

KEML: A Knowledge-Enriched Meta-Learning Framework for Lexical Relation Classification

Chengyu Wang¹, Minghui Qiu¹, Jun Huang¹, Xiaofeng He² ¹ Alibaba Group ² East China Normal University

Introduction

✓ Lexical Relation Classification

• Task: Classifying a word pair into a finite set of relation types (e.g., synonymy, antonymy)

Relation	Tag	Template	Example			
Synonymy	SYN	W2 can be used with the	candy-sweet,			
		same meaning as W1	apartment-flat			
Antonymy	ANT	W2 can be used as the oppo-	clean-dirty, add-			
		site of W1	take			
Hypernymy	HYPER	W1 is a kind of W2	cannabis-plant,			
			actress-human			
Part-whole	PART_OF	W1 is a part of W2	calf-leg, aisle-			
meronymy			store			
Random	RANDOM	None of the above relations	accident-fish,			
word		apply	actor-mild			

CogALex-V shared task

Introduction

✓ Existing Approaches

- Path-based approaches: use dependency paths connecting two terms to infer lexical relations
 - "Low coverage" problem

- Distributional approaches: consider the global contexts of terms to predict lexical relations using word embeddings
 - "Lexical memorization" problem

KEML: Our Solution

Alibaba Group

Knowledge Encoder

- ✓ Integrating lexical relations into BERT
 - Task 1: Classifying concept pairs into multiple relation types.
 - Task 2: Classifying concept pairs into RANDOM or non-RANDOM.

Auxiliary Task Generator

✓Goal

- Enabling the neural network to recognize a specific type of lexical relation
- ✓ Learning Objective

$$p(\mathcal{T}_r) = \frac{\ln |\mathcal{D}_r| + \gamma}{\sum_{r' \in \mathcal{R} \setminus \{\mathbf{RAN}\}} (\ln |\mathcal{D}_{r'}| + \gamma)}$$

Class 1 **** Class 2 Class 3 RANDOM Sampled by Task **Probabilistic Distribution** p(T)

 ∨s.
 ○
 ○
 ☆
 ☆
 ○
 ○

 ★
 ★
 ★
 ★
 ∨s.
 ○
 ○

a Group

Relation Leaner

- ✓ Design of the Neural Network
 - For each type of lexical relation, use an SRR Cell to recognize such relations

Relation Leaner

✓ Design of the SRR (Single Relation Recognition) Cell

- U1, U2: Inferring the embeddings of relation objects or subjects
- U3, U4: Predicting the existence of the lexical relation

$$\vec{U}_1 = \tanh((\vec{x}_i \oplus \vec{r}_{proto}) \cdot \mathbf{W}_1 + \vec{b}_1) \qquad \vec{U}_3 = \tanh((\vec{U}_1 - \vec{y}_i) \cdot \mathbf{W}_3 + \vec{b}_3)$$
$$\vec{U}_2 = \tanh((\vec{y}_i \oplus \vec{r}_{proto}) \cdot \mathbf{W}_2 + \vec{b}_2) \qquad \vec{U}_4 = \tanh((\vec{U}_2 - \vec{x}_i) \cdot \mathbf{W}_4 + \vec{b}_4)$$

Relation Leaner

✓ Meta-learning Algorithm for LRC

Algorithm 1 Meta-Learning Algorithm for LRC

- 1: Initialize model parameters θ ;
- 2: while not converge do
- 3: Sample N auxiliary tasks $\mathcal{T}_{r_1}, \mathcal{T}_{r_2}, \cdots, \mathcal{T}_{r_N}$ from the task distribution $p(\mathcal{T})$;
- 4: for each auxiliary task \mathcal{T}_r do
- 5: Sample a batch (positive samples S_r and negative samples S_{RAN}) from the training set D;
- 6: Update adapted parameters: $\theta_r \leftarrow \theta \alpha \nabla \mathcal{L}(\mathcal{T}_r)$ based on S_r and S_{RAN} ;
- 7: end for
- 8: Update meta-parameters: $\theta \leftarrow \theta \epsilon \nabla \sum_{\mathcal{T}_r} \mathcal{L}(\mathcal{T}_r)$;
- 9: end while
- 10: Fine-tune θ over \mathcal{D} by standard supervised learning LRC;

Experiments

✓ LRC results over four benchmark datasets

- Pre-trained model: BERT
- Lexical KB: Subset of WordNet

Method	K&H+N		BLESS		ROOT09			EVALution				
	Pre	Rec	F1	Pre	Rec	F1	Pre	Rec	F 1	Pre	Rec	F1
Concat	0.909	0.906	0.904	0.811	0.812	0.811	0.636	0.675	0.646	0.531	0.544	0.525
Diff	0.888	0.886	0.885	0.801	0.803	0.802	0.627	0.655	0.638	0.521	0.531	0.528
NPB	0.713	0.604	0.55	0.759	0.756	0.755	0.788	0.789	0.788	0.53	0.537	0.503
NPB+Aug	-	-	0.897	-	-	0.842	-	-	0.778	-	-	0.489
LexNET	0.985	0.986	0.985	0.894	0.893	0.893	0.813	0.814	0.813	0.601	0.607	0.6
LexNET+Aug	-	-	0.970	-	-	0.927	-	-	0.806	-	-	0.545
SphereRE	0.990	0.989	0.990	0.938	0.938	0.938	0.860	0.862	0.861	0.62	0.621	0.62
LKB-BERT	0.981	0.982	0.981	0.939	0.936	0.937	0.863	0.864	0.863	0.638	0.645	0.639
KEML-S	0.984	0.983	0.984	0.942	0.940	0.941	0.877	0.871	0.873	0.649	0.651	0.644
KEML	0.993	0.993	0.993	0.944	0.943	0.944	0.878	0.877	0.878	0.663	0.660	0.660

a Group

ECAlibaba Group 阿里巴巴集団

Experiments

✓ How Lexical KB Helps the Learning Process? _

- Binary: only binary classification
- Multi: only lexical relation classification
- Full: full implementation

Dataset	Binary	Multi	Full
K&H+N	0.964	0.972	0.983
BLESS	0.921	0.929	0.939
ROOT09	0.854	0.861	0.863
EVALution	0.630	0.632	0.641
CogALex-V	0.464	0.467	0.472

- ✓ How KEML Deals with Each Type of Relations?
 - CogALex-V shared task

Method	SYN	ANT	HYP	MER	All
GHHH	0.204	0.448	0.491	0.497	0.423
LexNET	0.297	0.425	0.526	0.493	0.445
STM	0.221	0.504	0.498	0.504	0.453
SphereRE	0.286	0.479	0.538	0.539	0.471
LKB-BERT	0.281	0.470	0.532	0.530	0.464
KEML-S	0.276	0.470	0.542	0.631	0.485
KEML	0.292	0.492	0.547	0.652	0.500

Experiments

✓ How the Meta-learning Process Helps the Learning Process?

libaba Group

Experiments

✓ Error Analysis: it is still difficult to distinguish some "blurry" lexical relations.

Dataset:	Prediction↓ Tru	Co-hyponym		Hypernym		Random		
ROOT09	Co-hyponym		83.8%		8.2%		7.2%	
	Hypernym		10.2%		86.5%		2.4%	
	Random		6.0%		5.3%		90.4%	
					-			
Dataset: K+H&N	Prediction↓ True→	Co-	hyponym	Hypernym		Meronym		Random
	Co-hyponym	99.	4% 1.8%			1.0%		0.2%
	Hypernym	0.2	%	97.5%		0.3%		0.1%
	Meronym	0.1	%	0.2%		96.5%		0.1%
	Random	0.3	%	0.5%		2.2%		99.6%

Conclusion

- ✓ We present the KEML framework for lexical relation classification.
- ✓ Experiments show that KEML achieves SOTA results.

✓ Future work includes:

- Improving relation representation learning with deep neural language models
- Integrating richer linguistic and commonsense knowledge into KEML
- Applying KEML to downstream tasks such as taxonomy learning

THANKS

----- Q&A Section ------