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Relation Extraction

 Relation extraction

— Structures the information from the Web by annotating the plain
text with entities and their relations
* E.g., “Inception is directed by Christopher Nolan.”

entity, relation entity,

 Relation classification

— Formulates relation extraction as a classification problem

« E.g., (Inception, Christopher Nolan) should be classified as the relation
“directed by”, instead of “played by”.




Domain Knowledge Acquisition

> @ ® @ ®
» Knowledge graph . @ ° .
— Relation extraction is a key > o KNOWLEDGE O
technique in constructing v ®
knowledge graphs. " ® P ® . o :

» Challenges for domain knowledge graph

— Long-tail domain entities: Most domain entities which follow
long-tail distribution, leading to the context sparsity problem for
pattern-based methods.

— Incomplete predefined relations: Since predefined relations are
limited, unlabeled entity pairs may be wrongly forced into existing
relation labels.



Dynamic Structured Neural Network
for Exploratory Relation Classification

» Goal
1. Classifies entity pairs into a finite pre-defined relations

2. Discovers new relations and instances from plain texts with high
confidence

« Method

— Context sparsity problem: A distributional embedding layer is
introduced to encode corpus-level semantic features of domain
entities.

— Limited label assignment: A clustering method is proposed to
generate new relations from unlabeled data which can not be
classified to be any existing relations.
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Relation Classification Approaches

e Traditional approaches

— Feature-based: applies textual analysis
« N-grams, POS tagging, NER, dependency parsing

— Kernel-based: similarity metric in higher dimensional space
« Kernel functions are applied to strings, word sequences, parsing trees

— Requires empirical features or well-designed kernel functions

 Deep learning models
— Distributional representation: word embeddings

— Neural network models:
« CNN: extracts features with local information
* RNN: captures long-term dependency on the sequence

— Automatically extracts features



Relation Discovery Approaches

* QOpen relation extraction

— automatically discovers relations from large-scale corpus with
limited seed instances or patterns without predefined types

— Representative systems: TextRunner, ReVerb, OLLIE
— Inapplicable to domain knowledge due to data sparsity problem

e Clustering-based approaches

— Predefined K: Standard KMeans

— Automatically learned K: Non-parametric Bayesian models
« Chinese restaurant process (CRP), distance dependent CRP (ddCRP)
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Task Definition

* Notations
— Labeled entity pair set X! = {(e{, e;)} and their labels Y*
— Unlabeled entity pair set X" = {(eq,e,)}

» EXxploratory relation classification (ERC)

— Trains a model to predict the relations for entity pairs in X%
with K + n output labels, where K denotes the number of
pre-defined relations in Y, and n is the number of newly
discovered relations.
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General Framework

Algorithm 1 ERC Training Process

Input: Labeled data X' and Y, unlabeled data X
Output: Expanded relation set R,,c.
1: while no new relations can be discovered do

// Base neural network training

Train base neural network N; with X' and Y

// Relation discovery

Generate candidate clusters {C1,...,C,} for X*

Pick the best cluster C* from {C,,...,Cn}

Update relation set R,y = Rpew U {C"}

// Relation prediction

. Predict confident labels for unlabeled data X™* on R,,c
10: end while

11: return R, ..

N AR Al ol b
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Base Neural Network Training

» Syntactic contexts via LSTM

— Nodes on the root augmented dependency path (RADP)
» E.g. [Inception, directed, Christopher Nolan]

— Node representation
« {word embedding, POS tag, dependency relation, relational direction}
« E.g. {Inception, nnp, nsubjpass, <-}

nmod

nsubjpass case
l sSuxpass l compound ‘
v ]
Inception IS directed by Christopher Nolan

» Lexical contexts via CNN
— Word embeddings of sliding window of n-grams around entities

« Semantic contexts
— Word embeddings of two tagged entities
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Base Neural Network Architecture

Word embedding
Part-of-speech tag
Dependency relation
Relational direction

Syntactic context

LSTM network

Softmax

A

(@

Lexical context

Convolution

’ooﬂ

Semantic context

and Poolin

l Inpw

LoTM Lo gl (0000000 0000000
A A
(Lookup table )
(@ O | (@ | aoaaxxn oaaaxxn (@] (@)
A A A A A A A
INCEPTION, DIRECTED, c”';'g[ﬁ:““ = R CHRIS
nnp, vbn, ’ o d INCEP | | TOPHE
: nnp INCEPTION, CHRISTOPHER NOLAN,
nsubjpass, root, e IS *e TION R
< > -> DIRECTED *e HOLAN
( Sentence ))
13

Inception is directed by Christopher Nolan




Chinese Restaurant Process (CRP)

Goal

| 1 3 4 7
— Groups customers into random ° ° 6
5 8 o0

tables where they sit
Distribution over table assignment

N, ifp<K

Pr(z;=p| Z_;,a) x
(i =p| 2 0) {a if p=K + 1

- N,: number of customers sitting at table p

- z;. index of the table where the i-th customer sits

- z_;: indices of tables for customers except for the i-th customer
— a: scaling parameter for a new table

- K: number of occupied tables
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Similarity Sensitive Chinese
Restaurant Process (ssCRP)

* |dea
— Exploits similarities between customers
— Turns the problem to customer assignment

» Distribution over customer assignment
Q if 7 1s customer 2 itself
Pr(c; =7 | n) o < g(sij) if 7 is an upcoming customer

g(sij)(1+ Blg Np) if j is averaged from table p

- s;;: similarity score between the i-th and j-th customer

- g(x): similarity function to magnify input differences

- [: the parameter balancing the weight of table size

- n = {5, Ny, a, f}: set of hyperparameters
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Illustration of ssCRP

Step 1: set fixed tables
(result of the base neural network)
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Step 2: draw customer assignments
for multiple times

Step 3: generate tables
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Step 4: pick the
best table

Step 5: map the
table to a relation
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Relation Prediction

|dea
— Populates small clusters generated via ssCRP
— Enriches existing relations with more instances

Prediction criteria
— Distribution over K + [ relations for entity pair (eq, e,):
[Pr(rileq, ez), ..., Pr(rgiiles, e3)]
— “Max-secondMax” value for “near uniform” criteria:
max([Pr(r e, e3), ..., Pr(rgiiles, ez)])

f(eq, =
conf(ey, e;) secondMax([Pr(ry|eq, €3), ..., Pr(rk4iles, e2)])
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Experimental Data

» Text corpus
— Text contents from 37,746 pages of entertainment domain in
Chinese Wikipedia
e Statistics
— Training & Validation & Testing:

« 3480 instances on 4 predefined relations from (Fan et al., 2017)

— Unlabeled:

« 3161 entity pairs which share joint occurrence in the sentences

Predefined relations  Directing Singing  Starring  Spouse
# Instances 633 648 1609 590
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Evaluation of Relation
Classification

 Comparative study

— We compare our method to CNN-based and RNN-based models,
and experiment with different feature sets to verify their

significance.

Classifier Feature set F1 (%)
entity pairs (add) 77.3/717.4
entity pairs (sub) 75.9/ 80.8

logistic regression/ entity pairs (_concat-) . 89.0/ 87.5

SVM syntactic units, entity pairs (concat) 84.9/ 82.5
context words, entity pairs (concat) 87.6/ 86.6
syntactic units, context words 89.2/ 87.8
syntactic units, context words, entity pairs (concat) 89.9/ 88.0

Shwartz et al. (Shwartz et al., 2016) shortest dependency path, entity pairs 65.3

Zeng et al. (Zeng et al., 2014) context words, entity pairs 81.5

RNN+E syntactic units, entity pairs (concat) 66.8

CNN+E context words, entity pairs (concat) 914

Full implementation syntactic units, context words, entity pairs (concat) 92.2
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Evaluation of Relation Discovery

» Pairwise experiment

— We manually construct a testing set by sampling pairs of instances

(x;, x;) from unlabeled data where x = (e, e;).
|{(xl-, X]) (S D|vl-,j =1 Avi,j, = 1}|

Precison =

{(xi, x;) € DIvy ;" = 1}]
|{(xl-, X]) € D|vi,]- =1 /\vi,j’ = 1}|

Recall =

{(xi, ;) € D|vyj = 1}

- v;j € {1,0} for the ground truth, v; ;" € {1,0} for the clustering result

Algorithm # Instances Precision (%) Recall (%) Fl1 (%)

Fit ssCRP 3161 31.0 35.7 33.2
Exploratory EM-based Naive Bayes 3161 70.7 40.2 52.8
Exploratory seeded KMeans 3161 80.5 53.0 63.9
ssCRP w/o tables 593 66.6 60.4 63.3
ssCRP w/o prediction 903 83.7 61.0 70.6

Exp ssCRP 3161 77.9 66.7 71.9
Logistic ssCRP 3161 81.4 66.9 73.0 21
Full implementation of ssCRP 3048 83.1 68.4 75.0




Evaluation of Relation Discovery

* Newly discovered relations

— 6 new relations are generated, covering 96.4% unlabeled data

Relation name # Instances | Relation name # Instances
Group members 1328 Belong to the country 956
Family members 355 Series works 247
Employed by 144 Produced by 18

* Top-k precision

— We heuristically choose k = 0.4 because the precision drops
relatively faster when k is larger than this setting.
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Conclusion

« Exploratory relation classification

— Problem: assign labels for unlabeled entity pairs to both pre-
defined and unknown relations

— lterative process:
* an integrated base neural network for relation classification
 a similarity-based clustering algorithm ssCRP to generate new relations
« constrained relation prediction process to populate new relations

— Experiments: on Chinese Wikipedia entertainment domain, with

base neural network achieving 0.92 F1-score, and 6 new
relations generated with 0.75 F1-score.
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