

Event Phase Extraction and Summarization

Chengyu Wang¹, Rong Zhang¹, Xiaofeng He¹, Guomin Zhou², Aoying Zhou¹

 ¹⁾ Institute for Data Science and Engineering, East China Normal University
²⁾ Zhejiang Police College

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Event Phase Extraction and Summarization (1)

- Event phase
 - Model an single event as multiple event phases
 - Each event phase relates to a single development period of a long, complicated event.
- Example: Egypt Revolution
- 1. Protests against Hosni Mubarak
 - 2. Egypt under the Supreme Council
 - 3. Egypt under President Morsi
 - 4. Protests against President Morsi

Egypt Revolution

https://en.wikipedia.org/wiki/Egyptian_revolution_of_2011 3

Event Phase Extraction and Summarization (2)

- Event phase extraction and summarization
 - Input: a collection of news articles w.r.t. the same event
 - Event phase extraction: cluster news articles into different event phases
 - Event phase summarization: select top-k news headlines as the event phase summary for each event phase
- Techniques
 - Graph-based representation of news articles: Temporal Content Coherence Graph (TCCG)
 - A structural clustering algorithm to partition news articles into event phases: EPCluster
 - News headline ranking and selection: vertex-reinforced random walk process

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Problem Statement

- News article $d_i = (h_i, t_i, s_i)$
 - h_i : news headline
 - t_i : publication time
 - s_i : the sentence collection of news contents
- News collection $D = \{d_i\}$
- Event phase summary $P = \{(h_i, t_i)\}_{i=1}^k$
 - A collection of k news headline and publication time pairs
- Event phase extraction and summarization
 - Input: a news collection *D*
 - Output: a collection of N event phase summaries $\mathbf{P} = \{P_j\}_{j=1}^N$
 - The number *N* is not pre-defined.

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Framework of Event Phase Extraction

(c) Applying Strutural Clustering

(d) Cluster Postprocessing

Semantic Relatedness (1)

- Content coherence
 - Topic level similarity: Jansen-Shannon divergence between topic distributions

$$D_{JS}\left(\theta_{i} \| \theta_{j}\right) = \frac{D_{KL}\left(\theta_{i} \| \bar{\theta}\right) + D_{KL}\left(\theta_{j} \| \bar{\theta}\right)}{2}$$

- Entity level similarity: Tanimoto coefficient
 - C_i : count vector of key entities in d_i

$$TC(C_{i}, C_{j}) = \frac{C_{i} \cdot C_{j}}{\|C_{i}\|^{2} + \|C_{j}\|^{2} - C_{i}^{T} \cdot C_{j}}$$

Content coherence score

$$w_{c}(d_{i},d_{j}) = \alpha \left(1 - D_{JS}\left(\theta_{i} \| \theta_{j}\right)\right) + (1 - \alpha)TC(C_{i},C_{j})$$

Semantic Relatedness (2)

- Temporal influence
 - Use Hamming kernel to map the publication time gap to a real number in [0,1]

$$\Delta t_{i,j} = \left| t_i - t_j \right|$$
$$w_t(d_i, d_j) = \begin{cases} \frac{1}{2} (1 + \cos \frac{\Delta t_{i,j} \cdot \pi}{\sigma}), & x < 0\\ 0, & x \ge 0 \end{cases}$$

Structural Clustering

• Temporal Content Coherence Graph (TCCG)

- EPCluster: Structural clustering algorithm
 - Parameter: MinPts
 - Core Object
 - Border Object
 - Noise Object

$$MinPts = 3$$

Cluster Postprocessing

• Goal

- Use a classifier to filter out "small" clusters that do not correspond to an actual event phase
- Features
 - Article quantity $N(C_i) = \frac{|C_i|}{|D|} \times 100\%$
 - Time interval $T(C_i) = t_{max}^i t_0^i$
 - Pairwise topic similarity $ATS(C_i) = 1 \frac{2\sum_{d_m, d_n \in C_i} D_{JS}(\theta_m \| \theta_n)}{|C_i| \cdot (|C_i| 1)}$
 - Pairwise entity similarity $AES(C_i) = \frac{2\sum_{d_m, d_n \in C_i} TC(C_m, C_n)}{|C_i| \cdot (|C_i| 1)}$
- Prediction function $f(C_i) = \frac{1}{1 + e^{-w \cdot F(C_i)}}$

News Article Ranking

- Goal
 - Assign each news article in an event phase an "informative-ness" rank value
- Vertex-reinforced random walk process
 - Graph construction: build a complete graph where the node set is news articles in an event phase
 - Prior transition probability $M^{(m,n)} = \frac{1}{z} \cdot w_c(d_m, d_n) \cdot w_t(d_m, d_n)$
 - Rank propagation process
 - Transition matrix update:

$$T_n = [R_n R_n \cdots R_n]$$
$$M_{n+1} = \lambda T_n M_n + (1 - \lambda) M_0$$

• Rank update:

学数据科学与工

$$R_{n+1} = \lambda M_{n+1} R_n + (1 - \lambda) R_0$$

nce Institute for Data Science and Engineering at ECNU

Event Phase Summary Generation

• New article selection problem

- Select k news articles from C_i (denoted as S_i) to generate the event phase summary
- Optimization problem
 - Objective function: $\max_{S_i \subset C_i} R(S_i) = \sum_{d_j \in S_i} r(d_j)$
 - Subject to: $|S_i| = k$, $\forall d_m, d_n \in S_i$, $w_c(d_m, d_n) \le \mu_1$, $w_t(d_m, d_n) \le \mu_2$
- Algorithm
 - A greedy algorithm with approximation ratio $1 \frac{1}{e}$

Algorithm 3 News Article Selection AlgorithmInput: News cluster C_i , parameter k.

Output: Selected news collection S_i .

- 1: $S_i = \emptyset;$
- 2: while $C_i \neq \emptyset$ and $|S_i| < k$ do
- 3: Select $d_n = \operatorname{argmax}_{d_n \in C_i} R(S_i \cup \{d_n\}) R(S_i)$ subject to $w_c(d_m, d_n) \leq \mu_1, w_t(d_m, d_n) \leq \mu_2, \forall d_m \in S_i;$
- 4: $S_i = S_i \cup \{d_n\};$ 5: $C_i = C_i \setminus \{d_n\};$
- 5: $C_i = C_i \setminus \{a_r\}$ 6: end while
- 7: return S_i ;

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Experiments (1)

- Datasets
 - Four English news datasets regarding long-span recent armed conflicts
 - News source: 24 news agencies, e.g., Associated Press, Reuters, Guardian, etc.

Dataset	Event	#Article	Time Range
D_1	Egypt Revolution	3,869	2011.1.11 - 2013.7.24
D_2	Libya War	3,994	2011.2.16 - 2013.7.18
D_3	Syria War	4,071	2011.11.17 - 2013.7.26
D_4	Yemen Crisis	3,600	2011.1.15 - 2013.7.25

Experiments (2)

- Parameter Tuning
 - Pairwise judgment
 - Testing set: news article pairs $T_i = \{(d_m, d_n)\}$
 - Manually label whether each pair is related to the same event phase
 - Evaluation metrics: Precision, Recall and F-measure
 - Experimental results

•
$$\mu_1 = 0.4, \mu_2 = 0.5, MinPts = 10$$

Experiments (3)

- Baselines
 - VSMCluster: KMeans using word features of TF-IDF weights
 - TopicCluster: KMeans using topic distributions based on LDA
 - SCAN: structural clustering algorithm for network partitioning
 - EPCluster-C: EPCluster without postprocessing
- Results
 - Our method EPCluster is effective for event phase extraction.

Method	VSMCluster	TopicCluster	SCAN	EPCluster-C	Our Method
Precision	0.35	0.52	0.78	0.81	0.89
Recall	0.74	0.67	0.72	0.79	0.78
F1 Score	0.48	0.59	0.75	0.80	0.83

Experiments (4)

- Baselines
 - Random: selects news articles randomly
 - Longest: selects news articles with longest headlines
 - Tran et al., Chieu et al.: timeline generation methods
 - Our Method (PageRank): the variant of our method
- Evaluation
 - Evaluate the relevance of news headlines based on gold-standard event summaries
 - Experimental results

Case Study

Event Phase #1 Protest against Hosni Mubarak

2011.2.2 Egypt protests: Hosni Mubarak to stand down at next election

2011.2.11 Hosni Mubarak resigns and Egypt celebrates a new dawn

Event Phase #2 Egypt under the Rule of Military Power

2011.4.9 |Egyptian soldiers attack Tahrir Square protesters

2011.7.10 Protests spread in Egypt as discontent with military rule grows

Event Phase #3 Mohammed Morsi Won Presidential Election

2012.5.23 First round of presidential election

2012.6.24 Election officials declare Morsi the winner

Event Phase #4 Protest against Morsi and Muslim Brotherhood

2013.1.27 Egypt's Mohammed Morsi declares state of emergency, imposes curfew 2013.1.30 Egypts military chief says clashes threaten the state

Event Phase #5 Morsi's Ousting

2013.7.4 After Morsi's Ousting, Egypt Swears in New Presiden

2013.7.6 |Morsi's ouster in Egypt sends chill through political Islam

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Conclusion

- Event Phase Extraction and Summarization
 - A structural clustering algorithm for event phase extraction based on TCCG
 - Summary generation via news article ranking and rank optimization
- Future work
 - Improving the performance of document summarization and timeline generation when event phases are considered

Thanks!

Questions & Answers