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ABSTRACT
Interactive Machine Translation (IMT) advances the computer-
aided translation (CAT) paradigm, enabling collaboration between
machine translation systems and human translators for high-quality
outputs. This paper presents Synslator, a CAT tool designed for IMT
and proficient in online learning with real-time translation memo-
ries. Synslator accommodates different CAT service deployments
by integrating two neural translation models for online learning
and a language model to boost translation fluency interactively.
Our evaluations demonstrate the system’s online learning effec-
tiveness, showing a 13% increase in post-editing efficiency with
Synslator’s interactive features. A tutorial video is provided at:
https://youtu.be/K0vRsb2lTt8.
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1 INTRODUCTION AND RELATEDWORKS
We have witnessed advancements made in the field of machine
translation [1, 14, 16], which progressively improve translation
quality. These advancements have prompted a transformation in
the industry, with a shift from exclusive reliance on human transla-
tions to the integration of computer-aided translation (CAT) meth-
ods [3, 7, 12]. Instead of translating from scratch, humans engage in
post-editing tasks, refining machine translations to yield the final
approved results, and thus considerably improving the translation
efficiency. Post-editing used to be generally static, wherein ma-
chines ceased to respond to human modifications as soon as human
post-editing began [7]. Recent studies have explored interactive
procedures [8, 10, 13, 18], enabling a more collaborative process
between humans and machines, where machines can dynamically
adjust translations in line with the edits made by humans.

Translation Memory (TM) is a key component that can be lever-
aged in CAT [6]. As human undertake post-editing with CAT tools,
online incremental TMs can be invariably accumulated. Hence, the
capability to use TMs for online learning emerges as a critical at-
tribute for CAT. In fact, there are different environment settings
for the deployment of CAT services. In environments where the
deployment of CAT allows for authorized usage of TMs, it is feasible
to utilize translation memories for model fine-tuning [2, 19]. While
in different settings such as public cloud solutions for CAT services,
where translation memories are usually introduced online by users
and not authorized to use for model training, it is more beneficial
to have a translation model capable of handling online TMs dur-
ing inference. For instance, Khandelwal et al. [9] predicts target
words with a 𝑘-nearest-neighbor (𝑘NN) classifier over a datastore
of cached TM examples during inference.
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(a)

(b)

Figure 1: The user interfaces of Synslator: (a) the project
setting interface, (b) the post-editing interface.
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Figure 2: The adaptive-TM-MT framework.

In this paper, we introduce Synslator, a CAT tool that enhances
IMT by offering real-time automated suggestions. It supports sub-
word level inputs, ensuring flexibility in editing machine transla-
tions. Specifically, Synslator integrates two models for translation
memory and online learning: an adaptive neural machine transla-
tion model (adaptive-TM-MT) and a simplified nearest-neighbor
retrieval model (simplified-kNN-MT). Additionally, it leverages a
GPT-based language model (LM) to provide suggestions aimed at
improving monolingual fluency and style.

2 SYNSLATOR: THE PROPOSED SYSTEM
Synslator allows users to create translation projects, configure its re-
spective settings, and perform post-editing on machine translation
results in an interactive mode.1 As depicted in the screenshots in
Figure 1, there are two user interfaces that humans utilize to finish
a translation task. The interface (a) allows adjustments for project
settings, while the interface (b) supports human post-editing.

1A tutorial video, available at this link: https://youtu.be/K0vRsb2lTt8, demonstrates
how Synslator works. The example project shown in the video focuses on legal trans-
lations from Chinese to English. We presume in this case that the CAT tool is set up as
a public cloud service, and the user has already uploaded a suitable TM dataset.
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Figure 3: The simplified-𝑘NN-MT framework with sequen-
tially numbered workflow steps.

2.1 Project Setting Interface
Users are presented with choices for file parsing, selections of trans-
lation memory, selections of termbase, and options to choose dif-
ferent machine translation engines. The file parsing functionality
is employed to segment sentences if a document is uploaded for
translation. We will focus on the functions of translation memory,
termbase and machine translation engines in this section.

2.1.1 Translation Memory and Termbase. After creating a
translation project, users can upload related TMs and bilingual
termbase. For each source sentence, Synslator will present the most
relevant TM including its source and target translation as refer-
ence in the post-editing interface. The searching process is initially
carried out by an open-sourced distributed search engine, Elastic-
Search,2 which retrieves as most as 64 bilingual sentence pairs that
exhibit the highest relevance scores based on the source. Subse-
quently, from these bilingual sentence pairs, Synslator selects the
one demonstrating the most similarity based on the edit distance
on the source side. The minimum threshold for the edit distance
is denoted as the Minimum Match Rate, and its value can be set in
the Project Settings interface. When it comes to translating terms,
Synslator utilizes an exact match strategy to locate their respective
translations from the bilingual termbase. If multiple matches are
found, all of them will be displayed.

2.1.2 Machine Translation Engines. Post-editing with a CAT
tool results in incremental online TMs. Regarding the varying de-
ployment environments associated with CAT services, Synslator
utilizes two distinct models for online learning.

adaptive-TM-MT. When deploying CAT services with permis-
sion to use training TMs, leveraging TMs for fine-tuning would
enhance domain-specific translation performance. Moreover, incor-
porating related TMs as an extra input would further improve the
model. Bapna and Firat [2] retrieves neighbors from TMs and in-
corporates them into the model through Conditional Source Target
Memory. Inspired by their work, we propose the adaptive-TM-MT,
as illustrated in Figure 2. Given a pre-trained Transformer model,
we fine-tune it with TMs as domain-specific training data. For each
parallel sentence pair in TMs, we first use the pre-trained encoder
and decoder to encode the TM’s source and target sequences; after-
wards, we execute a retrieval process to locate the nearest neighbor
from the remaining TMs in the same way as in Section 2.1.1. The
2https://github.com/elastic/elasticsearch
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retrieved source is encoded with one Transformer encoder layer,
and is integrated with the encoder representation of the source
sequence via a cross-attention. Similarly, the retrieved target is
encoded, attending to the encoded retrieved source memory. Fi-
nally, we add one Transformer decoder layer upon the original
decoder module, attending the encoded retrieved target memory.
The adaptive-TM-MT is trained offline with historical TMs, and
used to handle real-time incremental TMs online.

simplified-𝑘NN-MT. For scenarios where using TMs in train-
ing is not feasible, such as in public cloud CAT services, we develop
a model, simplified-𝑘NN-MT, capable to handle plug-in TMs at in-
ference, inspired by 𝑘NN-MT [9]. It adopts the retrieval approach
detailed in Section 2.1.1 to obtain a smaller amount of relevant TMs
per source sentence, and then gathers up to 16 TMs via edit distance
with a minimum threshold of 0.4 for datastore construction. This
procedure alleviates computational complexity and storage require-
ments in 𝑘NN-MT, thereby enhancing its applicability in practical
scenarios. Finally, each sentence is linked to a tailored datastore,
facilitating target generation by interpolating the distribution of
𝑘NN predictions as 𝑘NN-MT does. While a related technique is
employed in recent research [4], our method simplifies the process
by eliminating the need for their adaptive 𝑘NN retrieval.

2.2 Post-Editing Interface
Upon configuring project settings, users access the post-editing
interface, shown in Figure 1 (b), which initially displaying machine
translation results. Human post-editing triggers Synslator to adjust
translations based on edits, enabling ongoing improvements. This
interaction continues until translations reach the desired quality.

2.2.1 Workflow of Post-Editing. Translation memories and
termbases, detailed in Section 2.1.1, are accessible on the right side of
the post-editing interface, allowing translators to incorporate them
into translations with a double-click and perform edits as needed.
Incremental TMs from real-time editing are merged with existing
memories, enabling the adaptive-TM-MT and simplified-kNN-MT
models’ online learning. For adaptive-TM-MT, Synslator generates
translations utilizing the source and top-ranked TM. For simpli-
fied-kNN-MT, Synslator uses relevant TMs to create a datastore for
kNN retrievals.

Translators can edit at the subword level, and the model, in-
formed by subword inputs, completes the current target word and
generates subsequent words. This is enabled by our subword-prefix
decoding algorithm, as detailed in Section 2.2.2. Predictions with
high confidence (e.g., translation probability above 0.6) are high-
lighted, and translators can easily confirm with the TAB key. Trans-
lators can also lock in accurate translations by clicking on them.

Beneath each translation, a suggestion box is featured. It fur-
nishes the next 3-best translations generated by the translation
model, excluding the top-ranked one which is already displayed.
The box also includes a suggestion derived from a GPT-based LM.
This acts as a supplementary reference, offering insights into mono-
lingual fluency and stylistic nuances. However, the precision of
a GPT model’s next-word prediction depends on the preceding
context [5, 11]. Therefore, our LM only provides a suggestion when
the target prefix composes of more than ten translated words.

Input: Today, medical and he

Look up “he” in the vocabulary using prefix exact matching

Predict the current word with the prefix “he” and the following words

Output: Today, medical and health professionals …

Hit 0 … 1 … 1 … 0 … 0 …

vocab a … he … health … have … the …

Figure 4: An example of Hit Vector.

Model BLEU 𝐴𝑐𝑐1−𝑔𝑟𝑎𝑚 𝐴𝑐𝑐2−𝑔𝑟𝑎𝑚 𝐴𝑐𝑐3−𝑔𝑟𝑎𝑚

In-house IT domain test set

In-house NMT 25.47 46.38 30.47 21.13
+Fine-tuning 28.28 51.63 35.64 25.59

adaptive-TM-MT (Ours) 29.05 52.25 36.31 26.30

Open-source Law domain test set

NMT trained with CCMT 37.65 57.26 42.28 32.68
+simplified-𝑘NN-MT (Ours) 42.57 59.74 46.53 37.95

In-house NMT 33.73 53.66 38.11 28.06
+simplified-𝑘NN-MT (Ours) 37.21 56.45 42.43 33.17

Open-source Subtitles domain test set

NMT trained with CCMT 10.43 33.78 18.26 10.47
+simplified-𝑘NN-MT (Ours) 12.12 35.84 20.93 13.07

In-house NMT 18.81 38.90 21.95 12.97
+simplified-𝑘NN-MT (Ours) 20.04 40.61 24.30 15.34

Table 1: Translation evaluation results.

2.2.2 Subword-Prefix Decoding. In post-editing, when the last
input from the translator is a space, it indicates the presence of a
fully-formed word preceding the space character. In this case, the
translation model and the GPT-based LM anticipate the ensuing
words through the application of a forced decoding mode. Other-
wise, we build a binary vector over the target vocabulary, calledHit
Vector, to look up the subword prefix in the vocabulary using exact
matching. In Hit Vector, any index with a value of 1 represents a
match with the subword prefix, denoting a “hit” by the subword
prefix. An example is illustrated in Figure 4. Among the words that
the subword prefix hits, our model selects the one with the highest
generation probability as the current prediction conditioned on all
preceding words, and completes the following predictions in the
forced decoding mode. This subword-prefix decoding algorithm
can be use for both of the translation model and the GPT-based LM.

3 EVALUATION
3.1 Evaluation of Translation Engines
Building on the demonstration of adaptive-TM-MT’s effectiveness
on public datasets [2], we evaluate this approach using an in-house
pre-trained Chinese-English neural machine translation (NMT)
model based on the Transformer base architecture [17]. This model
is fine-tuned with an in-house IT-domain dataset comprising 2.3
million parallel sentences, and either of the validation and test sets
contains 2000 pairs. We evaluate online learning on the test set,
where the training data serve as TMs for retrievals. In evaluating
the simplified-kNN-MT, we utilize two NMT models: the in-house
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MT-PE Synslator

Week #Word Time (h) Avg. Time (h) Avg. Δ Avg.

1 90,344 147.85 611.05 136.67 661.04 +8%
2 78,882 148.51 531.16 124.97 631.21 +19%
3 44,750 80.05 559.03 71.36 627.10 +12%

Total 213,976 376.41 568.47 333.00 642.57 +13%

Table 2: The efficiency of real-time post-editing. #Word and
Avg. represent the total # of source words in the projects and
the averaged # of words completed per hour.

model and a Transformer base model trained on the CCMT 2022
Chinese-English Corpus.3 We then employ Chinese-English Law
and Subtitles training sets [15] as TMs to create datastores and
perform 𝑘NN retrievals, and tune hyper-parameters (𝐾 = 4, 𝜆 = 0.4,
𝑇 = 5) on the validation sets.4

Weassess translationswith the BLEU score using “multi-bleu.perl”
of Moses,5 and propose a novel metric, called N-gram Accuracy, to
evaluate prediction accuracy given target prefix inputs. In details,
we enumerate target prefix sequences from the golden references,
which are assumed as inputs from human translators and enable the
model to produce predictions for the subsequent N words. N-gram
Accuracy is computed by determining the proportion of correct
N-gram predictions relative to the total count of N-gram references,
i.e.,

𝐴𝑐𝑐𝑁 −𝑔𝑟𝑎𝑚 =
𝐶𝑜𝑢𝑛𝑡 (𝑃𝑟𝑒𝑑𝑁 −𝑔𝑟𝑎𝑚 = 𝑅𝑒𝑓𝑁 −𝑔𝑟𝑎𝑚 )

𝐶𝑜𝑢𝑛𝑡 (𝑅𝑒𝑓𝑁 −𝑔𝑟𝑎𝑚 ) , (1)

where 𝑃𝑟𝑒𝑑𝑁−𝑔𝑟𝑎𝑚 and 𝑅𝑒 𝑓𝑁−𝑔𝑟𝑎𝑚 are the N-gram prediction and
the reference given the target prefix input. A higher value of the
N-gram Accuracy indicates better performance.

As shown in Table 1, our experimental findings demonstrate
that both the adaptive-TM-MT and simplified-𝑘NN-MT models
are capable of online learning. Comparing the adaptive-TM-MT
against the pre-trained and the fine-tuned NMTmodels, we observe
that the adaptive-TM-MT exhibits superior performance. Moreover,
the simplified-𝑘NN-MT significantly surpasses both of the public
and in-house NMT models in the Law and Subtitle domains.

3.2 Evaluation of Interactive Functionalities
We also evaluate the real-time efficiency of interactive features,
including the sub-word prefix decoding and the Suggestion Box,
through real-time post-editing experiments. Ten translators with
eight years of experience in Chinese-English IT translations are
divided into two groups for a three-week IT-domain translation
project, using adaptive-TM-MT for online learning. Projects are
randomly assigned. One group, the MT-PE group, used static post-
editing with TMs and termbases, while the other used Synslator’s
interactive functionalities. The results, summarized in Table 2, show
a 13% improvement in post-editing efficiency for 213,976 words
translated with Synslator.

3https://www.statmt.org/wmt22/translation-task.html
4Sizes of the validation and test sets are 2000, 456 for Law, and 2000, 597 for Subtitles.
5http://statmt.org/moses

4 CONCLUSION
We present Synslator, a user-friendly IMT tool. In different deploy-
ment environments, it utilizes distinct translation models for online
learning with real-time translation memories, and provides mul-
tiple translation suggestions through a subword-prefix decoding
algorithm. In practical applications, Synslator assists human trans-
lators to perform efficient post-editing interactively, enhancing the
overall translation workflow.
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