Exploratory Neural Relation Classification for Domain Knowledge Acquisition

Yan Fan, Chengyu Wang, Xiaofeng He

School of Computer Science and Software Engineering
East China Normal University
Shanghai, China
Outline

• Introduction
• Related Work
• Proposed Approach
• Experiments
• Conclusion
Relation Extraction

• **Relation extraction**
 – Structures the information from the Web by annotating the plain text with entities and their relations
 • E.g., “*Inception* is directed by *Christopher Nolan.*”
 \[
 \text{entity}_1 \quad \text{relation} \quad \text{entity}_2
 \]

• **Relation classification**
 – Formulates relation extraction as a classification problem
 • E.g., *(Inception, Christopher Nolan)* should be classified as the relation “directed by”, instead of “played by”.

Domain Knowledge Acquisition

- **Knowledge graph**
 - Relation extraction is a key technique in constructing knowledge graphs.

- **Challenges for domain knowledge graph**
 - **Long-tail domain entities**: Most domain entities which follow long-tail distribution, leading to the context sparsity problem for pattern-based methods.

 - **Incomplete predefined relations**: Since predefined relations are limited, unlabeled entity pairs may be wrongly forced into existing relation labels.
Dynamic Structured Neural Network for Exploratory Relation Classification

• **Goal**
 1. Classifies entity pairs into a finite pre-defined relations
 2. Discovers new relations and instances from plain texts with high confidence

• **Method**
 – **Context sparsity problem:** A *distributional embedding* layer is introduced to encode corpus-level semantic features of domain entities.
 – **Limited label assignment:** A *clustering method* is proposed to generate new relations from unlabeled data which can not be classified to be any existing relations.
Outline

• Introduction
• Related Work
• Proposed Approach
• Experiments
• Conclusion
Relation Classification Approaches

• **Traditional approaches**
 – Feature-based: applies textual analysis
 • N-grams, POS tagging, NER, dependency parsing
 – Kernel-based: similarity metric in higher dimensional space
 • Kernel functions are applied to strings, word sequences, parsing trees
 – Requires **empirical features** or well-designed kernel functions

• **Deep learning models**
 – Distributional representation: word embeddings
 – Neural network models:
 • CNN: extracts features with local information
 • RNN: captures long-term dependency on the sequence
 – Automatically extracts features
Relation Discovery Approaches

• **Open relation extraction**
 - automatically discovers relations from large-scale corpus with limited seed instances or patterns without predefined types
 - Representative systems: TextRunner, ReVerb, OLLIE
 - Inapplicable to domain knowledge due to data **sparsity problem**

• **Clustering-based approaches**
 - Predefined K: Standard KMeans
 - Automatically learned K: Non-parametric Bayesian models
 - Chinese restaurant process (CRP), distance dependent CRP (ddCRP)
Outline

- Introduction
- Related Work
- Proposed Approach
- Experiments
- Conclusion
Task Definition

• **Notations**
 - Labeled entity pair set $X^l = \{(e_1, e_2)\}$ and their labels Y^l
 - Unlabeled entity pair set $X^u = \{(e_1, e_2)\}$

• **Exploratory relation classification (ERC)**
 - Trains a model to predict the relations for entity pairs in X^u with $K + n$ output labels, where K denotes the number of pre-defined relations in Y^l, and n is the number of newly discovered relations.
General Framework

Algorithm 1 ERC Training Process

Input: Labeled data X^l and Y^l, unlabeled data X^u

Output: Expanded relation set R_{new}

1. **while** no new relations can be discovered **do**
2. // **Base neural network training**
3. Train base neural network N_t with X^l and Y^l
4. // **Relation discovery**
5. Generate candidate clusters $\{C_1, \ldots, C_m\}$ for X^u
6. Pick the best cluster C^* from $\{C_1, \ldots, C_m\}$
7. Update relation set $R_{new} = R_{new} \cup \{C^*\}$
8. // **Relation prediction**
9. Predict confident labels for unlabeled data X^u on R_{new}
10. **end while**
11. **return** R_{new}
Base Neural Network Training

Syntactic contexts via LSTM
- Nodes on the root augmented dependency path (RADP)
 - E.g. [Inception, directed, Christopher Nolan]
- Node representation
 - \{word embedding, POS tag, dependency relation, relational direction\}
 - E.g. \{Inception, nnp, nsubjpass, <-\}

Lexical contexts via CNN
- Word embeddings of sliding window of n-grams around entities

Semantic contexts
- Word embeddings of two tagged entities
Base Neural Network Architecture

- **Word embedding**
- **Part-of-speech tag**
- **Dependency relation**
- **Relational direction**

Diagram:
- **Syntactic context**
- **Lexical context**
- **Semantic context**
- **Softmax**
- **LSTM network**
- **Lookup table**
- **Input**

Example Sentence:
Inception is directed by Christopher Nolan
Chinese Restaurant Process (CRP)

- **Goal**
 - Groups customers into random tables where they sit

- **Distribution over table assignment**

\[
\Pr(z_i = p \mid \bar{z}_{-i}, \alpha) \propto \begin{cases}
N_p & \text{if } p \leq K \\
\alpha & \text{if } p = K + 1
\end{cases}
\]

- \(N_p\): number of customers sitting at table \(p\)
- \(z_i\): index of the table where the \(i\)-th customer sits
- \(\bar{z}_{-i}\): indices of tables for customers except for the \(i\)-th customer
- \(\alpha\): scaling parameter for a new table
- \(K\): number of occupied tables
Similarity Sensitive Chinese Restaurant Process (ssCRP)

- **Idea**
 - Exploits similarities between customers
 - Turns the problem to customer assignment

- **Distribution over customer assignment**

 \[
 \Pr(c_i = j \mid \eta) \propto \begin{cases}
 \alpha & \text{if } j \text{ is customer } i \text{ itself} \\
 g(s_{ij}) & \text{if } j \text{ is an upcoming customer} \\
 g(s_{ij})(1 + \beta \lg N_p) & \text{if } j \text{ is averaged from table } p
 \end{cases}
 \]

 - \(s_{ij} \): similarity score between the \(i \)-th and \(j \)-th customer
 - \(g(x) \): similarity function to magnify input differences
 - \(\beta \): the parameter balancing the weight of table size
 - \(\eta = \{S, N_p, \alpha, \beta\} \): set of hyperparameters
Illustration of ssCRP

Step 1: set fixed tables
(result of the base neural network)

Step 2: draw customer assignments
for multiple times

Step 3: generate tables

Step 4: pick the best table

Step 5: map the table to a relation
Relation Prediction

• **Idea**
 – Populates small clusters generated via ssCRP
 – Enriches existing relations with more instances

• **Prediction criteria**
 – Distribution over $K + l$ relations for entity pair (e_1, e_2):
 $$[\Pr(r_1|e_1, e_2), \ldots, \Pr(r_{K+l}|e_1, e_2)]$$
 – “Max-secondMax” value for “near uniform” criteria:
 $$\text{conf}(e_1, e_2) = \frac{\max([\Pr(r_1|e_1, e_2), \ldots, \Pr(r_{K+l}|e_1, e_2)])}{\text{secondMax}([\Pr(r_1|e_1, e_2), \ldots, \Pr(r_{K+l}|e_1, e_2)])}$$
Outline

• Introduction
• Related Work
• Proposed Approach
• Experiments
• Conclusion
Experimental Data

- **Text corpus**
 - Text contents from 37,746 pages of entertainment domain in Chinese Wikipedia

- **Statistics**
 - Training & Validation & Testing:
 - 3480 instances on 4 predefined relations from (Fan et al., 2017)
 - Unlabeled:
 - 3161 entity pairs which share joint occurrence in the sentences

<table>
<thead>
<tr>
<th>Predefined relations</th>
<th>Directing</th>
<th>Singing</th>
<th>Starring</th>
<th>Spouse</th>
</tr>
</thead>
<tbody>
<tr>
<td># Instances</td>
<td>633</td>
<td>648</td>
<td>1609</td>
<td>590</td>
</tr>
</tbody>
</table>
Evaluation of Relation Classification

- Comparative study
 - We compare our method to CNN-based and RNN-based models, and experiment with different feature sets to verify their significance.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>Feature set</th>
<th>F1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>logistic regression/SVM</td>
<td>entity pairs (add)</td>
<td>77.3/ 77.4</td>
</tr>
<tr>
<td></td>
<td>entity pairs (sub)</td>
<td>75.9/ 80.8</td>
</tr>
<tr>
<td></td>
<td>entity pairs (concat)</td>
<td>89.0/ 87.5</td>
</tr>
<tr>
<td></td>
<td>syntactic units, entity pairs (concat)</td>
<td>84.9/ 82.5</td>
</tr>
<tr>
<td></td>
<td>context words, entity pairs (concat)</td>
<td>87.6/ 86.6</td>
</tr>
<tr>
<td></td>
<td>syntactic units, context words</td>
<td>89.2/ 87.8</td>
</tr>
<tr>
<td></td>
<td>syntactic units, context words, entity pairs (concat)</td>
<td>89.9/ 88.0</td>
</tr>
<tr>
<td>Shwartz et al. (Shwartz et al., 2016)</td>
<td>shortest dependency path, entity pairs</td>
<td>65.3</td>
</tr>
<tr>
<td>Zeng et al. (Zeng et al., 2014)</td>
<td>context words, entity pairs</td>
<td>81.5</td>
</tr>
<tr>
<td>RNN+E</td>
<td>syntactic units, entity pairs (concat)</td>
<td>66.8</td>
</tr>
<tr>
<td>CNN+E</td>
<td>context words, entity pairs (concat)</td>
<td>91.4</td>
</tr>
<tr>
<td>Full implementation</td>
<td>syntactic units, context words, entity pairs (concat)</td>
<td>92.2</td>
</tr>
</tbody>
</table>
Evaluation of Relation Discovery

• **Pairwise experiment**

 - We manually construct a testing set by sampling pairs of instances (x_i, x_j) from unlabeled data where $x = (e_1, e_2)$.

 \[
 \text{Precision} = \frac{|\{(x_i, x_j) \in D | v_{i,j} = 1 \land v_{i,j} = 1\}|}{|\{(x_i, x_j) \in D | v_{i,j} = 1\}|} \\
 \text{Recall} = \frac{|\{(x_i, x_j) \in D | v_{i,j} = 1 \land v_{i,j} = 1\}|}{|\{(x_i, x_j) \in D | v_{i,j} = 1\}|}
 \]

 - $v_{i,j} \in \{1,0\}$ for the ground truth, $v_{i,j} \in \{1,0\}$ for the clustering result

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># Instances</th>
<th>Precision (%)</th>
<th>Recall (%)</th>
<th>F1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit ssCRP</td>
<td>3161</td>
<td>31.0</td>
<td>35.7</td>
<td>33.2</td>
</tr>
<tr>
<td>Exploratory EM-based Naive Bayes</td>
<td>3161</td>
<td>70.7</td>
<td>40.2</td>
<td>52.8</td>
</tr>
<tr>
<td>Exploratory seeded KMeans</td>
<td>3161</td>
<td>80.5</td>
<td>53.0</td>
<td>63.9</td>
</tr>
<tr>
<td>ssCRP w/o tables</td>
<td>593</td>
<td>66.6</td>
<td>60.4</td>
<td>63.3</td>
</tr>
<tr>
<td>ssCRP w/o prediction</td>
<td>903</td>
<td>83.7</td>
<td>61.0</td>
<td>70.6</td>
</tr>
<tr>
<td>Exp ssCRP</td>
<td>3161</td>
<td>77.9</td>
<td>66.7</td>
<td>71.9</td>
</tr>
<tr>
<td>Logistic ssCRP</td>
<td>3161</td>
<td>81.4</td>
<td>66.9</td>
<td>73.0</td>
</tr>
<tr>
<td>Full implementation of ssCRP</td>
<td>3048</td>
<td>83.1</td>
<td>68.4</td>
<td>75.0</td>
</tr>
</tbody>
</table>
Evaluation of Relation Discovery

• **Newly discovered relations**
 - 6 new relations are generated, covering 96.4% unlabeled data

<table>
<thead>
<tr>
<th>Relation name</th>
<th># Instances</th>
<th>Relation name</th>
<th># Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group members</td>
<td>1328</td>
<td>Belong to the country</td>
<td>956</td>
</tr>
<tr>
<td>Family members</td>
<td>355</td>
<td>Series works</td>
<td>247</td>
</tr>
<tr>
<td>Employed by</td>
<td>144</td>
<td>Produced by</td>
<td>18</td>
</tr>
</tbody>
</table>

• **Top-k precision**
 - We heuristically choose $k = 0.4$ because the precision drops relatively faster when k is larger than this setting.
Outline

• Introduction
• Related Work
• Proposed Approach
• Experiments
• Conclusion
Conclusion

• Exploratory relation classification
 – Problem: assign labels for unlabeled entity pairs to both pre-defined and unknown relations
 – Iterative process:
 • an integrated base neural network for relation classification
 • a similarity-based clustering algorithm ssCRP to generate new relations
 • constrained relation prediction process to populate new relations
 – Experiments: on Chinese Wikipedia entertainment domain, with base neural network achieving 0.92 F1-score, and 6 new relations generated with 0.75 F1-score.
Thanks!