

Meta-KD: A Meta Knowledge Distillation Framework for Language Model Compression across Domains

Haojie Pan*, **Chengyu Wang***, Minghui Qiu, Yichang Zhang, Yaliang Li, Jun Huang

Alibaba Group

Introduction (1)

- ✓Knowledge distillation for pre-trained language models (PLMs)
 - Distilling the knowledge from a large teacher model to a small student model
 - Difficult to capture knowledge from other domains
- ✓ Cross-domain knowledge distillation
 - Teachers of other domains may pass non-transferable knowledge to the student model, hence harming the performance

Introduction (2)

- ✓Our idea: Meta Knowledge Distillation (Meta-KD)
 - Meta-teacher learning: learning a meta-teacher model that captures transferable knowledge across domains
 - Meta-distillation: learning a student model over a domain-specific dataset with the selective guidance from the meta-teacher

baba Group

(c) Learning from meta-teacher with multi-domain knowledge.

Motivation example

Meta-teacher Learning

✓ Learning instance-level transferable knowledge

• Compute prototype scores to select transferable instances across domains

$$t_k^{(i)} = \alpha \cos(p_k^{(m)}, h(X_k^{(i)})) + \zeta \sum_{k'=1}^{K(k' \neq k)} \cos(p_{k'}^{(m)}, h(X_k^{(i)}))$$

$$\text{Within-domain}_{\text{Class Centroid}} \text{Out-of-domain}_{\text{Class Centroid}}$$

- ✓ Learning feature-level transferable knowledge
 - Add a domain-adversarial loss to make the PLM more domain-invariant

$$\mathcal{L}_{DA}(X_k^{(i)}) = -\sum_{k=1}^{K} \mathbf{1}_{k=z_k^{(i)}} \cdot \log \sigma(h_d(X_k^{(i)}))$$

E の 国里巴巴集団

Meta-distillation

✓ New loss functions and factors for knowledge distillation

• Transferable knowledge distillation loss

• Domain expertise weights
$$\lambda_k^{(i)} = \frac{1 + t_k^{(i)}}{\exp^{(\hat{y}_k^{(i)} - y_k^{(i)})^2} + 1}$$
 How well the meta-teacher can supervise the student on a specific input

Experiments (1)

✓ Datasets and experimental settings

- Teacher model: BERT-base (L=12, H=768, A=12, #Para.=110M)
- Student model: BERT-small ((L=4, H=312, A=12 #Para.=14.5M)

✓ Experimental results

• Results on MNLI

nall ((L=4, H=312, A=12,		Amazon Reviews	DV Ele Kitc	'D 1,62 ec. 1,61 hen 1,61	l 194 5 172 3 184	185 213 203
Method	Fiction	Government	Slate	Telephone	Travel	Average
BERT _B -single	82.2	84.2	76.7	82.4	84.2	81.9
BERT _B -mix	84.8	87.2	80.5	83.8	85.5	84.4
BERT _B -mtl	83.7	87.1	80.6	83.9	85.8	84.2
Meta-teacher	85.1	86.5	81.0	83.9	85.5	84.4
$BERT_B-single \xrightarrow{TinyBERT-KD} BERT_S$	78.8	83.2	73.6	78.8	81.9	79.3
$\text{BERT}_{B}\text{-mix} \xrightarrow{\text{TinyBERT-KD}} \text{BERT}_{S}$	79.6	83.3	74.8	79.0	81.5	79.6
$BERT_B-mtl \xrightarrow{TinyBERT-KD} BERT_S$	79.7	83.1	74.2	79.3	82.0	79.7
Multi-teachers $\xrightarrow{\text{MTN-KD}} \text{BERT}_{S}$	77.4	81.1	72.2	77.2	78.0	77.2
Meta-teacher $\xrightarrow{\text{TinyBERT-KD}}$ BERT _S	80.3	83.0	75.1	80.2	81.6	80.0
Meta-teacher $\xrightarrow{\text{Meta-distinution}} \text{BERT}_S$	80.5	83.7	75.0	80.5	82.1	80.4

Dataset	Domain	#Train	#Dev	#Test	
	Fiction	69,613	7,735	1,973	
	Gov.	69,615	7,735	1,945	
MNLI	Slate	69,575	7,731	1,955	
	Telephone	75,013	8,335	1,966	
	Travel	69,615	7,735	1,976	
	Book	1,631	170	199	
Amazon	DVD	1,621	194	185	
Reviews	Elec.	1,615	172	213	
	Kitchen	1,613	184	203	

ECAlibaba Group 阿里巴巴集団

Experiments (2)

✓ Results on Amazon (full data)

Method	Books	DVD	Electronics	Kitchen	Average
BERT _B -single	87.9	83.8	89.2	90.6	87.9
BERT _B -mix	89.9	85.9	90.1	92.1	89.5
BERT _B -mtl	90.5	86.5	91.1	91.1	89.8
Meta-teacher	92.5	87.0	91.1	89.2	89.9
$BERT_B\text{-single} \xrightarrow{\text{TinyBERT-KD}} BERT_S$	83.4	83.2	89.2	91.1	86.7
$\text{BERT}_{B}\text{-mix} \xrightarrow{\text{TinyBERT-KD}} \text{BERT}_{S}$	88.4	81.6	89.7	89.7	87.3
$BERT_B-mtl \xrightarrow{TinyBERT-KD} BERT_S$	90.5	81.6	88.7	90.1	87.7
Multi-teachers $\xrightarrow{\text{MTN-KD}} \text{BERT}_{S}$	83.9	78.4	88.7	87.7	84.7
Meta-teacher $\xrightarrow{\text{TinyBERT-KD}}$ BERT _S	89.9	84.3	87.3	91.6	88.3
Meta-teacher $\xrightarrow{\text{Meta-distillation}} \text{BERT}_{S}$	91.5	86.5	90.1	89.7	89.4

\checkmark Results on Amazon (no fiction domain data when

training the meta-teacher)

Method	Accuracy
BERT _B -s (fiction)	82.2%
Meta-teacher (w/o fiction)	81.6%
$\text{BERT}_{B}\text{-s (fiction)} \xrightarrow{\text{TinyBERT-KD}} \text{BERT}_{S}$	78.8%
$\text{BERT}_{B}\text{-s (govern)} \xrightarrow{\text{TinyBERT-KD}} \text{BERT}_{S}$	75.3%
$\text{BERT}_{B}\text{-s (telephone)} \xrightarrow{\text{TinyBERT-KD}} \text{BERT}_{S}$	75.6%
$\text{BERT}_{\text{B}}\text{-s (slate)} \xrightarrow{\text{TinyBERT-KD}} \text{BERT}_{\text{S}}$	77.1%
$\mathbf{BERT}_{B}\text{-s (travel)} \xrightarrow{\mathrm{TinyBERT}\text{-KD}} \mathbf{BERT}_{S}$	74.1%
Meta-teacher $\xrightarrow{\text{TinyBERT-KD}} \text{BERT}_S$	78.2%

Conclusion

- ✓We present the Meta-KD framework for knowledge distillation across domains.
- ✓ Experiments confirm the effectiveness of Meta-KD over various NLP tasks.
- ✓ Future work includes:
 - ✓ Using Meta-KD in other application scenarios
 - ✓ Applying other meta-learning techniques to knowledge distillation for PLMs

THANKS

----- Q&A Section ------