Herder. Timeline summarization from relevant headlines. In *ECIR*, pages 245–256, 2015.

[5] G. B. Tran, M. Alrifai, and D. Q. Nguyen. Predicting relevant news events for timeline summaries. In *WWW*, pages 91–92, 2013.

http://dase.ecnu.edu.cn/

Institute of Data Science and Engineering at ECNU