Learning Fine-grained Relations from Chinese **User Generated Categories**

Chengyu Wang, Yan Fan, Xiaofeng He*, Aoying Zhou

School of Computer Science and Software Engineering, East China Normal University

Introduction

- User generated categories (UGCs) express rich semantic relations implicitly.
- ► While most methods use pattern matching for English, learning relations from Chinese UGCs poses challenges due to the flexibile expressions.
- Our work uses weakly supervised methods to extract relations from Chinese UGCs based on projection learning and graph mining.

Mining Is-a Relations

Initial model training

► Use existing labeled sets and heuristic rules to generate training data automatically (i.e., is-a and not-is-a relation pairs).

Mining Non-taxonomic Relations (II)

Graph-based raw relation extractor

For each pattern p, construct a graph G where nodes are extracted candidate relation pairs based on *p* and weighted edges are the semantic similarities between the pairs.

DaSE

Data Science

&Engineering

- Detect a Maximum Edge Weight Clique (MEWC) C* in G and treat pairs in C^* as seed relation instances that p may represent. We propose a Monte Carlo based method to extract the MEWC from the graph approximately. Please refer to the paper for details.
- Extract relation instances for the underline relation that p may present by finding pairs that are similar enough to the seed relation instances.

Relation mapping

Map extracted pairs to relation triples by defining the relation predicates through i) direct verbal mapping, ii) direct non-verbal mapping and iii) indirect mapping.

Experiments

- \blacktriangleright Train a skip-gram model to map each word x_i to its embedding vector \mathbf{x}_i .
- ► Train two linear projection models with Tikhonov regularizers based on word embeddings. One for is-a relations. The other for not-is-a relations.

$$J(\mathsf{M}^+,\mathsf{B}^+) = \frac{1}{2} \sum_{(e,c_h)\in D^+} \|\mathsf{M}^+e + \mathsf{B}^+ - \mathsf{c}_h\|_2^2 + \frac{\lambda}{2} \|\mathsf{M}^+\|_F^2 + \frac{\lambda}{2} \|\mathsf{B}^+\|_F^2$$

$$J(\mathsf{M}^{-},\mathsf{B}^{-}) = \frac{1}{2} \sum_{(e,c_h)\in D^{-}} \|\mathsf{M}^{-}e + \mathsf{B}^{-} - c_h\|_2^2 + \frac{\lambda}{2} \|\mathsf{M}^{-}\|_F^2 + \frac{\lambda}{2} \|\mathsf{B}^{-}\|_F^2$$

where e is a Wikipedia concept and c_h is the head word of a UGC of entity *e* in its corresponding Wikipedia page.

Estimate the prediction score s(e, c) for each unlabeled (e, c) pair.

$$s(e, c) = tanh(||M^+e + B^+ - c_h||_2 - ||M^-e + B^- - c_h||_2)$$

High prediction score means there is a large probability of is-a relation between *e* and *c*.

Score refinement by collective inference

 \blacktriangleright Denote $\tilde{g}(h)$ as the un-normalized global prediction score for head word hof UGCs:

$$\widetilde{g}(h) = \ln(1 + |D_h| + |D_h^+|) \frac{|D_h^+| + \sum_{(e,c) \in D_h} s(e,c)}{|D_h| + |D_h^+|}$$

where H is the collection of head words of UGCs.

 \blacktriangleright Re-normalize the prediction score s(e, c) based on the initial prediction score and global prediction score.

$$f(e,c) = \beta s(e,c) + (1 - \beta)g(h)$$

where $\beta \in (0, 1)$ is the tuning parameter and g(h) is the normalized version of $\tilde{g}(h)$:

$$g(h) = \frac{\tilde{g}(h)}{\max_{h' \in H} |\tilde{g}(h')|}$$

Expand the number of hypernyms by the following heuristic rule:

- Experiments on is-a relation extraction
- ► Dataset: 1,788 labeled entity-UGC pairs extracted from Chinese Wikipedia.
- ► Metrics: Precision, Recall and F-Measure.
- Results: Our approach outperforms all competitive baselines.

Method	Precision (%)	Recall (%)	F-Measure (%)
Concat Model	79.5	64.2	67.2
Sum Model	80.9	70.1	72.6
Diff Model	78.3	69.0	71.5
Piecewise Projection	78.9	72.3	75.5
Our Method (w/o Exp)	89.2	88.1	88.7
Our Method	89.8	88.3	89.0

Experiments on non-taxonomic relation extraction

- Dataset: All entity-UGC pairs in Chinese Wikipedia.
- ► Metrics: Size (#extractions for a certain relation type), Accuracy and Coverage (whether the extracted relations are covered by a large existing Chinese KB).
- Results: Our approach can extract a large amount of novel relations with high accuracy.

Relation	Size	Accuracy (%)	Coverage (%)
毕业(graduated-from)	44,118	98.0	22.9
位于(located-in)	29,460	97.2	8.5
建立(established-in)	20,154	95.0	31.5
出生(born-in)	11,671	98.3	41.4
成员(member-of)	8,445	96.0	4.2
启用(open-in)	8,956	98.2	21.6

▶ Please refer to more supplementary experiments in the paper.

Conclusion and Future Work

► We propose a weakly supervised framework to extract relations from

Finally, we regard c_h as a valid hypernym of e if c is predicted as a hypernym of e and c_h is also a Wikipedia concept.

Mining Non-taxonomic Relations (I)

Single-pass category pattern mining

- Extract category patterns by replacing entity placeholders with specific entity names in UGCs. For example, the pattern is "[E]获得者'(Winner of [E])" for "图灵奖获得者(Winner of Turing Award)". The pair "(蒂姆·伯 纳斯-李, 图灵奖)(Tim Berners-Lee, Turing Award)" can be extracted as a candidate relation instance.
- \blacktriangleright Calculate the pattern support score supp(p) of pattern p and filter out low-support patterns by:

 $supp(p) = |R_p| \cdot \ln(1 + L_p)$

where R_p is the collection of extracted pairs for pattern p and L_p is the pattern length.

Chinese UGCs. It requires very little human intervention and has high accuracy for the Chinese language.

► Future work includes:

- Improving our work for short text knowledge extraction;
- ▷ Designing a general framework for cross-lingual UGC relation extraction.

Key References

- [1] Fu et al. Learning semantic hierarchies via word embeddings. ACL 2014. pages 1199-1209.
- [2] Wang et al. Transductive Non-linear Learning for Chinese Hypernym Prediction. ACL 2017. pages 1394–1404.
- [3] Nastase and Strube. Decoding Wikipedia Categories for Knowledge Acquisition. AAAI 2008. pages 1219–1224.
- [4] Pasca. German Typographers vs. German Grammar: Decomposition of Wikipedia Category Labels into Attribute-Value Pairs. WSDM 2017.

chywang2013@gmail.com Contact info:

School of Computer Science and Software Engineering, East China Normal University