

TransPrompt: Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

Chengyu Wang*¹, Jianing Wang*², Minghui Qiu ¹, Jun Huang ¹, Ming Gao ²

¹ Alibaba Group ² East China Normal University

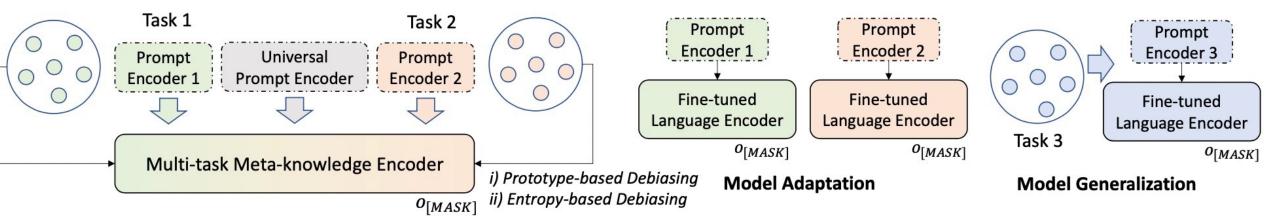
Introduction (1)

- ✓ Few-shot learning for pre-trained language models (PLMs)
 - Using prompt-based approaches to fine-tune PLMs
 - A few approaches (e.g., P-tuning) employ continuous prompts to ease the process of human engineering
 - The performance may be limited by the small training sets
- ✓ Transferable Few-shot Learning
 - Prompt-based approaches can capture the knowledge across similar NLP tasks

Introduction (2)

✓ Our idea: the TransPrompt framework

- Multi-task Meta-knowledge Acquisition: learning the transferable representations of prompt encoders and PLMs jointly across similar NLP tasks
- Task-aware Model Specification:
 - Model Adaptation: adaptive to specific existing tasks
 - Model Generalization: generalized to new tasks



a) Multi-task Meta-knowledge Acquisition

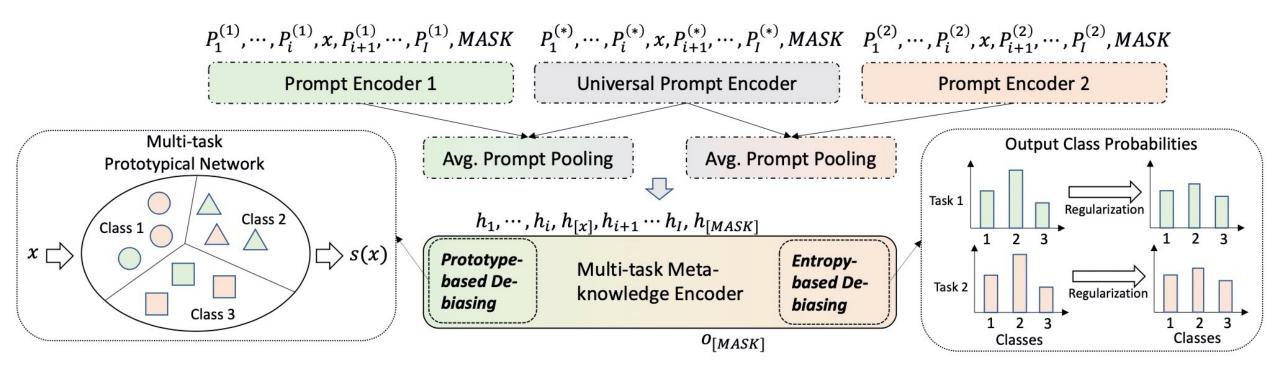
b) Task-aware Model Specification

E の 国里巴巴集団

Multi-task Meta-knowledge Acquisition

✓ New techniques for capturing transferable knowledge

- Universal Prompt Encoder
- Two Debiasing Techniques



Multi-task Meta-knowledge Acquisition

✓ Protype-based Debiasing: learning instance-level transferable knowledge

• Compute prototype scores to select transferable instances across tasks

$$\begin{split} s(x) &= \zeta \cdot \frac{\sin(\mathcal{E}(x), \mathbf{c}_m(y))}{\sum_{\tilde{y} \in \mathcal{Y}} \sin(\mathcal{E}(x), \mathbf{c}_m(\tilde{y}))} \\ &+ \frac{1-\zeta}{M-1} \sum_{\tilde{m}=1(m \neq \tilde{m})}^M \frac{\sin(\mathcal{E}(x), \mathbf{c}_{\tilde{m}}(y))}{\sum_{\tilde{y} \in \mathcal{Y}} \sin(\mathcal{E}(x), \mathbf{c}_{\tilde{m}}(\tilde{y}))} \ \mathcal{L}(\Theta) = \sum_{m=1}^M \sum_{(x,y) \in \mathcal{D}_m} s(x) l(x, y; \Theta) + \lambda_1 \|\Theta\|_{\mathcal{H}} \end{split}$$

- ✓ Entropy-based Debiasing: learning task-level transferable knowledge
 - Add an entropy-based loss to make the PLM more task-agnostic

$$\mathcal{H}(\mathcal{D}_m) = -rac{1}{|\mathcal{D}_m|} \sum_{(x,y)\in\mathcal{D}_m} \sum_{\hat{y}\in\mathcal{Y}} \hat{y}(x)\log \hat{y}(x),$$

Task-aware Model Specification

✓ Model Adaptation: fine-tuning the corresponding prompt encoder and the PLM $\mathcal{L}^{(m)}(\Theta) = \sum_{(x,y)\in \mathcal{D}_m} l(x,y;\Theta) + \lambda_1 \|\Theta\|$

✓ Model Generalization: using the parameters of the universal prompt encoder to initialize its own prompt encoder

$$\tilde{\mathcal{L}}(\Theta) = \sum_{(x,y)\in\tilde{\mathcal{D}}} l(x,y;\Theta) + \lambda_1 \|\Theta\|$$

Experiments (1)

- ✓ Few-shot experiments of TransPrompt
 - Model: Roberta-large
 - Training data: 16 shots

Method	Task: Sentiment Analysis			Task: NLI		Task: Paraphrase		Ava		
	SST-2	MR	CR	MNLI	SNLI	MRPC	QQP	Avg.		
Single-task Baselines										
Fine-tuning (Devlin et al., 2019)	81.42	76.15	84.50	54.17	44.45	73.28	59.64	67.66		
LM-BFF (man) (Gao et al., 2020)	90.75	86.60	90.50	63.62	70.77	74.05	60.27	76.65		
LM-BFF (auto) (Gao et al., 2020)	91.62	87.25	91.80	64.25	71.21	74.23	60.59	77.28		
P-tuning (Liu et al., 2021)	91.85	86.60	91.75	62.41	70.28	66.42	60.57	75.70		
Cross-task Baselines										
Fine-tuning (mtl) (Sun et al., 2019)	83.37	79.30	84.75	41.32	48.14	53.12	59.31	64.19		
Meta Fine-tuing (Wang et al., 2020a)	86.32	83.85	88.42	48.52	58.20	71.56	67.12	72.00		
LM-BFF (mtl) (Gao et al., 2020)*	91.97	87.45	90.70	69.09	75.90	50.00	67.40	76.07		
P-tuning (mtl) (Liu et al., 2021)*	93.12	87.75	91.35	68.83	74.24	70.83	69.99	79.44		
TransPrompt (Proposed Approach)	93.58	88.80	92.00	71.90	76.99	75.98	75.80	82.15		

Experiments (2)

- ✓ Full-data experiments of TransPrompt
 - Model: Roberta-base
 - Training data: full training sets

Method	Task: Sentiment Analysis			Task: NLI		Task: Paraphrase		Ava
	SST-2	MR	CR	MNLI	SNLI	MRPC	QQP	Avg.
Single-task Baselines								
Fine-tuning (Devlin et al., 2019)	93.00	90.15	90.90	82.87	87.87	72.28	89.53	86.65
LM-BFF (man) (Gao et al., 2020)	93.65	88.50	90.98	87.23	91.10	88.75	85.12	89.33
LM-BFF (auto) (Gao et al., 2020)	93.81	88.75	91.25	87.01	91.51	88.97	83.12	89.20
P-tuning (Liu et al., 2021)	93.69	90.10	90.25	87.17	91.67	88.97	90.87	90.38
Cross-task Baselines								
Fine-tuning (mtl) (Sun et al., 2019)	94.72	90.65	91.05	87.10	91.80	69.85	90.20	87.91
Meta Fine-tuing (Wang et al., 2020a)	95.70	91.25	91.42	83.67	89.48	78.92	89.72	88.59
LM-BFF (mtl) (Gao et al., 2020)*	95.41	90.45	91.50	86.76	88.25	69.36	90.32	87.43
P-tuning (mtl) (Liu et al., 2021)*	95.30	90.40	90.08	86.97	91.48	68.87	90.59	87.67
TransPrompt (Proposed Approach)	96.05	91.78	91.59	88.70	91.88	86.87	91.27	91.16

Conclusion

- ✓We present the TransPrompt framework for few-shot learning across similar NLP tasks.
- \checkmark Experiments confirm the effectiveness of TransPrompt over various NLP tasks.
- ✓ Future work includes:
 - ✓ Using TransPrompt in other application scenarios and other NLP tasks
 - Exploring how TransPrompt can be applied to other PLMs apart from BERT-style models

THANKS

----- Q&A Section ------