

Chinese Hypernym-Hyponym Extraction from User Generated Categories

Chengyu Wang, Xiaofeng He

School of Computer Science and Software Engineering, East China Normal University Shanghai, China

Outline

- Introduction
- Background and Related Work
- Proposed Approach
- Experiments
- Conclusion

Chinese Is-A Relation Extraction

• Chinese is-a relation extraction

- Chinese is-a relations are essential to construct large-scale Chinese taxonomies and knowledge graphs.
- It is difficult to extract such relations due to the flexibility of language expression.

• User generated categories

- User generated categories are valuable knowledge sources, providing finegrained candidate hypernyms of entities.
- The semantic relations between an entity and its categories are not clear.

Baidu Baike: one of the largest online encyclopedias in China, with 13M+ entries

Barack Obama

🖪 🛉 🛨 收藏 🛛 📫 0 🛛 🛃 261

奥巴马(美国第44任总统)一般指贝拉克·奥巴马

贝拉克·侯赛因·奥巴马(Barack Hussein Obama), 1961年8月4日出生, 美国民主党籍政治家, 第44任美国总统, 为美国 历史上第一位非洲裔总统。1991年,奥巴马以优等生荣誉从哈佛法学院毕业,而后在著名的芝加哥大学法学院教授宪法长达12年 (1992年-2004年)。2007年2月10日,宣布参加2008年美国总统选举。2008年11月4日正式当选为美国总统。

2009年10月9日,获得诺贝尔委员会颁发的诺贝尔和平奖^[1]。2012年11月6日,第57届美国总统大选中,奥巴马击败共和党 候选人罗姆尼,成功连任。

贝拉克·侯赛因·奥巴马于2014年11月10日至12日来华出席亚太经合组织领导人非正式会议并对中国进行国事访问。^[2] 2014 年12月,奥巴马参加了由非盈利组织Code.org举办的编程大会。会上,奥巴马熟练地习得一小段JavaScript代码,并成功地画出 了一个正方形。使得他成为了美国史上首位会编程的总统。

2015年3月11日,贝拉克·侯赛因·奥巴马在各国领导人工资中,排名第一位。^[3] 2015年5月,奥巴马基金会确认"奥巴马总统 图书馆(Obama Presidential Library)"将落户于他曾经长期执教的芝加哥大学^[4-5]。2015年10月, 《彭博市场》公布了第五届 全球金融50大最具影响力人物,美国总统奥巴马排名第六。^[6] 2015年11月4日,奥巴马名列《福布斯》全球最有权力人物排行 榜第三位。^[7] 2015年12月22日,国际民调机构盖洛普调查称,奥巴马在最受欢迎的领导人排名中名列第一。^[8]

词条标签: 政治人物, 外国 元首

Categories: Political figure, Foreign country, Leader, Person

Outline

- Introduction
- Background and Related Work
- Proposed Approach
- Experiments
- Conclusion

Background

• Taxonomy: a hierarchical type system for knowledge graphs, consisting of is-a relations among classes and entities

Describing the Task

• Learning *is-a* relations for taxonomy expansion

Modeling the Task

- Taxonomy
 - Direct acyclic graph G = (E, R) (E: entities/classes, R: is-a relations)
- User generated categories
 - Collection of entities E^*
 - Set of user generated categories: Cat(e) for $e \in E^*$
- Goal
 - Predict whether there is an is-a relation between e and c where $e \in E^*$ and $c \in Cat(e)$ based on the taxonomy G

Previous Approaches

- Pattern matching-based approaches
 - Handcraft patterns: high accuracy, low coverage
 - Hearst Patterns: *NP*₁ such as *NP*₂
 - Automatic generated patterns: higher coverage, lower accuracy
 - Not suitable for Chinese with flexible expression
- Thesauri and encyclopedia based approaches
 - Taxonomy construction based on existing knowledge sources
 - YAGO: Wikipedia + WordNet
 - More precise but have limited scope constrained by sources
 - Chinese: relatively low-resourced
 - No Chinese version of WordNet and Freebase available

Previous Approaches

• Text inference based approach

- Infer relations using distributed similarity measures
 - Assumption: a hyponym can only appear in some of the contexts of its hypernym and a hypernym can appear in all contexts of its hyponyms
- Not suitable for Chinese with flexible and sparse contexts
- Word embedding based approach
 - Represent words as dense, low-dimensional vectors
 - Learn semantic projection models from hyponyms to hypernyms
 - State-of-the-art approach for Chinese is-a relation extraction (ACL'14)

Learning from Previous Work

- Lessons learned from "state-of-the art"
 - Use word embeddings to represent words
 - Learn relations between hyponyms and hypernyms in the embedding space
- Basic approaches
 - Vector offsets
 - Linear projection

Observations

- Word vector offsets between Chinese is-a pairs
 - Multiple linguistic regularities may exist in is-a pairs
 - Different levels of hypernyms
 - Different types of is-a relations (instanceOf vs. subClassOf)
 - Different domains

	Example with English Translation	Vector Offsets
True Positive	$\vec{v}(\text{日本}) - \vec{v}(\text{国家}) \approx \vec{v}(澳大利亚) - \vec{v}(\text{国家})$	$1.03 \approx 0.99$
	$\vec{v}(Japan) - \vec{v}(Country) \approx \vec{v}(Australia) - \vec{v}(Country)$	
Observation 1	<i>v</i> (日本) – <i>v</i> (国家) ≉ <i>v</i> (日本) – <i>v</i> (亚洲国家)	$1.03 \not\approx 0.71$
	$\vec{v}(Japan) - \vec{v}(Country) \not\approx \vec{v}(Japan) - \vec{v}(Asian Country)$	
Observation 2	<i>v</i> (日本) – <i>v</i> (国家) ≉ <i>v</i> (主权国) – <i>v</i> (国家)	$1.03 \not\approx 1.32$
	$\vec{v}(Japan) - \vec{v}(Country) \not\approx \vec{v}(Sovereign State) - \vec{v}(Country)$	
Observation 3	<i>v</i> (日本) – <i>v</i> (国家) ≉ <i>v</i> (西瓜) – <i>v</i> (水果)	$1.03 \not\approx 0.39$
	$\vec{v}(\text{Japan}) - \vec{v}(\text{Country}) \not\approx \vec{v}(\text{Watermelon}) - \vec{v}(\text{Fruit})$	

Outline

- Introduction
- Background and Related Work
- Proposed Approach
- Experiments
- Conclusion

General Framework

- Initial stage
 - Train piecewise linear projection models based on the Chinese taxonomy
- Iterative learning stage
 - Extract new is-a relations and adjust model parameters based on an incremental learning approach
 - Use Chinese Hypernym/Hyponym patterns to prevent "semantic drift" in each iteration

Initial Model Training

- Linear projection model
 - Projection model: $M\vec{v}(x_i) + \vec{b} = \vec{v}(y_i)$

Projection matrix Word vector Offset vector

- Piecewise linear projection model
 - Partition a collection of is-a relations $R' \subset R^*$ into K clusters $(C_1, \dots, C_k, \dots, C_K)$
 - Each cluster C_k share projection matrix M_k and offset vector \vec{b}_k
 - Optimization function:

$$J(M_k, \vec{b}_k; C_k) = \frac{1}{|C_k|} \sum_{(x_i, y_i) \in C_k} \|M_k \vec{v}(x_i) + \vec{b}_k - \vec{v}(y_i)\|^2$$

Iterative Learning (1)

- Initialization
 - Word pairs: positive is-a set R', unlabeled set U
 - Model parameters: M_k and \vec{b}_k for each cluster
- Iterative process $(t = 1, \dots, T)$
 - 1. Sample $\delta |U|$ word pairs from U, denoted as $U^{(t)}$.
 - 2. Use the model to predict the relation between words. Denote "positive" word pairs as $U_{-}^{(t)}$.
 - 3. Use pattern-based relation selection method to select a subset of $U_{-}^{(t)}$ which have high confidence, denoted as $U_{+}^{(t)}$.
 - 4. Remove $U_{+}^{(t)}$ from U and add it to R'.

Iterative Learning (2)

- Iterative process $(t = 1, \dots, T)$
 - 5. Update cluster centroids incrementally based on $U_{+}^{(t)}$.

6. Update model parameters based on new cluster assignments.

$$J\left(M_{k}^{(t)}, \vec{b}_{k}^{(t)}; C_{k}^{(t)}\right) = \frac{1}{\left|C_{k}^{(t)}\right|} \sum_{(x_{i}, y_{i}) \in C_{k}^{(t)}} \left\|M_{k}^{(t)} \vec{v}(x_{i}) + \vec{b}_{k}^{(t)} - \vec{v}(y_{i})\right\|^{2}$$

Iterative Learning (3)

- Model prediction
 - The prediction of the final piecewise linear projection models
 - The transitivity closure of existing is-a relations
- Discussion
 - Combination of semantic and lexical extraction of is-a relations
 - Sematic level: word embedding based projection models
 - Lexical level: pattern-based relation selection
 - Incremental learning
 - Update of cluster centroids
 - Update of model parameters

Pattern-based Relation Selection (1)

Two observations

- **Positive** evidence
 - Is-A patterns
 - Such-As patterns (between x_i/x_j and y)

Hypothesis: x_i/x_j is-a y

- Negative evidence
 - Such-As patterns (between x_i and x_j)
 - Co-Hyponym patterns

Hypothesis: x_i not-is-a x_j

Examples of Chinese Hypernym/Hyponym Patterns

Category	Example		
Is-A	x_i 是一个 y x_i is a kind of y		
Such-As	y,例如 x_i 、 x_j y, such as x_i and x_j		
Co-Hyponym	x_i 、 x_j 等 x_i, x_j and others		

 x_j not-is-a x_i

Pattern-based Relation Selection (2)

- Positive and negative evidence scores
 - Positive score

$$PS(x_i, y_i) = \alpha \left(1 - \frac{d^{(t)}(x_i, y_i)}{\max_{(x, y) \in U_-} d^{(t)}(x, y)} \right) + (1 - \alpha) \frac{n_1(x_i, y_i) + \gamma}{\max_{(x, y) \in U_-} n_1(x, y) + \gamma}$$

Confidence of model prediction Statistics of "positive" patterns

Negative score

$$NS(x_{i}, y_{i}) = \log \frac{n_{2}(x_{i}, y_{i}) + \gamma}{(n_{2}(x_{i}) + \gamma) \cdot (n_{2}(y_{i}) + \gamma)}$$

- Relation selection via optimization
 - Target: select m word pairs from $U_{-}^{(t)}$ to generate $U_{+}^{(t)}$

$$\max \sum_{(x_i, y_i) \in U_+^{(t)}} PS(x_i, y_i) \quad \text{s.t.} \sum_{(x_i, y_i) \in U_+^{(t)}} NS(x_i, y_i) < \theta, U_+^{(t)} \subseteq U_-^{(t)}, \left| U_+^{(t)} \right| = m$$

Pattern-based Relation Selection (3)

Relation selection algorithm

Algorithm 1 Greedy Relation Selection Algorithm

- 1: Initialize $U_{+}^{(t)} = \emptyset$;
- 2: while $|U_{+}^{(t)}| < m \text{ do}$
- 3: Select candidate *is-a* pair with largest PS: $(x_i, y_i) = \arg \max_{(x_i, y_i) \in U_{\perp}^{(t)}} PS^{(t)}(x_i, y_i);$
- 4: Remove the pair from $U_{-}^{(t)}: U_{-}^{(t)} = U_{-}^{(t)} \setminus \{(x_i, y_i)\};$
- 5: **if** $NS^{(t)}(x_i, y_i) + \sum_{(x,y) \in U^{(t)}_+} NS^{(t)}(x, y) < \theta$ then
- 6: Add the pair to $U_{+}^{(t)}$: $U_{+}^{(t)} = U_{+}^{(t)} \cup \{(x_i, y_i)\};$
- 7: **end if**
- 8: end while
- 9: return Collection of *is-a* relations $U_{+}^{(t)}$;

Outline

- Introduction
- Background and Related Work
- Proposed Approach
- Experiments
- Conclusion

Experimental Data

• Text corpus

- Text contents from Baidu Baike, 1.088B words
- Train 100-dimensional word vectors using Skip-gram model
- Is-a relation sets
 - Training: A subset of is-a relations derived from a Chinese taxonomy
 - Unlabeled: Entities and categories from Baidu Baike
 - Testing: publicly available labeled dataset (ACL'14)

Dataset	Positive	Negative	Unknown	
Wiki Taxonomy	7,312	-	-	
Unlabeled Set	-	-	78,080	
Validation Set	349	1,071	-	
Test Set	1,042	3,223	-	

Model Performance

- With pattern-based relation selection
 - The performance increases first and becomes relatively stable.
 - A few false positive pairs are still inevitably selected by our approach.
- Without pattern-based relation selection
 - The performance drops quickly despite the improvement in the first few iterations.

- (a) With the pattern-based relation selection method
- (b) With no relation selection method

Comparative Study

• Comparing with state-of-the-art

	Method	Precision (%)	Recall (%)	F-Measure (%)
	Previous Methods			
Pattern-based	Hearst (Hearst, 1992)	96.2	19.8	32.8
r allem-based	Snow (Snow et al., 2004)	67.3	28.1	39.6
Dictionay-based	Taxonomy (Li et al., 2015)	98.5	25.4	40.4
	DSM (Lenci and Benotto, 2012)	48.5	58.1	52.9
Distributed	Embedding (Fu et al., 2014)	71.7	74.9	73.3
similarity-based	Our Method and Its Variants			
Word embedding-	WSRE (Initial)	74.1	76.7	75.3
	WSRE (Random)	69.0	75.7	72.2
based	WSRE (Positive)	75.4	80.1	77.6
	WSRE	75.8	81.4	78.6
	WSRE+Taxonomy	78.8	84.7	81.6

Error Analysis

- Hard to distinguish *related-to* v.s. *is-a* relations (approx. 72%)
 - False positives:
 - 中药 (Traditional Chinese medicine), 药草 (Herb)
 - 元帅 (Marshal), 军事家 (Strategist)
- Inaccurate representation learning for fine-grained hypernyms (approx. 28%)
 - True positive:
 - 兰科 (Orchid), 植物 (Plant)
 - False negative:
 - 兰科 (Orchid), 单子叶植物纲 (Monocotyledon)

Outline

- Introduction
- Background and Related Work
- Proposed Approach
- Experiments
- Conclusion

Conclusion

- Chinese is-a relation extraction
 - Initial model training: word embedding based piecewise linear projection model
 - Iterative learning: incremental learning with pattern-based relation selection
 - Application: weakly supervised taxonomy expansion
- Future work
 - Learning generalized Chinese pattern representations for relation extraction

Thanks!

Questions & Answers

* The first author would like to thank COLING 2016 for the student support program.