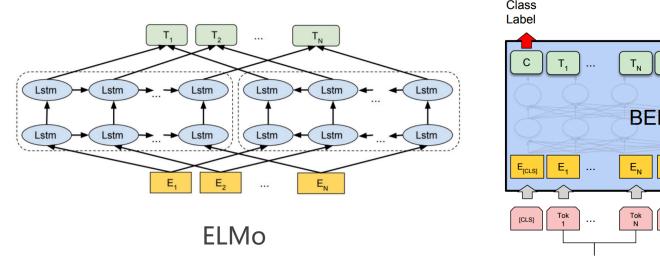
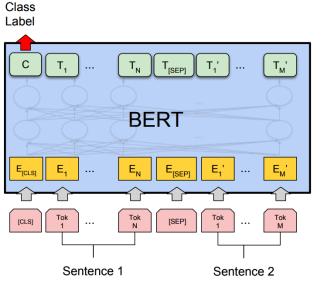
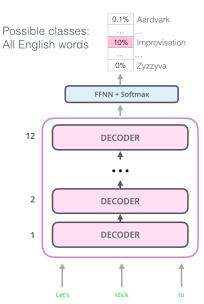


Meta Fine-Tuning Neural Language Models for Multi-Domain Text Mining

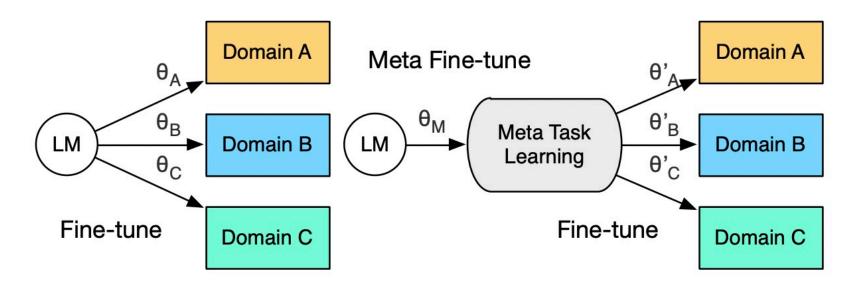

Chengyu Wang¹, Minghui Qiu¹, Jun Huang¹, Xiaofeng He²


¹ Alibaba Group ² East China Normal University



Introduction

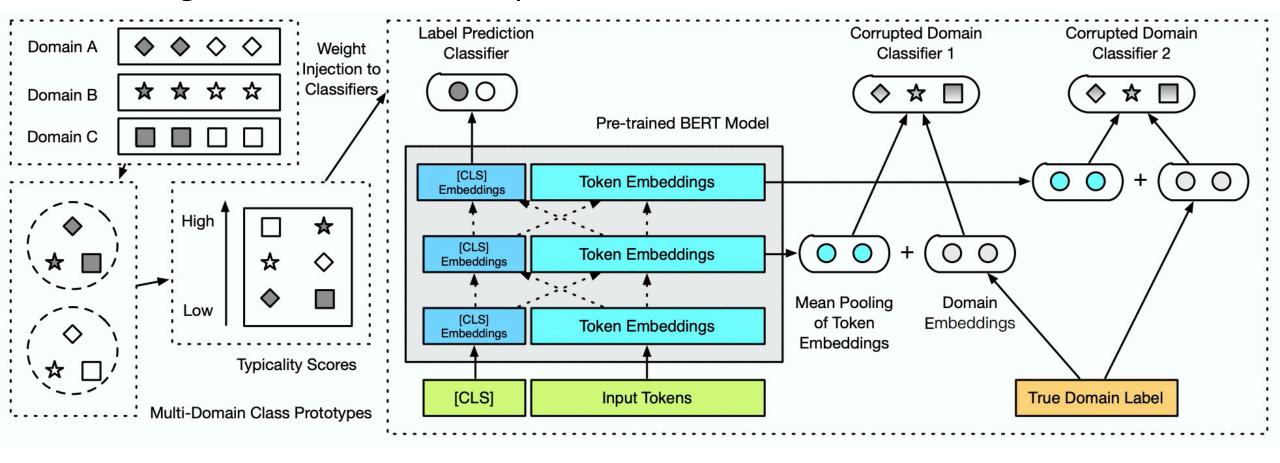
✓ Pre-trained language models have achieved significant success in NLP.


GPT-2

- ✓ A learning gap exists between pre-training and fine-tuning.
- ✓ For a group of similar tasks, parameters of all task-specific models are initialized from the same pre-trained language model.

Introduction

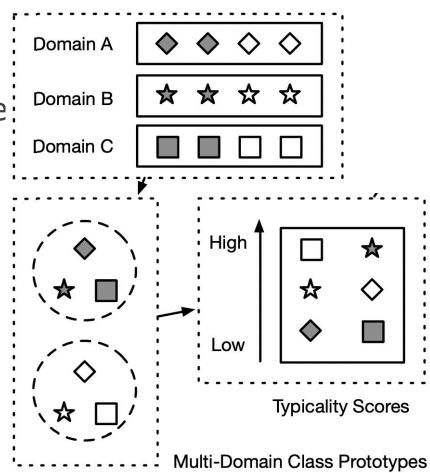
✓ Our solution: meta fine-tuning



- a) Conventional Approach
- b) The Proposed Approach
- Target of meta fine-tuning: learning the transferable knowledge across all domains

Key Ideas of Meta Fine-tuning

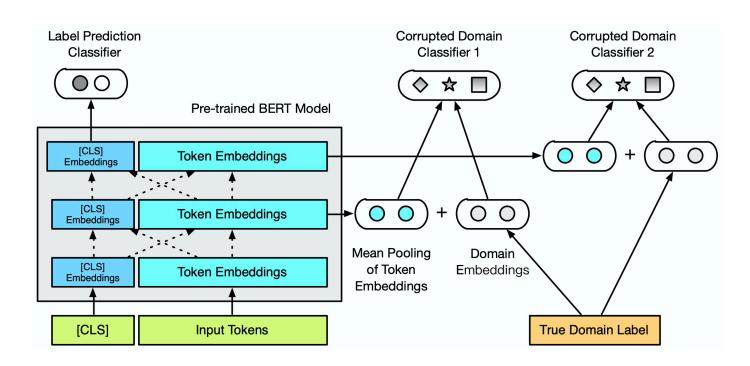
- ✓ Learning from Typicality
- ✓ Learning Domain-invariant Representations



Learning from Typicality

- ✓ An instance is typical if and only if it is:
 - Close to its in-domain class centroid in the embedding space
 - Not far from its out-of-domain class centroids in the embedding space

$$t_i^k = \alpha \cos(\mathcal{E}(x_i^k), \mathbf{c}_m^k) + \frac{1 - \alpha}{K - 1} \cdot \sum_{\tilde{k} = 1}^K \mathbf{1}_{(\tilde{k} \neq k)} \cos(\mathcal{E}(x_i^k), \mathbf{c}_m^{\tilde{k}})$$



Learning Domain-invariant Representations

- ✓ Corrupted domain classifiers
 - Input: true domain embeddings, BERT embeddings
 - Output: corrupted domain labels

Goal: forcing BERT to hide domain-specific information

$$\mathcal{L}_{SDC} = -\frac{1}{|L_s| \cdot |\mathcal{D}|} \sum_{(x_i^k, y_i^k) \in \mathcal{D}} \sum_{l \in L_s} \sum_{k=1}^K \sum_{i=1}^K \mathbf{1}_{(k=z_i)} t_i^k \cdot \log \delta_{z_i} (\mathbf{h}_l(x_i^k) + \mathcal{E}_D(k))$$

Experiments

✓ Sentence pair classification (MNLI)

Method	Telephone	Government	Slate	Travel	Fiction	Average
BERT (S)	82.5	84.9	78.2	83.1	82.0	82.1
BERT (Mix)	83.1	85.2	79.3	85.1	82.4	83.0
BERT (MTL)	83.8	86.1	80.2	85.2	83.6	83.8
BERT (Adv)	81.9	84.2	79.8	82.0	82.2	82.0
MFT (DC)	84.2	86.3	80.2	85.8	84.0	84.1
MFT (TW)	83.8	86.5	81.3	83.7	84.4	83.9
MFT (Full)	84.6	86.3	81.5	85.4	84.6	84.5

✓ Sentence classification (Amazon Reviews)

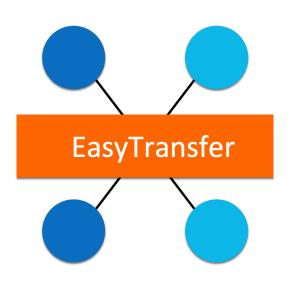
Method	Book	DVD	Elec.	Kit.	Avg.
BERT (S)	90.7	88.2	89.0	85.7	88.4
BERT (Mix)	91.8	89.4	87.8	88.4	89.3
BERT (MTL)	92.2	89.0	88.3	88.2	89.0
BERT (Adv)	89.3	87.4	86.5	86.7	87.5
MFT (DC)	90.6	89.4	92.5	88.7	90.3
MFT (TW)	90.4	88.9	94.5	89.1	90.7
MFT (Full)	91.2	88.8	94.8	89.2	91.0

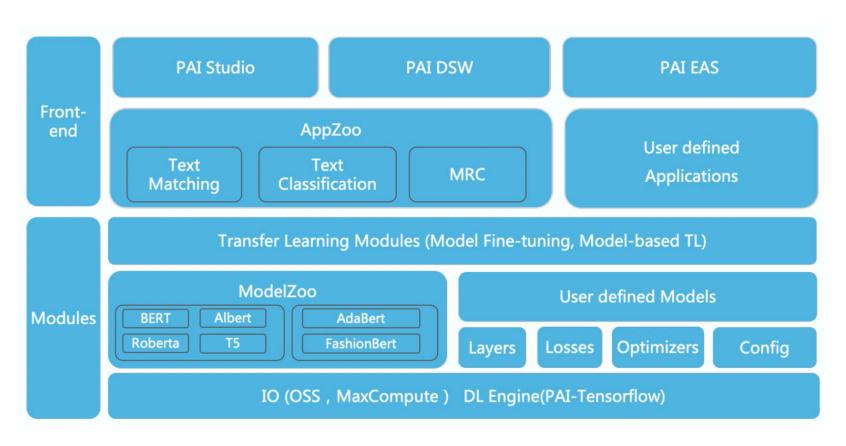
Experiments

√ Few-shot learning

Genre	With MFT?		Improvement	With MFT?		Improvement	With MFT?		Improvement
Genre	No	Yes	Improvement	No	Yes	improvement	No	Yes	- improvement
Training data	5% of the original			10% of the original			20% of the original		
Telephone	70.5	74.7	4.2%↑	74.1	76.4	2.3%↑	75.9	79.8	3.9%↑
Government	76.5	78.1	1.6% ↑	78.8	81.0	2.2% ↑	80.5	82.9	2.4% ↑
Slate	64.2	69.8	5.7% ↑	67.6	71.8	4.2% ↑	71.8	74.1	2.3% ↑
Travel	71.9	75.4	3.5 %↑	74.8	78.1	3.3 %↑	78.3	80.3	2.0% ↑
Fiction	69.7	73.8	4.1% ↑	73.3	76.6	3.3 %↑	76.2	78.4	2.2%↑
Average	70.5	74.4	3.9%↑	73.7	76.8	3.1%↑	76.5	79.1	2.6%↑

✓ Case study


Typicality	Domain	Label	Review Text
	Book	NEG	More hate books. How could anyone write anything so wrong.
Low	Kitchen	NEG	The spoon handle is crooked and there are marks/damage to the wood. Avoid.
	Kitchen	NEG	The glass is quite fragile. I had two breaks.
	Kitchen	POS	I would recommend them to everyoneand at their price, it's a HUGE DEAL!
High	Electronics	NEG	What a waste of money. For \$300 you shouldn't HAVE to buy a protection plan for
	Electronics	NEG	Do not waste your money, this was under recommendations, but I would NOT



Open Source

✓ Meta Fine-tuning is integrated into the EasyTransfer library.

A transfer learning framework for NLP applications

https://github.com/alibaba/EasyTransfer

THANKS

----- Q&A Section -----