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Introduction

I Named entity ranking is necessary to bring semantics to plain documents.
I Rank order of named entities should be determined by the relative

importance considering the document collection.
I NERank is the first attempt to tackle the problem of named entity ranking

directly from documents.

NERank Workflow

I Tripartite Graph Construction
. The part aims to model the semantic relations between entities and
documents indirectly by topic modeling. A weighted, tripartite graph is
employed to represent < document, topic, entity > relations.

I Prior Topic Rank Estimation
. The part is responsible for assigning prior
ranks to each topic in the tripartite graph.

I Random Walk Process
. This part is designed to propagate prior
topic ranks to documents and entities
through a random walk process on the
tripartite graph.
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Figure 1: Tripartite Graph

Tripartite Graph Construction

I Named Entity Recognition and Normalization
. Given a document collection D, perform NER and NEN to generate the
entity set M and map each m 2 M to the normalized form e 2 E .

I Entity-Aware Topic Modeling
. Model a document d 2 D as the union set of common words and
normalized named entities in E .

. Estimate document-topic distribution ⇥ and topic-word distribution � by
Gibbs sampling in LDA.

I Graph Construction
. Nodes: documents D, topics T and entities E .
. Edges: assign weights of < document, topic > and
< topic, entity > edges by respective document-topic and topic-word
probabilities.

Prior Topic Rank Estimation

I Estimate the prior rank for topic t
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I Three quality metrics:
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. Entity richness: the proportion of entities in words related to topic t
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. Topic specificity: whether the topic is specific about certain aspects or
only provides background information
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I Ranking topics by linear combination of quality metrics:
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= 1. Weights are learned using a max-margin technique (a
linear-SVM based supervised learning method).

Random Walk Process

I Select a topic t
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2 T with probability r

0

(t

i

) as the starting point.
I Make one of the following three transfers iteratively until the system reaches

equilibrium (↵ and � are parameters where ↵ > 0, � > 0 and
↵ + � < 1):
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I Compute the rank of entity e
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Experiments

I Datasets: Newswire collections where each collection is related to a major
international event.

I Metrics: Average Precision@K and MAP (with paired t-test).
I Methods: TF-IDF, TextRank, NERank

Uni

(which assigns prior topic
ranks uniformly), NERank↵=0

(which sets ↵ = 0 in random walk process)
and NERank

Full

(proposed approach).
I Results: NERank

Full

outperforms all the baselines.

Table 1: Experimental Results (�: p-value0.05)

Method AvgP@5 AvgP@10 AvgP@15 MAP

TF-IDF 0.85� 0.79� 0.73� 0.81�

TextRank 0.87� 0.83 0.73� 0.83�

NERank

Uni

0.80� 0.75� 0.71� 0.78�

NERank↵=0

0.72� 0.61� 0.51� 0.62�

NERank

Full

0.92 0.87 0.79 0.89

Conclusion and Future Work

I NERank is an e↵ective method to rank named entities in documents with
little human intervention.

I Future work includes:
. A general framework for entity ranking from di↵erent types of texts (i.e.,
documents, tweets, etc.).

. A complete benchmark for evaluating entity ranking.
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