BiRRE: Learning Bidirectional Residual Relation Embeddings for Supervised Hypernymy Detection

Chengyu Wang1,2, Xiaofeng He3*

1 School of Software Engineering, East China Normal University, Shanghai, China
2 Alibaba Group, Hangzhou, China
3 School of Computer Science and Engineering, East China Normal University, Shanghai, China
Outline

- Introduction
- The BiRRE Model
 - M1: Hyponym Projection
 - M2: Hypernym Projection
 - M3: Hypernymy Relation Classification
- Experiments
- Conclusion
Introduction (1)

- **Hypernymy** ("is-a") relations are important for NLP and Web applications
 - Semantic resource construction: semantic hierarchies, taxonomies, knowledge graphs, etc.
 - Web-based applications: query understanding, post-search navigation, personalized recommendation, etc.

- **Predicting hypernymy relations between term pairs**
 - Pattern-based approaches: have low recall
 - Distributional classifiers: suffer from the “lexical memorization” problem
Introduction (2)

• **Our Idea: Learning Bidirectional Residual Relation Embeddings**

 – High performance: distributional models
 – Alleviating the “lexical memorization” problem: avoiding classifying hypernymy vs. non-hypernymy relations using word vectors as features directly

 – Two ways of modeling the hypernymy relations:
 • Hyponym projection: mapping hypernyms to hyponyms in the embedding space
 • Hypernym projection: mapping hyponyms to hypernyms in the embedding space

 – Model design: given a term pair \((x, y)\), measuring whether

 • \(\bar{x}\) can be projected to \(\bar{y}\) by hypernym projection
 • \(\bar{y}\) can be projected to \(\bar{x}\) by hyponym projection

 Positive sample: (cat, mammal)
 Negative sample: (desk, fruit)
BiRRE: The Proposed Framework

M1: Hyponym Projection
- \(\text{hypo}^{(1)}(y_i) \)
- \(\text{hypo}^{(2)}(y_i) \)
- \(\text{hypo}^{(N)}(y_i) \)

M2: Hypernym Projection
- \(\text{hyper}(x_i) \)
- \(\text{res}^{\text{hyper}}(x_i, y_i) \)

M3: Hypernymy Relation Classification
- Training
- Regularization

Hypernymy & Non-hypernymy Relations \(D^{(+)} \cup D^{(-)} \)

Pre-processing

Term Pairs

Embedding Lookup

Classifier

BiRRE Vector
Hidden Layers
Hyponym Projection (M1)

- **Learning N projection matrices from hypernyms to hyponyms**

 - Simple objective function
 \[
 \min_{\mathcal{M}} \sum_{(x_i, y_i) \in D(+)} \sum_{p=1}^{N} \theta_i^{(p)} \|M^{(p)} y_i - x_i\|^2
 \]
 \[
 \text{s. t. } M^{(p)^T} M^{(p)} = I_d, p \in \{1, \cdots, N\}
 \]

 - Considering negative regularization
 \[
 \min_{\mathcal{M}} \frac{1}{|D(+)|} \sum_{(x_i, y_i) \in D(+)} \sum_{p=1}^{N} \theta_i^{(p)} \|M^{(p)} y_i - x_i\|^2
 \]
 \[
 + \frac{\lambda}{|D(-)|} \sum_{(x_i, y_i) \in D(-)} \sum_{p=1}^{N} \phi_i^{(p)} (M^{(p)} y_i)^T \cdot x_i
 \]
 \[
 \text{s. t. } M^{(p)^T} M^{(p)} = I_d, p \in \{1, \cdots, N\}
 \]

- No standard off-the-shelf learning algorithm!
Hyponym Projection (M1)

- Efficient learning algorithm for hyponym projection
 - Slight changes of the objective function
 \[
 \min_{M} \frac{1}{|D(+)|} \sum_{(x_i, y_i) \in D(+)} \sum_{p=1}^{N} \theta_i^{(p)} \|M^{(p)}y_i - x_i\|^2 \\
 - \frac{\lambda}{|D(-)|} \sum_{(x_i, y_i) \in D(-)} \sum_{p=1}^{N} \phi_i^{(p)} \|M^{(p)}y_i - x_i\|^2
 \]
 s. t. \(M^{(p)T}M^{(p)} = I_d, p \in \{1, \ldots, N\} \)

- Learning projection matrices
 1: for \(p = 1 \) to \(N \) do
 2: \(B^{(p)} = \sum_{(x_i, y_i) \in D(+)} \theta_i^{(p)} x_i y_i^T \\
 \quad - \alpha \cdot \sum_{(x_i, y_i) \in D(-)} \phi_i^{(p)} x_i y_i^T; \)
 3: \(U^{(p)} \Sigma^{(p)} V^{(p)T} = \text{SVD}(B^{(p)}); \)
 4: \(R^{(p)} = \text{diag}(1, \ldots, 1, \det(U^{(p)})\det(V^{(p)})); \)
 5: \(M^{(p)} = U^{(p)} R^{(p)} V^{(p)T}; \)
 6: end for

- Learning latent variables
 \[
 \theta_i^{(p)*} = \theta_i^{(p)} - \eta \cdot \sum_{(x_i, y_i) \in D(+)} \|M^{(p)}y_i - x_i\|^2 \\
 \phi_i^{(p)*} = \phi_i^{(p)} + \eta \cdot \sum_{(x_i, y_i) \in D(-)} \|M^{(p)}y_i - x_i\|^2
 \]
 * Refer to the proof of correctness in the paper.
Hypernym Projection (M2) &
Hypernymy Relation Classification (M3)

• Learning one projection matrix from hypernyms to hyponyms
 – Objective function

\[
\min_Q \frac{1}{|D^-|} \sum_{(x_i, y_i) \in D^-} \|Qx_i - y_i\|^2 - \frac{\lambda}{|D^+|} \sum_{(x_i, y_i) \in D^+} \|Qx_i - y_i\|^2 \text{ s. t. } Q^TQ = I_d
\]
 – Learning algorithm: a simpler version of M1

• Training of the hypernymy relation classifier
 – Hyponym residual vector: \(res_{\text{hypo}}(x_i, y_i) = x_i - M^{(\tilde{p})}y_i \)
 – Hypernym residual vector: \(res_{\text{hyper}}(x_i) = Qx_i - y_i \)
 – Feature representations: \(r_i = res_{\text{hypo}}(x_i, y_i) \oplus res_{\text{hyper}}(x_i, y_i) \)
 – Classifier learning: simple back propagation training of feed-forward neural networks
Experiments (1)

- **Experimental Settings**
 - Word embeddings: fastText embeddings, \(d = 300 \)
 - Default parameters settings:
 - \(\eta = 0.001, N = \max\{1, |\lg D^+|\} \)
 - Optimization: Adam with dropout rate 0.1

- **Effectiveness of BiRRE over the largest dataset (Shwartz et al. 2016)**

<table>
<thead>
<tr>
<th>Method</th>
<th>Precision Random Split</th>
<th>Recall Random Split</th>
<th>F1 Random Split</th>
<th>Precision Lexical Split</th>
<th>Recall Lexical Split</th>
<th>F1 Lexical Split</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roller and Erk (2016)</td>
<td>0.926</td>
<td>0.850</td>
<td>0.886</td>
<td>0.700</td>
<td>0.964</td>
<td>0.811</td>
</tr>
<tr>
<td>Shwartz et al. (2016)</td>
<td>0.913</td>
<td>0.890</td>
<td>0.901</td>
<td>0.809</td>
<td>0.617</td>
<td>0.700</td>
</tr>
<tr>
<td>Glavas and Ponzetto (2017)</td>
<td>0.933</td>
<td>0.826</td>
<td>0.876</td>
<td>0.705</td>
<td>0.785</td>
<td>0.743</td>
</tr>
<tr>
<td>Rei et al. (2018)</td>
<td>0.928</td>
<td>0.887</td>
<td>0.907</td>
<td>0.826</td>
<td>0.860</td>
<td>0.842</td>
</tr>
<tr>
<td>BiRRE</td>
<td>0.945</td>
<td>0.932</td>
<td>0.938</td>
<td>0.880</td>
<td>0.918</td>
<td>0.898</td>
</tr>
</tbody>
</table>
Experiments (2)

• **General Performance**
 – Results over two general benchmark datasets
 • BLESS
 • ENTAILMENT

<table>
<thead>
<tr>
<th>Method</th>
<th>BLESS</th>
<th>ENT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikolov et al. (2013)</td>
<td>0.84</td>
<td>0.83</td>
</tr>
<tr>
<td>Yu et al. (2015)</td>
<td>0.90</td>
<td>0.87</td>
</tr>
<tr>
<td>Luu et al. (2016)</td>
<td>0.93</td>
<td>0.91</td>
</tr>
<tr>
<td>Nguyen et al. (2017)</td>
<td>0.94</td>
<td>0.91</td>
</tr>
<tr>
<td>Wang et al. (2019a)</td>
<td>0.97</td>
<td>0.92</td>
</tr>
<tr>
<td>BiRRE</td>
<td>0.98</td>
<td>0.93</td>
</tr>
</tbody>
</table>

• **Ablation Study**
 – Choice of baselines
 • Addition, offset and concatenation of term vectors
 • Unidirectional residual vectors

<table>
<thead>
<tr>
<th>Feature Set</th>
<th>BLESS</th>
<th>ENT.</th>
<th>Shwartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x_i + y_i$</td>
<td>0.76</td>
<td>0.77</td>
<td>0.72</td>
</tr>
<tr>
<td>$x_i - y_i$</td>
<td>0.79</td>
<td>0.74</td>
<td>0.73</td>
</tr>
<tr>
<td>$x_i \oplus y_i$</td>
<td>0.81</td>
<td>0.80</td>
<td>0.77</td>
</tr>
<tr>
<td>$\text{res}^{\text{hypo}}(x_i, y_i)$</td>
<td>0.92</td>
<td>0.87</td>
<td>0.84</td>
</tr>
<tr>
<td>$\text{res}^{\text{hyper}}(x_i, y_i)$</td>
<td>0.89</td>
<td>0.84</td>
<td>0.82</td>
</tr>
<tr>
<td>r_i (i.e., BiRRE)</td>
<td>0.99</td>
<td>0.93</td>
<td>0.88</td>
</tr>
</tbody>
</table>

* Refer to more experiments in the paper.
Conclusion

• **Model**
 – A distributional model for supervised hypernymy detection based on bidirectional residual relation embeddings

• **Results**
 – BiRRE outperforms previous strong baselines over various evaluation frameworks

• **Future Work**
 – Improving projection learning to model complicated linguistic properties of hypernymy
 – Extending BiRRE to address other similar tasks, such as graded lexical entailment
 – Exploring how deep neural language models can improve the performance of hypernymy detection
Thank You!

Questions & Answers