

NERank: Bringing Order to Named Entities from Texts

Chengyu Wang¹, Rong Zhang¹, Xiaofeng He¹, Guomin Zhou², Aoying Zhou¹

 ¹⁾ Institute for Data Science and Engineering, East China Normal University
 ²⁾ Zhejiang Police College

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Entity Ranking

- Ranking entities from texts
 - Input: a text collection
 - Output: a ranked order of named entities
- Why entity ranking?
 - Entity-oriented Web search
 - given a query, retrieve a list of entities from relevant documents
 - Web semantification
 - add semantic tags to Web documents
 - Knowledge base population
 - extract and rank entities and then link them to knowledge bases

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Problem Statement

Given a document collection *D* and a normalized named entity collection *E* detected from *D*, the goal is to give each entity *e* ∈ *E* a rank *r*(*e*) to denote the relative importance such that

$$-0 \le r(e) \le 1$$
$$-\sum_{e \in E} r(e) = 1$$

General Framework

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Topical Tripartite Graph Modeling

• Topics in Egypt Revolution

Topic	Top normalized entities	Top common words	Description
#1	Egypt, Hosni Mubarak	political, military, revolution	Start of the revolution
#2	Mohamed Morsi, Egypt	President, constitution, vote	Presidential election
#3	Egypt, Israel, Iran	government, foreign, peace	Foreign countries' reaction
#4	Egypt, Cairo	economic, government, billion	Revolution's effect on economy
#5	Egypt	tourism, tourist, travel, sea	Revolution's effect on tourism

• TTG construction

Prior Topic Rank Estimation Three Quality Metrics

- Probabilities derived from TTG modeling
 - $\theta_{i,j}$: probability of topic t_j in document d_i
 - $\hat{\varphi}_{i,j}$: probability of normalized entity e_j in topic t_i

• Quality metrics

- Prior probability	Topic	Prior probability	Entity richness	Topic specificity
$m(t) = \frac{1}{2} \sum_{i=1}^{ D } q$	#1	0.184	0.159	0.146
$pr(l_i) = \frac{1}{ D } \sum_{i=1}^{ D } \theta_{i,j}$	#2	0.264	0.181	0.254
12 J=1	#3	0.110	0.116	0.074
 Entity richness 	#4	0.053	0.085	0.023
$1 \mathbf{\nabla}^{ E }$	#5	0.017	0.039	0.007
$er(t_i) = \frac{1}{Z_{er}} \sum_{j=1} \hat{\varphi}_{i,j}$				

Topic specificity

$$ts(t_i) = \begin{cases} 0, & (pr(t_i) < \varepsilon) \\ \frac{1}{Z_{ts}} \sum_{j=1}^{|D|} \theta_{i,j} \log_2 \theta_{i,j} & (pr(t_i) \ge \varepsilon) \end{cases}$$

Prior Topic Rank Estimation Ranking Function

• Linear ranking function

$$r_0(t_i) = W^T \cdot F(t_i)$$

- $F(t_i) = \langle pr(t_i), er(t_i), ts(t_i) \rangle$
- $\sum_i w_i = 1$
- Parameter learning
 - For two topics t_i and t_j , if t_i is a more important topic than t_j , we have $r_0(t_i) > r_0(t_j)$
 - Optimization objective: $||W||_2^2 + C \cdot \sum_{i,j} \xi_{i,j}$
 - Constraints: $W^T \cdot F(t_i) W^T \cdot F(t_j) \ge 1 \xi_{i,j}$
 - Train a linear SVM classifier to learn the weights

Meta-Path Constrained Random Walk Algorithm

Proof of Convergence (1)

• Update rule of NERank

 $T_n = \alpha \cdot \Theta_R^T \Theta \cdot T_{n-1} + \beta \cdot \widehat{\Phi}_C \widehat{\Phi}_R^T \cdot T_{n-1} + (1 - \alpha - \beta)T_0$

• Non-recursive form of NERank

$$T_n = M^n T_0 + (1 - \alpha - \beta) \sum_{i=0}^{n-1} M^i T_0$$

- where $M = \alpha \cdot \Theta_R^T \Theta + \beta \cdot \widehat{\Phi}_C \widehat{\Phi}_R^T$

- Matrix limit of T_n
 - $-\lim_{n\to\infty}T_n=\lim_{n\to\infty}M^nT_0+(1-\alpha-\beta)\lim_{n\to\infty}\sum_{i=0}^{n-1}M^iT_0$
 - $\lim_{n \to \infty} M^n T_0 = 0$ (because $\Theta_R^T \Theta$ and $\widehat{\Phi}_C \widehat{\Phi}_R^T$ are transition matrices with $0 < \alpha + \beta < 1$)

$$-\lim_{n \to \infty} \sum_{i=0}^{n-1} M^i T_0 = (I - M)^{-1} T_0$$

Proof of Convergence (2)

- Matrix limit of T_n $\lim_{n \to \infty} T_n = (1 - \alpha - \beta)(I - M)^{-1}T_0$
- Close form of T_n $T^* = (1 - \alpha - \beta)(I - \alpha \cdot \Theta_R^T \Theta + \beta \cdot \hat{\Phi}_C \hat{\Phi}_R^T)^{-1} T_0$
- Close form of E_n $E^* = (1 - \alpha - \beta)\widehat{\Phi}_R^T (I - \alpha \cdot \Theta_R^T \Theta + \beta \cdot \widehat{\Phi}_C \widehat{\Phi}_R^T)^{-1} T_0$

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Experiments (1)

- Datasets
 - 50 newswire collections from TimelineData and CrisisData, each related to an international event
 - Example events: Egypt Revolution, Iraq War, BP Oil Spill, etc.
- Hyper-parameter settings

Experiments (2)

- Comparative study
 - Baselines: TF-IDF, TextRank, LexRank and Kim et al.
 - Variants of our approaches: $NERank_{Uni}$ and $NERank_{\alpha=0}$

Method	Average Precision@5	Average Precision@10	Average Precision@15	MAP
TF-IDF	0.85*	0.79*	0.73*	0.81*
TextRank	0.87*	0.83	0.73*	0.83*
LexRank	0.85*	0.8*	0.72*	0.8*
Kim et al.	0.87*	0.81*	0.76*	0.84*
$\operatorname{NERank}_{Uni}$	0.80*	0.75*	0.71*	0.78*
$NERank_{\alpha=0}$	0.72*	0.61*	0.51*	0.62*
NERank	0.92	0.87	0.79	0.89

Experiments (3)

• Case studies

Entity	Egypt Revolution	Libya War	BP Oil Spill
1	Egypt	Libya	BP
2	Mohamed Morsi	Muammar Gaddafi	Gulf of Mexico
3	Hosni Mubarak	Tripoli	Barack Obama
4	Cario	NATO	Louisiana
5	Muslim Brotherhood	Benghazi	Coast Guard
6	Tahrir Square	Barack Obama	United States
7	Israel	Misrata	Tony Hayward
8	Middle East	United States	Deepwater Horizon
9	United States	National Transitional Council	Florida
10	Tunisia	Syria	Transocean

- Introduction
- Problem Statement
- Proposed Approach
- Experiments
- Conclusion

Conclusion

- NERank
 - Effective to rank named entities in documents with little human intervention
- Future work
 - A general framework for entity ranking from different types of texts (i.e., documents, tweets, etc.)
 - A complete benchmark for evaluating entity ranking

Thanks!

Questions & Answers