Exploratory Neural Relation Classification for Domain Knowledge Acquisition

Yan Fan, Chengyu Wang, Xiaofeng He

School of Computer Science and Software Engineering East China Normal University Shanghai, China

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion

Relation Extraction

- Relation extraction
 - Structures the information from the Web by annotating the plain text with entities and their relations
 - E.g., "Inception is directed by Christopher Nolan."

entity₁ relation entity₂

- Relation classification
 - Formulates relation extraction as a classification problem
 - E.g., (Inception, Christopher Nolan) should be classified as the relation "<u>directed by</u>", instead of "<u>played by</u>".

Domain Knowledge Acquisition

- Knowledge graph
 - Relation extraction is a key technique in constructing knowledge graphs.

- Challenges for domain knowledge graph
 - Long-tail domain entities: Most domain entities which follow long-tail distribution, leading to the context sparsity problem for pattern-based methods.
 - Incomplete predefined relations: Since predefined relations are limited, unlabeled entity pairs may be wrongly forced into existing relation labels.

Dynamic Structured Neural Network for Exploratory Relation Classification

- Goal
 - 1. Classifies entity pairs into a finite pre-defined relations
 - 2. Discovers new relations and instances from plain texts with high confidence
- Method
 - Context sparsity problem: A distributional embedding layer is introduced to encode corpus-level semantic features of domain entities.
 - Limited label assignment: A clustering method is proposed to generate new relations from unlabeled data which can not be classified to be any existing relations.

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion

Relation Classification Approaches

Traditional approaches

- Feature-based: applies textual analysis
 - N-grams, POS tagging, NER, dependency parsing
- Kernel-based: similarity metric in higher dimensional space
 - Kernel functions are applied to strings, word sequences, parsing trees
- Requires empirical features or well-designed kernel functions

Deep learning models

- Distributional representation: word embeddings
- Neural network models:
 - CNN: extracts features with local information
 - RNN: captures long-term dependency on the sequence
- Automatically extracts features

Relation Discovery Approaches

Open relation extraction

- automatically discovers relations from large-scale corpus with limited seed instances or patterns without predefined types
- Representative systems: TextRunner, ReVerb, OLLIE
- Inapplicable to domain knowledge due to data sparsity problem
- Clustering-based approaches
 - Predefined K: Standard KMeans
 - Automatically learned K: Non-parametric Bayesian models
 - Chinese restaurant process (CRP), distance dependent CRP (ddCRP)

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion

Task Definition

Notations

- Labeled entity pair set $X^{l} = \{(e_1, e_2)\}$ and their labels Y^{l}
- Unlabeled entity pair set $X^u = \{(e_1, e_2)\}$
- Exploratory relation classification (ERC)
 - Trains a model to predict the relations for entity pairs in X^u with K + n output labels, where K denotes the number of pre-defined relations in Y^l , and n is the number of newly discovered relations.

General Framework

Algorithm 1 ERC Training Process

Input: Labeled data X^l and Y^l , unlabeled data X^u **Output:** Expanded relation set R_{new}

1: while no new relations can be discovered do

- 2: // Base neural network training
- 3: Train base neural network N_t with X^l and Y^l
- 4: // Relation discovery
- 5: Generate candidate clusters $\{C_1, \ldots, C_m\}$ for X^u
- 6: Pick the best cluster C^* from $\{C_1, \ldots, C_m\}$
- 7: Update relation set $R_{new} = R_{new} \cup \{C^*\}$
- 8: // Relation prediction
- 9: Predict confident labels for unlabeled data X^u on R_{new}
- 10: end while
- 11: return R_{new}

Base Neural Network Training

Syntactic contexts via LSTM

- Nodes on the root augmented dependency path (RADP)
 - E.g. [Inception, directed, Christopher Nolan]
- Node representation
 - {word embedding, POS tag, dependency relation, relational direction}

- Lexical contexts via CNN
 - Word embeddings of sliding window of n-grams around entities
- Semantic contexts
 - Word embeddings of two tagged entities

Base Neural Network Architecture

Chinese Restaurant Process (CRP)

- Goal
 - Groups customers into random tables where they sit

Distribution over table assignment

$$\Pr(z_i = p \mid \vec{z}_{-i}, \alpha) \propto \begin{cases} N_p & \text{if } p \leq K \\ \alpha & \text{if } p = K+1 \end{cases}$$

- N_p : number of customers sitting at table p
- z_i : index of the table where the *i*-th customer sits
- $\overrightarrow{z_{-i}}$: indices of tables for customers except for the *i*-th customer
- α : scaling parameter for a new table
- K: number of occupied tables

Similarity Sensitive Chinese Restaurant Process (ssCRP)

Idea

- Exploits similarities between customers
- Turns the problem to customer assignment
- Distribution over customer assignment

 $\Pr(c_i = j \mid \eta) \propto \begin{cases} \alpha & \text{if } j \text{ is customer } i \text{ itself} \\ g(s_{ij}) & \text{if } j \text{ is an upcoming customer} \\ g(s_{ij})(1 + \beta \lg N_p) & \text{if } j \text{ is averaged from table } p \end{cases}$

- s_{ij} : similarity score between the *i*-th and *j*-th customer
- g(x): similarity function to magnify input differences
- β : the parameter balancing the weight of table size
- $\eta = \{S, N_p, \alpha, \beta\}$: set of hyperparameters

Illustration of ssCRP

Relation Prediction

Idea

- Populates small clusters generated via ssCRP
- Enriches existing relations with more instances
- Prediction criteria
 - Distribution over K + l relations for entity pair (e_1, e_2) : [$\Pr(r_1|e_1, e_2), \dots, \Pr(r_{K+l}|e_1, e_2)$]
 - "Max-secondMax" value for "near uniform" criteria: $\operatorname{conf}(e_1, e_2) = \frac{\max([\Pr(r_1|e_1, e_2), \dots, \Pr(r_{K+l}|e_1, e_2)])}{\operatorname{secondMax}([\Pr(r_1|e_1, e_2), \dots, \Pr(r_{K+l}|e_1, e_2)])}$

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion

Experimental Data

Text corpus

- Text contents from 37,746 pages of entertainment domain in Chinese Wikipedia
- Statistics
 - Training & Validation & Testing:
 - 3480 instances on 4 predefined relations from (Fan et al., 2017)
 - Unlabeled:
 - 3161 entity pairs which share joint occurrence in the sentences

Predefined relations	Directing	Singing	Starring	Spouse
# Instances	633	648	1609	590

Evaluation of Relation Classification

- Comparative study
 - We compare our method to CNN-based and RNN-based models, and experiment with different feature sets to verify their significance.

Classifier	Feature set	F1 (%)
	entity pairs (add)	77.3/ 77.4
	entity pairs (sub)	75.9/ 80.8
logistic regression/ SVM	entity pairs (concat)	89.0/ 87.5
	syntactic units, entity pairs (concat)	84.9/ 82.5
	context words, entity pairs (concat)	87.6/ 86.6
	syntactic units, context words	89.2/ 87.8
	syntactic units, context words, entity pairs (concat)	89.9/88.0
Shwartz et al. (Shwartz et al., 2016)	shortest dependency path, entity pairs	65.3
Zeng et al. (Zeng et al., 2014)	context words, entity pairs	81.5
RNN+E	syntactic units, entity pairs (concat)	66.8
CNN+E	context words, entity pairs (concat)	91.4
Full implementation	syntactic units, context words, entity pairs (concat)	92.2

Evaluation of Relation Discovery

• Pairwise experiment

- We manually construct a testing set by sampling pairs of instances (x_i, x_j) from unlabeled data where $x = (e_1, e_2)$.

Precison =
$$\frac{|\{(x_i, x_j) \in D | v_{i,j} = 1 \land v_{i,j}' = 1\}|}{|\{(x_i, x_j) \in D | v_{i,j}' = 1\}|}$$
$$\text{Recall} = \frac{|\{(x_i, x_j) \in D | v_{i,j} = 1 \land v_{i,j}' = 1\}|}{|\{(x_i, x_j) \in D | v_{i,j} = 1\}|}$$

- $v_{i,j} \in \{1,0\}$ for the ground truth, $v_{i,j}' \in \{1,0\}$ for the clustering result

Algorithm	# Instances	Precision (%)	Recall (%)	F1 (%)
Fit ssCRP	3161	31.0	35.7	33.2
Exploratory EM-based Naive Bayes	3161	70.7	40.2	52.8
Exploratory seeded KMeans	3161	80.5	53.0	63.9
ssCRP w/o tables	593	66.6	60.4	63.3
ssCRP w/o prediction	903	83.7	61.0	70.6
Exp ssCRP	3161	77.9	66.7	71.9
Logistic ssCRP	3161	81.4	66.9	73.0 2
Full implementation of ssCRP	3048	83.1	68.4	75.0

Evaluation of Relation Discovery

Newly discovered relations

- 6 new relations are generated, covering 96.4% unlabeled data

Relation name	# Instances	Relation name	# Instances
Group members	1328	Belong to the country	956
Family members	355	Series works	247
Employed by	144	Produced by	18

• Top-k precision

- We heuristically choose k = 0.4 because the precision drops relatively faster when k is larger than this setting.

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion

Conclusion

- Exploratory relation classification
 - Problem: assign labels for unlabeled entity pairs to both predefined and unknown relations
 - Iterative process:
 - an integrated base neural network for relation classification
 - a similarity-based clustering algorithm ssCRP to generate new relations
 - constrained relation prediction process to populate new relations
 - Experiments: on Chinese Wikipedia entertainment domain, with base neural network achieving 0.92 F1-score, and 6 new relations generated with 0.75 F1-score.

Thanks!