
Match4Match: Enhancing Text-Video Retrieval by Maximum Flow
with Minimum Cost

Zhongjie Duan
East China Normal University

Shanghai, China
zjduan@stu.ecnu.edu.cn

Chengyu Wang
Alibaba Group

Hangzhou, China
chengyu.wcy@alibaba-inc.com

Cen Chen∗
East China Normal University

Shanghai, China
cenchen@dase.ecnu.edu.cn

Wenmeng Zhou
Alibaba Group

Hangzhou, China
wenmeng.zwm@alibaba-inc.com

Jun Huang
Alibaba Group

Hangzhou, China
huangjun.hj@alibaba-inc.com

Weining Qian
East China Normal University

Shanghai, China
wnqian@dase.ecnu.edu.cn

ABSTRACT
With the explosive growth of video and text data on the web, text-
video retrieval has become a vital task for online video platforms.
Recently, text-video retrieval methods based on pre-trained models
have attracted a lot of attention. However, existing methods cannot
effectively capture the fine-grained information in videos, and typi-
cally suffer from the hubness problem where a collection of similar
videos are retrieved by a large number of different queries. In this
paper, we propose Match4Match, a new text-video retrieval method
based on CLIP (Contrastive Language-Image Pretraining) and graph
optimization theories. To balance calculation efficiency and model
accuracy, Match4Match seamlessly supports three inference modes
for different application scenarios. In fast vector retrieval mode, we
embed texts and videos in the same space and employ a vector re-
trieval engine to obtain the top 𝐾 videos. In fine-grained alignment
mode, our method fully utilizes the pre-trained knowledge of the
CLIP model to align words with corresponding video frames, and
uses the fine-grained information to compute text-video similar-
ity more accurately. In flow-style matching mode, to alleviate the
detrimental impact of the hubness problem, we model the retrieval
problem as a combinatorial optimization problem and solve it using
maximum flow with minimum cost algorithm. To demonstrate the
effectiveness of our method, we conduct experiments on five pub-
lic text-video datasets. The overall performance of our proposed
method outperforms state-of-the-art methods. Additionally, we
evaluate the computational efficiency of Match4Match. Benefiting
from the three flexible inference modes, Match4Match can respond
to a large number of query requests with low latency or achieve
high recall with acceptable time consumption.

CCS CONCEPTS
• Information systems→ Video search.
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583365

KEYWORDS
multimodal learning, video retrieval, network flow

ACM Reference Format:
Zhongjie Duan, Chengyu Wang, Cen Chen, Wenmeng Zhou, Jun Huang,
and Weining Qian. 2023. Match4Match: Enhancing Text-Video Retrieval
by Maximum Flow with Minimum Cost. In Proceedings of the ACM Web
Conference 2023 (WWW ’23), April 30–May 04, 2023, Austin, TX, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3543507.3583365

1 INTRODUCTION
Video is one of the most popular communication mediums that is
capable of storing rich information. With the rapid growth of online
videos and texts on the web, cross-modal learning has become a
heated topic in the field of computer vision and natural language
processing [30]. In order to help users to find relevant videos effi-
ciently, video retrieval becomes a fundamental and critical task for
online video platforms.

Traditional video retrieval methods [1, 57] mainly focus on key-
word matching. However, these methods only search videos based
on video captions and cannot utilize the rich information from
video images. To overcome this pitfall, researchers pay attention
to cross-modal learning. The large amount of text and video data
on the internet has created favorable conditions for the applica-
tion of deep learning for video retrieval. The dominant method
in recent years is to embed videos and texts into the same vector
space. For example, some studies [46, 47] use CNN as video encoder
and RNN as text encoder, and use distance metrics of vectors to
search for related videos. The retrieval performance relies on the
model architecture and training datasets. With the establishment of
large-scale datasets and the development of related research, some
pre-trained models were proposed [9, 29, 62] for image classifica-
tion tasks. Subsequently, Collaborative Experts [43] was designed
to aggregate information from different pre-trained models, which
has been demonstrated to be a strong baseline in text-video retrieval
tasks. After Transformer [58] was proposed, Transformer based
models became popular in both computer vision [18] and neural
language processing [34]. Recently proposed CLIP [51] leverages
Transformer and contrastive learning to embed sentences and im-
ages into the same space. CLIP was trained on an extremely large
text-image dataset and stored abundant knowledge for text-image
retrieval. It inspired many following studies. By fine-tuning the
CLIP model on text-video datasets, CLIP4CLIP [44] transferred the

3257

https://doi.org/10.1145/3543507.3583365
https://doi.org/10.1145/3543507.3583365
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583365&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Duan et al.

knowledge of CLIP to the video retrieval setting, and outperformed
the existing methods by a large margin. Several recent works focus
on modelling fine-grained information for cross-modal retrieval
by aligning the words to the corresponding frames using GCN
[12], shared centers [20] or clustering [27, 66]. Different from the
methods that directly use distance metrics, these methods typically
embed each word and frame into a joint embedding space and
then calculate the overall text-video similarities for retrieval. Such
methods are able to capture fine-grained semantic differences, thus
further improving the task performance, however, more inference
overheads are inevitably introduced.

Despite the advancement, we suggest that existing text-video
retrieval methods can still be further improved in the following
aspects. First, the knowledge stored in the pre-training models
is rich and should be fully used for fine-tuning. The majority of
CLIP-based methods add additional sub-networks with trainable
parameters to the model, which may increase the uncertainty of
training. Empirically, the study [38] proved that the fine-tuning
method could distort the pre-trained features and influence the per-
formance significantly. Second, the hubness problem is still crucial.
There will always be a small number of videos retrieved by a large
number of queries. The hubness problem has received attention
from researchers, among which QB-NORM [7] was proposed to
reduce the adverse impact, but the improvement is minimal. Third,
the computing resource requirement for training is very high. Most
retrieval methods are based on contrastive learning. In contrastive
learning, large batch size is beneficial to improving the performance
but requires too much GPU memory [23]. In this paper, we propose
a new text-video retrieval method named Match4Match, which
supports three flexible inference modes to balance efficiency and
accuracy. To reduce the uncertainty of training, we design an ar-
chitecture that uses the pre-trained CLIP itself for token-frame
alignment without any trainable parameters. In order to prevent
the hubness problem from affecting the retrieval results, we employ
maximum flow and minimum-cost flow algorithms for optimizing
retrieval results. To improve the training efficiency, we propose a
contrastive gradient accumulation algorithm, which can reduce the
computing resource requirement significantly.

We compared our approach with state-of-the-art methods on five
public text-video retrieval datasets. Experimental results demon-
strate the effectiveness of our method. Although we employ net-
work flow algorithms inMatch4Match, the efficiency analysis proves
that the time consumption is highly acceptable. In addition, the
three inference modes can satisfy different computational resource
and accuracy requirements.1

The main contributions of our paper include:

• We propose a novel text-video retrieval approach named
Match4Match, which seamlessly supports three inference
modes to satisfy different computational resource and accu-
racy requirements.

• Based on graph optimization theory, we design a parameter-
free architecture to capture fine-grained token-frame align-
ment information, and a flow-style matching algorithm to
minimize the detrimental impact of hubness problems.

1Source codes will be released in EasyNLP [59] (https://github.com/alibaba/EasyNLP).

• The experimental results demonstrate that the overall perfor-
mance of Match4Match outperforms state-of-the-art meth-
ods, and the comprehensive efficiency analysis proves that
the time consumption is highly acceptable.

2 RELATEDWORK
In this section, we briefly review the related studies of text-video
retrieval and network flow algorithms.

2.1 Text-Video Retrieval
In recent years, a large number of prior works have been proposed
for cross-modal retrieval tasks. Some existing studies focused on
embedding videos and texts into the same space and searching
videos using vector queries. In 2016, Otani et al. [46] and Pan et
al. [47] used a video encoder and a text encoder to jointly learn
the representation of videos and sentences. They demonstrated the
feasibility of joint embedding. In 2020, ViT [18] was proposed as a
visual model, and outperformed other baselines in many computer
vision tasks. Consequently, CLIP [51] employed ViT [18] to embed
images and used a Transformer Encoder [58] as a text encoder.
CLIP was pre-trained on a large-scale text-image dataset and made
great progress in cross-modal research. Following the study of CLIP,
Portillo et al. [50] tried to apply this pre-trained model to video
retrieval tasks without fine-tuning, and demonstrated the poten-
tial of the pre-trained CLIP model. Based on CLIP and contrastive
learning, an empirical study [44] proposed a strong baseline using
four different similarity definitions. To further improve the perfor-
mance of CLIP, Chen et al. [12] used GCN [60] for the alignment
of words and frames, and CLIP2Video [20] leveraged shared cen-
ters for discovering the shared information between videos and
texts. CAMoE [14] utilized three expert models for extracting more
information from texts and videos. QB-NORM [7] could reduce
the influence of hubness problems by normalizing the similarities
using a querybank. MDMMT-2 [39] was pre-trained on multiple
datasets simultaneously and worked well on downstream tasks that
lack large amounts of training data. Inspired by these methods, we
propose a novel approach that supports both coarse-grained fast
retrieval and fine-grained reranking.

2.2 Network Flow
The maximum flow and minimum-cost flow problems are classic
combinatorial graph optimization problems. Over the last several
decades, extensive research has been conducted both in theory and
application [55]. In the maximum flow and minimum-cost flow
problem, given a directed graph where each edge is assigned ca-
pacity and cost, we are supposed to find a maximum flow with
minimum cost from the source node to the sink node satisfying the
capacity limit. In 1951, the first algorithm with pseudo-polynomial
time complexity was proposed by Dantzig [16]. After this, Ford-
Fulkerson [21], Dinic [17] and Edmonds-Karp [19] algorithms were
proposed as faster algorithms. Nowadays the most popular algo-
rithm in practice is Goldberg-Tarjan minimum-cost flow algorithm
[26], a cost-scaling push-relabel algorithm. In application, network
flow algorithms are widely applied in airline schedule planning [5]
and traffic flow management [6]. However, the main drawback of

3258

Match4Match: Enhancing Text-Video Retrieval by Maximum Flow with Minimum Cost WWW ’23, April 30–May 04, 2023, Austin, TX, USA

network flow algorithms is the high time complexity. Several stud-
ies focused on improving the efficiency by parallel computation [31]
and approximate algorithms [15]. Recently, Chen et al. [11] claimed
that they proposed an algorithm in almost linear time. In practice,
Google developed a high-efficiency graph optimization framework
[49]. These existing studies make it possible to apply network flow
algorithms to large-scale text-video retrieval problems.

3 METHODOLOGY
3.1 Overview
In text-video retrieval problems, given 𝑁𝑡 sentences {𝑡1, 𝑡2, . . . , 𝑡𝑁𝑡

}
and 𝑁𝑣 videos {𝑣1, 𝑣2, . . . , 𝑣𝑁𝑣

}, we are supposed to find the cor-
responding video of each sentence. A video 𝑣𝑖 is represented by
a sequence of frames {𝑣𝑖,1, 𝑣𝑖,2, . . . , 𝑣𝑖,𝑛𝑣 }, and a sentence 𝑡 𝑗 is rep-
resented by a sequence of tokens {𝑡 𝑗,1, 𝑡 𝑗,2, . . . , 𝑡 𝑗,𝑛𝑡 }. Usually, the
frames are sampled in the video uniformly, and we follow the same
settings as some existing studies [44]. The overview ofMatch4Match
is presented in Figure 2. Match4Match supports three inference
modes: fast vector retrieval mode, fine-grained alignment mode
and flow-style matching mode. The former is more computation-
ally efficient and the latter can achieve a higher recall. 1) In fast
vector retrieval mode, we train a coarse-grained model similar to
CLIP4CLIP [44]. We embed texts and videos to the same space, and
use a vector retrieval engine to obtain top 𝐾 relevant videos. 2) In
fine-grained alignment mode, we train a fine-grained model to
calculate more accurate token-frame similarities for alignment. The
similarities are used to rerank the top 𝐾 videos. 3) In flow-style
matching mode, we model the retrieval problem as a combinato-
rial optimization problem and leverage network flow algorithms
to solve it. The flow-style matching can significantly reduce the
detrimental influence of the hubness problem.

3.2 Fast Vector Retrieval Mode
Using text-video datasets collected from the Internet, a naive ap-
proach is to train a text encoder and a video encoder, and then
calculate the similarity between texts and videos. However, a well-
trained retrieval model requires too many computing resources,
motivating us to develop a retrieval algorithm based on pre-trained
models. In this paper, we utilize CLIP [51], an image-language pre-
training model. In CLIP, there is a text encoder 𝑒𝑡 and a visual
encoder 𝑒𝑣 trained to convert tokens and frames to embedding vec-
tors in R𝑑 . We use the mean-pooling embedding vector of frames to
represent a video, and use the embedding vector of “[EndOfText]”
to represent a text, which is a special token at the last of the token
sequence, i.e.,

𝑒𝑣 (𝑣 𝑗) =
1
𝑛𝑣

𝑛𝑣∑︁
𝑙=1

𝑒𝑣 (𝑣 𝑗,𝑙), (1)

𝑒𝑡 (𝑡𝑖) = 𝑒𝑡 (𝑡𝑖,𝑛𝑡). (2)

The similarity in CLIP is defined as the cosine similarity. We de-
fine the coarse-grained text-video similarity 𝑆 (𝑡𝑖 , 𝑣 𝑗) as the cosine
similarity between 𝑒𝑡 (𝑡𝑖) and 𝑒𝑣 (𝑣 𝑗):

𝑆 (𝑡𝑖 , 𝑣 𝑗) =
𝑒𝑡 (𝑡𝑖) · 𝑒𝑣 (𝑣 𝑗)
|𝑒𝑡 (𝑡𝑖) | |𝑒𝑣 (𝑣 𝑗) |

. (3)

[StartOfText] a sponge and a starfish walk outside [EndOfText]

0.2027 0.2240
0.1941 0.2089

0.2605
0.3126

0.2805

Figure 1: An example of token-frame alignment using pre-
trained CLIP. The similarity between a token and its corre-
sponding frame is higher than others.

In order to further transfer the knowledge from text-image tasks to
text-video retrieval tasks, we fine-tune the model on downstream
text-video datasets. After fine-tuning, we normalize all video em-
beddings and store them in a database for retrieval. Given a sentence
𝑡𝑖 , as shown in Figure 2 (a), we first convert it to a text embedding
vector 𝑒𝑡 (𝑡𝑖), then find the vectors with high cosine similarity in the
database, and finally obtain the corresponding videos 𝑉 (𝑡𝑖). Some
vector retrieval algorithms [32, 56] are utilized for maximum inner
product search. These algorithms can search for vectors quickly
without scanning all videos.

3.3 Fine-Grained Alignment Mode
The fast vector retrieval mode runs very quickly but is hard to
guarantee high accuracy. In fine-grained alignment mode, we first
obtain the top 𝐾 relevant videos𝑉 (𝑡𝑖) in fast vector retrieval mode,
then calculate the fine-grained similarities {𝑆 (𝑡𝑖 , 𝑣 𝑗) |𝑣 𝑗 ∈ 𝑉 (𝑡𝑖)}
using the fine-grained model to rerank the 𝐾 videos.

Considering the fact that CLIP is a model pre-trained on a large-
scale text-image dataset, we can easily obtain reliable similarities
between tokens and frames. In Figure 1, we present an example
that shows the similarity between a sentence and its corresponding
video. We find that the similarity between a token (“sponge” and
“starfish”) and the frame in which the corresponding cartoon charac-
ter occurs is higher than others, even if the model is not fine-tuned
on any text-video datasets. The special token “[EndOfText]” rep-
resents the whole sentence, thus we can find the key frame where
the two characters both occur. According to the similarities, we can
align frames to their corresponding tokens and vice versa.

To compute fine-grained text-video similarities, we focus on
some representative token-frame alignments. We define the simi-
larity between text 𝑡𝑖 and video 𝑣 𝑗 as:

𝑆 (𝑡𝑖 , 𝑣 𝑗) =
∑

(𝑘,𝑙) 𝑓 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)∑
(𝑘,𝑙) 𝑓 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)

, (4)

where 𝑓 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) ∈ {0, 1} represents whether the token-frame
pair (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) is selected, and 𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) is the token-frame cosine
similarity between 𝑒𝑡 (𝑡𝑖,𝑘) and 𝑒𝑣 (𝑣 𝑗,𝑙).

As we described above, we can extract the alignment information
by selecting the token-frame pairs with high similarity. However,
directly using a greedy strategy usually leads to an imbalance of
choice. Some tokens (frames) may never be selected, thus their
embedding will not be updated. This condition will result in sub-
optimal training performance. To overcome this pitfall, we restrict

3259

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Duan et al.

𝑡! = 𝑡!,# #$%
&!

𝑣' = 𝑣',(($%
&"

Source Node Sink Node

Token Node

Frame Node

Capacity: 1
Cost: −𝑠(𝑡!,#, 𝑣',()

Simplify

Text
Encoder

Video
Encoder

Text
Similarity 𝑆(𝑡!, 𝑣')

Video

(c) Token-frame alignment graph (d) Token-frame alignment graph (simplified)

𝑡! !$%
)!

𝑣' '$%
)"

Text
Encoder

Video
Encoder

Texts

Videos

Reranking

Source Node Sink Node

Text Node

Video Node

Vector Retrieval
Engine

(a) Video Embedding Space

Reranking

Capacity: 1
Cost: 0

Capacity:)!)"
Cost: 0

Capacity: 1
Cost:−𝑆(𝑡!, 𝑣')

(b) Text-video matching graph

Coarse-Grained
Model

Fine-Grained
Model

Capacity: +∞
Cost: 0

Capacity: 𝑐*
Cost: 0

Capacity: +∞
Cost: 0

Capacity: 𝑐+
Cost: 0

Fine-Grained
Alignment Mode

Fast Vector
Retrieval Mode

Flow-Style
Matching Mode

Higher RecallHigher Efficiency

Figure 2: The overview of Match4Match. Match4Match supports three inference modes: fast vector retrieval mode, fine-grained
alignment mode and flow-style matching mode. The three inference modes are designed for different computational resources
and accuracy requirements, where the former is more efficient and the latter can achieve higher recall.

the number of times that each token (frame) is selected. We model
this selection problem as a combinatorial optimization problem:

max
𝑓

∑︁
(𝑘,𝑙)

𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) 𝑓 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙), (5)

s.t.

𝑓 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) ∈ {0, 1}; 𝑘 = 1, 2, . . . , 𝑛𝑡 ; 𝑙 = 1, 2, . . . , 𝑛𝑣 ;∑
𝑘 𝑓 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) ≤ 𝑐𝑣 ; 𝑙 = 1, 2, . . . , 𝑛𝑣 ;∑
𝑙 𝑓 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) ≤ 𝑐𝑡 ; 𝑘 = 1, 2, . . . , 𝑛𝑡 .

(6)

To calculate the optimal solution, we leverage network flow
optimization theories. As shown in Figure 2 (c), a directed graph
is constructed to represent this optimization problem. There are
𝑛𝑡 + 𝑛𝑣 + 2 nodes, where token node 𝑢 (𝑡𝑖,𝑘) represents the token
𝑡𝑖,𝑘 , frame node 𝑢 (𝑣 𝑗,𝑙) represents the frame 𝑣 𝑗,𝑙 , and the other two
extra nodes represent the source node and sink node. We assign
capacity and cost to each directed edge (arc). The capacity of an
edge is 𝑐𝑡 if it starts from the source node, and is 𝑐𝑣 if it ends with
the sink node. With these settings, we can make sure each token
is selected at most 𝑐𝑡 times, and each frame is selected at most 𝑐𝑣
times. If an edge starts from a token node 𝑢 (𝑡𝑖,𝑘) and ends with a
frame node 𝑢 (𝑣 𝑗,𝑙), its capacity is 1 and its cost is −𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙). The
cost of other edges is 0. Therefore, we can find the optimal solution
of this optimization problem by finding a maximum flow 𝑓 with
minimum cost on the graph.

During the training procedure, the token-frame similarities are
updated by gradient-based optimization algorithms, thus the graph
is also updated dynamically. We need to recalculate the flow fre-
quently, which makes the training procedure slow. In order to
improve efficiency, we simplify the optimization problem to find

a sub-optimal solution that can be solved quickly. As shown in
Figure 2 (d), we split the graph structure into two dual parts. In
the first part, the capacities of edges that end with the sink node
are unlimited. In the second part, the capacities of edges that start
with the source node are unlimited. In other words, we align each
token to its corresponding frames in the first part, and align each
frame to its corresponding tokens in the second part. Using 𝑓𝐴 and
𝑓𝐵 to denote the minimum-cost flow of the two parts, we obtain
two text-video similarities:

𝑆𝐴 (𝑡𝑖 , 𝑣 𝑗) =
∑

(𝑘,𝑙) 𝑓𝐴 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)∑
(𝑘,𝑙) 𝑓𝐴 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)

, (7)

𝑆𝐵 (𝑡𝑖 , 𝑣 𝑗) =
∑

(𝑘,𝑙) 𝑓𝐵 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)∑
(𝑘,𝑙) 𝑓𝐵 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)

. (8)

Neither 𝑠𝐴 (𝑡𝑖 , 𝑣 𝑗) nor 𝑠𝐵 (𝑡𝑖 , 𝑣 𝑗) satisfies reflexivity, but we can inte-
grate the two similarities together:

𝑆 (𝑡𝑖 , 𝑣 𝑗) =
𝑆𝐴 (𝑡𝑖 , 𝑣 𝑗) + 𝑆𝐵 (𝑡𝑖 , 𝑣 𝑗)

2
. (9)

Now 𝑆 (𝑡𝑖 , 𝑣 𝑗) = 𝑆 (𝑣 𝑗 , 𝑡𝑖). Obviously, if we set 𝑐𝑡 = 𝑐𝑣 = 1, the
text-video similarity will be computed easily:

𝑆 (𝑡𝑖 , 𝑣 𝑗) =
1
2

(
1
𝑛𝑡

∑︁
𝑘

max
𝑙
𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙) +

1
𝑛𝑣

∑︁
𝑙

max
𝑘
𝑠 (𝑡𝑖,𝑘 , 𝑣 𝑗,𝑙)

)
.

(10)
This simplified similarity aligns the frame with the highest similar-
ity to the token and vice versa.

3260

Match4Match: Enhancing Text-Video Retrieval by Maximum Flow with Minimum Cost WWW ’23, April 30–May 04, 2023, Austin, TX, USA

3.4 Flow-Style Matching Mode
In flow-style matching mode, we further improve the retrieval
performance. In the above two inference modes and most existing
CLIP-based text-video retrieval methods, the most relevant video
𝑣 (𝑡𝑖) is selected by an argmax function:

𝑣 (𝑡𝑖) = argmax
𝑣𝑗

𝑆 (𝑡𝑖 , 𝑣 𝑗) . (11)

This retrieval strategy is simple and easy to be implemented, but it
suffers significantly from the longstanding hubness problem [52].
Similar to token-frame alignment, we model the text-to-video re-
trieval problem as another combinatorial optimization problem,
formulated as:

max
𝑓

∑︁
(𝑖, 𝑗)

𝑆 (𝑡𝑖 , 𝑣 𝑗) 𝑓 (𝑡𝑖 , 𝑣 𝑗), (12)

s.t.

𝑓 (𝑡𝑖 , 𝑣 𝑗) ∈ {0, 1}; 𝑖 = 1, 2, . . . , 𝑁𝑡 ; 𝑗 = 1, 2, . . . , 𝑁𝑣 ;∑
𝑗 𝑓 (𝑡𝑖 , 𝑣 𝑗) ≤ 1; 𝑖 = 1, 2, . . . , 𝑁𝑡 ;∑
𝑖 𝑓 (𝑡𝑖 , 𝑣 𝑗) ≤ ⌈𝑁𝑡

𝑁𝑣
⌉; 𝑗 = 1, 2, . . . , 𝑁𝑣 .

(13)

In this optimization problem, we limit the number of times that
each video is matched to ⌈𝑁𝑡

𝑁𝑣
⌉. This limitation can directly reduce

the adverse effect caused by the hubness problem. If 𝑁𝑡 ≤ 𝑁𝑣 ,
this optimization problem will be a maximum weight matching
problem on the bipartite graph, and we can utilize maximumweight
matching algorithms (e.g., Kuhn-Munkres Algorithm [37]) to obtain
the optimal solution. If 𝑁𝑡 > 𝑁𝑣 , a video will match more than
one text. Employing graph optimization theory again, we construct
a new graph. In Figure 2 (b), the new graph is similar to that in
Figure 2 (c). There are 𝑁𝑡 text nodes 𝑢 (𝑡1), 𝑢 (𝑡2), . . . , 𝑢 (𝑡𝑁𝑡

), 𝑁𝑣
video nodes 𝑢 (𝑣1), 𝑢 (𝑣2), . . . , 𝑢 (𝑣𝑁𝑣

), a source node 𝑢source and a
sink node 𝑢sink in the graph. This graph is sparse and only contains
𝑁𝑡 + 𝑁𝑡𝐾 + 𝑁𝑣 edges. The capacity of an edge is 1 if it starts from
the source node, and is ⌈𝑁𝑡

𝑁𝑣
⌉ if it ends with the sink node. If an edge

starts from a token node 𝑢 (𝑡𝑖) and ends with a frame node 𝑢 (𝑣 𝑗),
its capacity is 1 and its cost is −𝑆 (𝑡𝑖 , 𝑣 𝑗). Obviously, the maximum
flow is at most 𝑁𝑡 because of the capacity limitation that starts
from the source node, thus the algorithm aligns at most one video
to every text. The minimum cost corresponds to the maximum sum
of similarities. The matched video of each text 𝑡𝑖 is the video 𝑣 𝑗 that
satisfies 𝑓 (𝑡𝑖 , 𝑣 𝑗) = 1.

Another important aspect to examine is the efficiency of infer-
ence. For Goldberg-Tarjan minimum-cost flow algorithm [26], in
the worst cases, the time complexity is up to 𝑂 (𝑁 2𝑀 log(𝑁𝐶)),
where 𝑁 is the number of nodes,𝑀 is the number of edges and𝐶 is
the maximum absolute value of edge costs. Although the time com-
plexity seems high, in this problem, the graph architecture is very
sparse and randomized, therefore the minimum-cost flow algorithm
runs fast. Benefiting from the studies of efficient implementation
[8, 25], the algorithm can run in almost linear time.

To combine the flow-style matching results with other existing
methods, we first replace the similarity with the weighted sum of
fine-grained similarity and the optimal flow:

𝑆𝑓 (𝑡𝑖 , 𝑣 𝑗) = 𝑆 (𝑡𝑖 , 𝑣 𝑗) + 𝛽 𝑓 (𝑡𝑖 , 𝑣 𝑗), (14)

where the hyperparameter 𝛽 controls the weight of flow-style
matching results. Next, apply Dual Softmax function [14] to the
similarities. Note that Dual Softmax function requires all 𝑁𝑡 × 𝑁𝑣

Loss

⋯ ⋯ ⋯ ⋯

Loss

⋯ ⋯

Loss

⋯ ⋯⋯ ⋯

⋯ ⋯

⋯ ⋯

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

𝜕ℒ
𝜕𝑒!(𝑡",$)

𝜕ℒ
𝜕𝑒%(𝑣&,')

Text

Recalculate
embeddings

Backpropagate
gradients to parameters

Loss

⋯ ⋯

Video

Token embeddings Frame Embeddings

A small
batch

Figure 3: The schematic diagram of contrastive gradient ac-
cumulation algorithm.

similarity values, which is very time-consuming. To improve the
efficiency, we only apply it to the top 𝐾 relevant videos, i.e., recal-
culating the 𝑁𝑡 × 𝐾 similarity values:

𝑆v2tF (𝑡𝑖 , 𝑣 𝑗) =
exp(𝛼𝑆𝑓 (𝑡𝑖 , 𝑣 𝑗))∑𝑁𝑡

𝑘=1 𝐼 (𝑣 𝑗 ∈ 𝑉 (𝑡𝑘)) exp(𝛼𝑆𝑓 (𝑡𝑘 , 𝑣 𝑗))
, (15)

𝑆 t2vF (𝑡𝑖 , 𝑣 𝑗) =
exp(𝛼𝑆𝑓 (𝑡𝑖 , 𝑣 𝑗))∑𝑁𝑣

𝑘=1 𝐼 (𝑣𝑘 ∈ 𝑉 (𝑡𝑖)) exp(𝛼𝑆𝑓 (𝑡𝑖 , 𝑣𝑘))
, (16)

𝑆F (𝑡𝑖 , 𝑣 𝑗) = 𝑆v2tF (𝑡𝑖 , 𝑣 𝑗) · 𝑆 t2vF (𝑡𝑖 , 𝑣 𝑗), 𝑣 𝑗 ∈ 𝑉 (𝑡𝑖), (17)
where 𝐼 is an identity function. 𝐼 (𝑥) = 1 if 𝑥 is true and 𝐼 (𝑥) = 0
otherwise. Finally, we rerank the videos according to 𝑆F (𝑡𝑖 , 𝑣 𝑗).

3.5 Training Algorithm
To train the model, we employ symmetric cross entropy loss, which
is based on InfoNCE loss [45] and widely used in other retrieval
models [4, 27, 44]. This loss function is calculated over a batch of
text-video pairs {(𝑡1, 𝑣1), (𝑡2, 𝑣2), . . . , (𝑡𝐵, 𝑣𝐵)}:

Lt2v = − 1
𝐵

𝐵∑︁
𝑖=1

log
exp(𝜏𝑆 (𝑡𝑖 , 𝑣𝑖))∑
𝑗≠𝑖 exp(𝜏𝑆 (𝑡𝑖 , 𝑣 𝑗))

, (18)

Lv2t = − 1
𝐵

𝐵∑︁
𝑖=1

log
exp(𝜏𝑆 (𝑡𝑖 , 𝑣𝑖))∑
𝑗≠𝑖 exp(𝜏𝑆 (𝑡 𝑗 , 𝑣𝑖))

, (19)

L = Lt2v + Lv2t . (20)
This loss function is compatible with both coarse-grained and

fine-grained models, differing only in the definition of similarity.
Each text 𝑡𝑖 is compared to all the 𝐵 videos in the batch. Conse-
quently, the batch size should be large enough [13] to improve
performance. We need more GPU memory to increase the batch
size. Besides using more resources for parallel computing, we are

3261

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Duan et al.

interested in designing an algorithm with low GPU memory re-
quirements. Wu et al. [61] proposed memory bank, He et al. [28]
proposed a momentum updating method, and Liu et al. [42] in-
troduced them into text-video retrieval problems. These methods
extend the negative sample set by storing the embedding vectors
during the training procedure, but essentially the stored informa-
tion is not from the updated model. This inconsistency may lead to
sub-optimal performance. Inspired by gradient accumulation, we
design a contrastive gradient accumulation algorithm.

The contrastive gradient accumulation algorithm is shown in
Figure 3. The original gradient accumulation method cannot be
utilized directly because the loss of each sample is not calculated
individually. We devise a four-step gradient calculation method.
Before calculation, divide the entire batch into 𝐵/𝐵′ small batches
uniformly. Ensure that the GPU device has enough memory to pro-
cess 𝐵′ samples. First, calculate the token embeddings and frame
embeddings for every small batch. Second, calculate text-video
similarities and the loss function to obtain 𝜕L

𝜕𝑒𝑡 (𝑡𝑖,𝑘) and 𝜕L
𝜕𝑒𝑣 (𝑣𝑗,𝑙)

for every token and frame. Third, for every small batch, recalcu-
late the embeddings to acquire the intermediate variables required
in backpropagation, and then backpropagate the gradient to all
parameters. Finally, update the parameters using gradient-based
optimization algorithms (e.g., SGD [53] and Adam [35]). Theoreti-
cally, the gradient obtained by this algorithm is exactly the same as
that without this algorithm. Even though this algorithm increases
the time consumption somewhat, it decreases the GPU memory
requirement significantly.

4 EXPERIMENTS
To demonstrate the effectiveness of our proposed model, we com-
pare it with state-of-the-art methods on five text-video datasets
and analyze its efficiency.

4.1 Datasets and Evaluation Metrics
The experiments are conducted on five datasets: 1) MSR-VTT [63]
contains 10,000 videos, each with 20 video descriptions. The videos
are annotated by Amazon Mechanical Turk. We follow the standard
split of MSR-VTT-1kA [22]. 2)MSVD [10] consists of 1,970 video
snippets with captions. This dataset was collected by Microsoft in
2010. We evaluate our model on the standard split. 3) LSMDC [54]
is a large scale movie description dataset. This dataset contains
118,081 short video clips extracted from 202 movies. Each video
clip has a caption. The standard split is adopted in our experiments.
4) ActivityNet [36] is a dataset for human activity understanding.
It consists of 20,000 videos. We use the version released in 2016
and follow the settings of [22]. 5) DiDeMo [3] is a diverse dataset
that contains 10,000 videos collected from Flickr. Each video has a
descriptive paragraph. We follow the split from [43].

Following existing studies [4, 44], we use the following five
metrics to evaluate the performance of our method both on text-to-
video and video-to-text retrieval tasks: 1) R@K is the recall at rank
𝐾 , which is equal to the percentage of queries that contain at least
one ground-truth video (text) in the predicted top 𝐾 results. We set
𝐾 to 1, 5 and 10. 2) MdR is the median rank of the ground-truth
results. If there is more than one ground-truth video (text), we use

the video (text) with the highest similarity. 3) MnR is the mean
rank of the ground-truth results.

4.2 Implementation Details
The backbone of our model architecture is CLIP (ViT-L/16). The
text encoder is Transformer Encoder [58], and the video encoder
is ViT [18]. We initialize the model with the pre-trained weight
of CLIP. For more details about the model architecture and the
pre-training, please refer to the original paper [51]. To reduce the
uncertainty during training, no trainable parameters are added to
the model. Each sentence is converted to a token sequence of length
77, which is the default text length of CLIP. For MSR-VTT, MSVD
and LSMDC, we uniformly sample 12 frames in each video. For
ActivityNet and DiDeMo, the videos are longer than in the above
three datasets, so we consider them as paragraph-video retrieval
tasks and uniformly sample 64 frames per video. To train the models
efficiently, we use Adam as the optimization algorithm. The learning
rate is set to 1 × 10−5 and 𝜖 is set to 1 × 10−3. The batch size is
64. The contrastive gradient accumulation algorithm mentioned
in Section 3.5 is applied to ActivityNet and DiDeMo, where the
parameter 𝐵′ is set to 8. The parameter 𝜏 in the loss function is
1 × 102. Considering the consistency during training and inference,
we set 𝛼 = 𝜏 and 𝛽 = 1 in the Dual Softmax function. For every
downstream dataset, we fine-tune the coarse-grained model and
the fine-grained model respectively using only one NVIDIA A100
GPU. The model is trained at most 5 epochs. To achieve the best
performance, we use the flow-style matching mode and set 𝐾 to
𝑁𝑣 . We use PyTorch [48] to implement the training algorithm, use
OR-Tools [49] to construct the network flow algorithm, and use
Faiss [33] as the vector retrieval engine.

4.3 Performance Comparison
The experimental results of Match4Match and other state-of-the-art
methods are presented in Table 1, where the results of baselinemeth-
ods are collected from the articles. The overall performance of CLIP-
based approaches (CLIP-Straight, CLIP4CLIP, CLIP2Video, Center-
CLIP, CAMoE, MDMMT-2 and CLIP2TV) is better than others. Our
method outperforms the existing methods on four datasets. On
MSR-VTT and LSMDC, we observed thatMatch4Match achieves the
performance of state-of-the-art approaches. For MSVD, MDMMT-2
is the only one that outperforms our method on this dataset. MSVD
only contains 1,970 video snippets, so our model cannot learn too
much knowledge by fine-tuning on MSVD. Since MDMMT-2 is
pre-trained on additional datasets, it has learned more information
than our model before fine-tuning on MSVD. In the absence of
additional training datasets, our model can still outperform others.
On ActivityNet and DiDeMo, the performance of Match4Match
at R@1 is 61.7 and 55.4, exceeding state-of-the-art methods by
10.7 and 11.6, respectively. In our opinion, the main improvement
comes from the fine-grained information extracted from tokens and
frames. These significant improvements demonstrate the effective-
ness of our approach on long videos. We also calculate the t-test on
R@1 of Match4Match and the best existing method. The p-value
is 0.10, indicating that the t-test rejects the null hypothesis at the
significance level of 10%, in favor of the alternative hypothesis that
Match4Match reaches higher R@1 than others.

3262

Match4Match: Enhancing Text-Video Retrieval by Maximum Flow with Minimum Cost WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Table 1: The performance of Match4Match and other competing methods on five datasets. The best results are bolded, and the
second best are underscored.

Dataset Method Text-to-video Video-to-text
R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓ R@1 ↑ R@5 ↑ R@10 ↑ MdR ↓ MnR ↓

MSR-VTT

JSFusion [65] 10.2 31.2 43.2 13 - - - - - -
Collaborative Experts [43] 20.9 48.8 62.4 6 28.2 20.6 50.3 64.0 5.3 25.1
TACo [64] 28.4 57.8 71.2 4 - - - - - -
ALPRO [41] 33.9 60.7 73.2 3 - - - - - -
CLIPBERT [40] 22.0 46.8 59.9 6 - - - - - -
FCA-Net [27] 23.2 55.6 70.3 3 - - - - - -
MMT [22] 26.6 57.1 69.6 4 24.0 27.0 57.5 69.7 3.7 21.3
CLIP-Straight [50] 31.2 53.7 64.2 4 - 27.2 51.7 62.6 5 -
Frozen [4] 31.0 59.5 70.5 3 - - - - - -
CLIP4CLIP [44] 44.5 71.4 81.6 2 15.3 42.7 70.9 80.6 2 11.6
CLIP2Video (+QB-NORM) [7] 47.2 73.0 83.0 2 - - - - - -
CAMoE [14] 47.3 74.2 84.5 2 11.9 49.1 74.3 84.3 2 9.9
MDMMT-2 [39] 48.5 75.4 83.9 2 13.8 - - - - -
CLIP2TV [24] 52.9 78.5 86.5 1 12.8 54.1 77.4 85.7 1 9.0
Match4Match (Ours) 55.5 77.8 86.6 1 9.8 55.7 76.5 84.7 1 8.4

MSVD

Collaborative Experts [43] 19.8 49.0 63.8 6 23.1 - - - - -
SSML [2] 20.3 49.0 63.3 6 - - - - - -
CLIP-Straight [50] 37.0 64.1 73.8 3 - 59.9 85.2 90.7 1 -
Frozen [4] 33.7 64.7 76.3 3 - - - - - -
CLIP4CLIP [44] 46.2 76.1 84.6 2 10.0 62.0 87.3 92.6 1 4.3
CLIP2Video (+QB-NORM) [7] 48.0 77.9 86.2 2 - - - - - -
CenterCLIP [66] 50.6 80.3 88.4 1 8.4 68.4 90.1 95.0 1 3.0
CAMoE [14] 49.8 79.2 87.0 - 9.4 - - - - -
MDMMT-2 [39] 56.8 83.1 89.2 1 8.8 - - - - -
Match4Match (Ours) 53.2 81.2 88.6 1 8.7 70.4 91.3 95.4 1 3.8

LSMDC

JSFusion [65] 9.1 21.2 34.1 36 - - - - - -
Collaborative Experts [43] 11.2 26.9 34.8 25.3 - - - - - -
MMT [22] 12.9 29.9 40.1 19.3 75.0 12.3 28.6 38.9 20 76.0
CLIP-Straight [50] 11.3 22.7 29.2 56.5 - 6.8 16.4 22.1 73 -
Frozen [4] 15.0 30.8 39.8 20 - - - - - -
CLIP4CLIP [44] 21.6 41.8 49.8 11 58.0 20.9 40.7 49.1 11 53.9
CLIP4CLIP (+QB-NORM) [7] 22.4 40.1 49.5 11 - - - - - -
CenterCLIP [66] 24.2 46.2 55.9 8 47.3 24.5 46.4 55.8 7 41.3
CAMoE [14] 25.9 46.1 53.7 - 54.4 - - - - -
MDMMT-2 [39] 26.9 46.7 55.9 6.7 48.0 - - - - -
Match4Match (Ours) 27.9 47.0 56.6 7 47.9 29.0 47.6 56.7 7 40.0

ActivityNet

Collaborative Experts [43] 18.2 47.7 - 6 23.1 17.7 46.6 - 6 24.4
TACo [64] 30.4 61.2 - 3 - - - - - -
CLIPBERT [40] 21.3 49.0 63.5 6 - - - - - -
MMT [22] 28.7 61.4 - 3.3 16.0 28.9 61.1 - 4 17.1
CLIP4CLIP [44] 40.5 72.4 - 2 7.4 42.5 74.1 85.8 2 6.6
CenterCLIP [66] 46.2 77.0 87.6 2 5.7 46.7 77.1 88.0 2 5.5
CAMoE [14] 51.0 77.7 - - - 49.9 77.4 - - -
Match4Match (Ours) 61.7 82.9 90.7 1 4.6 61.7 82.9 90.3 1 4.4

DiDeMo

Collaborative Experts [43] 16.1 41.1 - 8.3 43.7 15.6 40.9 - 8.2 42.4
ALPRO [41] 35.9 67.5 78.8 3 - - - - - -
CLIPBERT [40] 20.4 48.0 60.8 6 - - - - - -
Frozen [4] 34.6 65.0 74.7 3 - - - - - -
CLIP4CLIP [44] 43.4 70.2 80.6 2 17.5 42.5 70.6 80.2 2 11.6
CLIP4CLIP (+QB-NORM) [7] 43.5 71.4 80.9 2 - - - - - -
CAMoE [14] 43.8 71.4 - - - 45.5 71.2 - - -
Match4Match (Ours) 55.4 79.1 85.5 1 10.8 55.4 78.8 86.0 1 6.6

3263

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Duan et al.

Table 2: The time consumption of Match4Match on MSR-VTT and LSMDC∗, where M1 denotes fast vector retrieval mode, M2
denotes fine-grained alignment mode, and M3 denotes flow-style matching mode.

Dataset Inference
mode

Time consumption
(millisecond)

Percentage of time consumption in each part
Coarse-grained Fine-grained Vector retrieval engine Others
Video

encoding
Text

encoding
Video

encoding
Text

encoding
Similarity
calculation Training Inference Flow-style

matching
Sparse Dual
Softmax Reranking

MSR-VTT

Offline 25014 53.44% - 46.50% - - 0.06% - - - -
M1 233 - 84.98% - - - - 15.02% - - -
M2 487 - 40.66% - 42.09% 8.62% - 7.19% - - 1.44%
M3 575 - 34.43% - 35.65% 7.30% - 6.09% 13.74% 1.57% 1.22%

LSMDC*

Offline 2783165 52.20% - 44.49% - - 3.31% - - - -
M1 25132 - 79.89% - - - - 20.11% - - -
M2 52530 - 38.22% - 42.53% 9.58% - 9.62% - - 0.04%
M3 53296 - 37.67% - 41.92% 9.45% - 9.48% 1.01% 0.43% 0.04%

Table 3: The performance of Match4Match on MSR-VTT for
text-to-video retrieval

𝐾 Mode R@1 R@5 R@10 MdR MnR

30
Fast vector retrieval 45.1 69.1 81.5 2 [6.7, 90.0]
Fine-grained alignment 50.0 73.4 83.3 2 [6.0, 89.3]
Flow-style matching 53.6 74.4 83.4 1 [5.9, 89.2]

4.4 Inference Efficiency Analysis
To evaluate the inference efficiency and explore the contribution of
each component, we conduct experiments on two datasets. Table
2 presents the inference time with respect to different modes and
components. Meanwhile, Table 3 shows the performance of each
mode, evaluated on a test set of 1,000 text-video pairs for MSR-VTT
with the setting 𝐾 = 30. Considering the error of the running time,
we run it three times and report the average value. Note that we
cannot obtain an accurate MnR because the model only outputs
the top 𝐾 relevant videos instead of ranking all videos. We report
the possible range of MnR in Table 3. To simulate real application
scenarios with a large number of videos, we construct a new dataset
LSMDC∗, which consists of 100,000 text-video pairs sampled from
the training set of LSMDC, and evaluate the inference time on this
dataset.

In Table 2, we observe that the most time-consuming part is the
two video encoding processes. For a text-to-video retrieval system,
these processes can be done offline. In fast vector retrieval mode,
we only need to perform coarse-grained text encoding and vector
retrieval engine inference online, where the former requires more
time than the latter. For a single query, we need approximately 0.23
milliseconds to return the top 30 relevant videos in MSR-VTT, and
0.25 milliseconds in LSMDC∗. In fine-grained alignment mode, in
addition to the computation in fast vector retrieval mode, we need
to calculate the fine-grained similarities and rerank the videos. The
time consumption in fine-grained alignment mode is about twice
that in fast vector retrieval mode. In flow-style matching mode,
we need more time to compute the minimum-cost flow and apply
Dual Softmax function to the similarities. Benefiting from the high-
efficiency implementation of Goldberg-Tarjan minimum-cost flow
algorithm provided by OR-Tools [49], this component is capable
of processing 100,000 videos quickly. In Table 3, we can see that

the performance in flow-style matching mode is still high enough
when 𝐾 = 30. The performance of fast vector retrieval mode is
lower than the other two modes, but it is the fastest mode. The
three inference modes are designed for different computational
resources and accuracy requirements.

4.5 Training Efficiency Analysis
Wealso evaluate the effects of the contrastive gradient accumulation
algorithm. Considering the resource requirement of one epoch
when the batch size 𝐵 = 64, for MSR-VTT, we need 74GB GPU
memory and 1.5 hours of computation time without it. While using
this algorithm, we need 12GB GPU memory and 2.2 hours. For
ActivityNet, following the same settings, the training program
without it needs nearly 370GB GPU memory due to the longer
video length, thus more GPU devices are required. But we only
need 50GB while using it. This algorithm dramatically decreases
the GPU memory requirements with an acceptable time penalty.

5 CONCLUSION AND FUTUREWORK
In this paper, we investigate the text-video retrieval approaches.
Specifically, we propose a novel method (Match4Match) that sup-
ports three inference modes. The three inference modes are de-
signed for different computational resources and accuracy require-
ments. In fast vector retrieval mode, we can obtain the top 𝐾 rele-
vant videos quickly using a vector retrieval engine. In fine-grained
alignment mode, Match4Match can fully leverage the pre-trained
knowledge to capture fine-grained information. In flow-style match-
ing mode, our approach can further improve performance by uti-
lizing network flow algorithms. The overall performance of our
method exceeds existing methods. We also design a contrastive
gradient accumulation algorithm, making it possible to train the
model with large batch size and low GPU memory requirements.
In future work, to further enhance the model performance, we will
focus on training models more effectively on large-scale datasets.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China under grant number 62202170 and Alibaba Group
through the Alibaba Innovation Research Program.

3264

Match4Match: Enhancing Text-Video Retrieval by Maximum Flow with Minimum Cost WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Arnon Amir, Janne Argillander, Murray Campbell, Alexander Haubold, Giridha-

ran Iyengar, Shahram Ebadollahi, Feng Kang, Milind R Naphade, Apostol Natsev,
John R Smith, et al. 2003. IBM Research TRECVID-2003 Video Retrieval System..
In TRECVID.

[2] Elad Amrani, Rami Ben-Ari, Daniel Rotman, and Alex Bronstein. 2021. Noise
estimation using density estimation for self-supervised multimodal learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 6644–6652.

[3] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef Sivic, Trevor Darrell,
and Bryan Russell. 2017. Localizing moments in video with natural language. In
Proceedings of the IEEE international conference on computer vision. 5803–5812.

[4] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. 2021. Frozen in
time: A joint video and image encoder for end-to-end retrieval. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 1728–1738.

[5] Cynthia Barnhart and Amy Cohn. 2004. Airline schedule planning: Accomplish-
ments and opportunities. Manufacturing & service operations management 6, 1
(2004), 3–22.

[6] Dimitris Bertsimas and Sarah Stock Patterson. 2000. The traffic flowmanagement
rerouting problem in air traffic control: A dynamic network flow approach.
Transportation Science 34, 3 (2000), 239–255.

[7] Simion-Vlad Bogolin, Ioana Croitoru, Hailin Jin, Yang Liu, and Samuel Albanie.
2022. Cross Modal Retrieval with Querybank Normalisation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5194–5205.

[8] Ursula Bünnagel, Bernhard Korte, and Jens Vygen. 1998. Efficient implementation
of the Goldberg–Tarjan minimum-cost flow algorithm. Optimization Methods
and Software 10, 2 (1998), 157–174.

[9] Joao Carreira and Andrew Zisserman. 2017. Quo vadis, action recognition? a new
model and the kinetics dataset. In proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 6299–6308.

[10] David Chen and William B Dolan. 2011. Collecting highly parallel data for
paraphrase evaluation. In Proceedings of the 49th annual meeting of the association
for computational linguistics: human language technologies. 190–200.

[11] Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. 2022. Maximum flow and minimum-cost flow in almost-
linear time. arXiv preprint arXiv:2203.00671 (2022).

[12] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. 2020. Fine-grained video-text
retrieval with hierarchical graph reasoning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 10638–10647.

[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[14] Xing Cheng, Hezheng Lin, Xiangyu Wu, Fan Yang, and Dong Shen. 2021. Im-
proving video-text retrieval by multi-stream corpus alignment and dual softmax
loss. arXiv preprint arXiv:2109.04290 (2021).

[15] Paul Christiano, Jonathan A Kelner, Aleksander Madry, Daniel A Spielman, and
Shang-Hua Teng. 2011. Electrical flows, laplacian systems, and faster approxi-
mation of maximum flow in undirected graphs. In Proceedings of the forty-third
annual ACM symposium on Theory of computing. 273–282.

[16] George B Dantzig. 1951. Application of the simplex method to a transportation
problem. Activity analysis and production and allocation (1951).

[17] Yefim A Dinitz. 1970. An algorithm for the solution of the problem of maximal
flow in a network with power estimation. In Doklady Akademii nauk, Vol. 194.
Russian Academy of Sciences, 754–757.

[18] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[19] Jack Edmonds and Richard M Karp. 1972. Theoretical improvements in algo-
rithmic efficiency for network flow problems. Journal of the ACM (JACM) 19, 2
(1972), 248–264.

[20] Han Fang, Pengfei Xiong, Luhui Xu, and Yu Chen. 2021. Clip2video: Mastering
video-text retrieval via image clip. arXiv preprint arXiv:2106.11097 (2021).

[21] Lester Randolph Ford and Delbert R Fulkerson. 1956. Maximal flow through a
network. Canadian journal of Mathematics 8 (1956), 399–404.

[22] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. 2020. Multi-
modal transformer for video retrieval. In European Conference on Computer Vision.
Springer, 214–229.

[23] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin,
and Mao Yang. 2020. Estimating gpu memory consumption of deep learning
models. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1342–1352.

[24] Zijian Gao, Jingyu Liu, Sheng Chen, Dedan Chang, Hao Zhang, and Jinwei Yuan.
2021. Clip2tv: An empirical study on transformer-based methods for video-text
retrieval. arXiv preprint arXiv:2111.05610 (2021).

[25] Andrew V Goldberg. 1997. An efficient implementation of a scaling minimum-
cost flow algorithm. Journal of algorithms 22, 1 (1997), 1–29.

[26] Andrew V Goldberg and Robert E Tarjan. 1990. Finding minimum-cost circu-
lations by successive approximation. Mathematics of Operations Research 15, 3
(1990), 430–466.

[27] Ning Han, Jingjing Chen, Guangyi Xiao, Hao Zhang, Yawen Zeng, and Hao Chen.
2021. Fine-grained cross-modal alignment network for text-video retrieval. In
Proceedings of the 29th ACM International Conference on Multimedia. 3826–3834.

[28] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[29] Jie Hu, Li Shen, and Gang Sun. 2018. Squeeze-and-excitation networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 7132–7141.

[30] Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and Stephen Maybank. 2011. A
survey on visual content-based video indexing and retrieval. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 41, 6 (2011),
797–819.

[31] Hiroshi Imai and Kazuo Iwano. 1990. Efficient sequential and parallel algorithms
for planarminimum cost flow. In International Symposium onAlgorithms. Springer,
21–30.

[32] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[33] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with GPUs. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[34] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of naacL-HLT. 4171–4186.

[35] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[36] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles.
2017. Dense-captioning events in videos. In Proceedings of the IEEE international
conference on computer vision. 706–715.

[37] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[38] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang.
2022. Fine-tuning can distort pretrained features and underperform out-of-
distribution. arXiv preprint arXiv:2202.10054 (2022).

[39] Alexander Kunitsyn, Maksim Kalashnikov, Maksim Dzabraev, and Andrei Ivani-
uta. 2022. MDMMT-2: Multidomain Multimodal Transformer for Video Retrieval,
One More Step Towards Generalization. arXiv preprint arXiv:2203.07086 (2022).

[40] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg, Mohit Bansal, and
Jingjing Liu. 2021. Less is more: Clipbert for video-and-language learning via
sparse sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 7331–7341.

[41] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, and Steven CHHoi. 2022.
Align and Prompt: Video-and-Language Pre-training with Entity Prompts. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
4953–4963.

[42] Song Liu, Haoqi Fan, Shengsheng Qian, Yiru Chen, Wenkui Ding, and Zhongyuan
Wang. 2021. Hit: Hierarchical transformer with momentum contrast for video-
text retrieval. In Proceedings of the IEEE/CVF International Conference on Computer
Vision. 11915–11925.

[43] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. 2019. Use
what you have: Video retrieval using representations from collaborative experts.
arXiv preprint arXiv:1907.13487 (2019).

[44] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui
Li. 2022. CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip
Retrieval and Captioning. Neurocomputing (2022).

[45] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning
with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

[46] Mayu Otani, Yuta Nakashima, Esa Rahtu, Janne Heikkilä, and Naokazu Yokoya.
2016. Learning joint representations of videos and sentences with web image
search. In European Conference on Computer Vision. Springer, 651–667.

[47] Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and Yong Rui. 2016. Jointly
modeling embedding and translation to bridge video and language. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 4594–4602.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[49] Laurent Perron and Vincent Furnon. 2022. OR-Tools. Google. https://developers.
google.com/optimization/

[50] Jesús Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss, and Hugo Terashima-
Marín. 2021. A straightforward framework for video retrieval using clip. In
Mexican Conference on Pattern Recognition. Springer, 3–12.

[51] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International Conference on Machine Learning. PMLR, 8748–8763.

3265

https://developers.google.com/optimization/
https://developers.google.com/optimization/

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Duan et al.

[52] Milos Radovanovic, Alexandros Nanopoulos, and Mirjana Ivanovic. 2010. Hubs
in space: Popular nearest neighbors in high-dimensional data. Journal of Machine
Learning Research 11, sept (2010), 2487–2531.

[53] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.
The annals of mathematical statistics (1951), 400–407.

[54] Anna Rohrbach, Marcus Rohrbach, and Bernt Schiele. 2015. The long-short
story of movie description. In German conference on pattern recognition. Springer,
209–221.

[55] Maiko Shigeno. 2004. A SURVEY OF COMBINATORIAL MAXIMUM FLOW
ALGORITHMS ON A NETWORK WITH GAINS (< Special Issue> Network
Design, Control and Optimization). Journal of the Operations Research Society of
Japan 47, 4 (2004), 244–264.

[56] Josef Sivic and Andrew Zisserman. 2003. Video Google: A text retrieval approach
to object matching in videos. In Computer Vision, IEEE International Conference
on, Vol. 3. IEEE Computer Society, 1470–1470.

[57] Cees GM Snoek, Marcel Worring, et al. 2009. Concept-based video retrieval.
Foundations and Trends® in Information Retrieval 2, 4 (2009), 215–322.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[59] Chengyu Wang, Minghui Qiu, Taolin Zhang, Tingting Liu, Lei Li, Jianing Wang,
Ming Wang, Jun Huang, and Wei Lin. 2022. EasyNLP: A Comprehensive and
Easy-to-use Toolkit for Natural Language Processing. (2022). https://doi.org/10.
48550/ARXIV.2205.00258

[60] MaxWelling and Thomas N Kipf. 2016. Semi-supervised classification with graph
convolutional networks. In J. International Conference on Learning Representations
(ICLR 2017).

[61] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. 2018. Unsupervised
feature learning via non-parametric instance discrimination. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 3733–3742.

[62] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 1492–1500.

[63] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-vtt: A large video description
dataset for bridging video and language. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5288–5296.

[64] Jianwei Yang, Yonatan Bisk, and Jianfeng Gao. 2021. Taco: Token-aware cascade
contrastive learning for video-text alignment. In Proceedings of the IEEE/CVF

International Conference on Computer Vision. 11562–11572.
[65] Youngjae Yu, Jongseok Kim, and Gunhee Kim. 2018. A joint sequence fusion

model for video question answering and retrieval. In Proceedings of the European
Conference on Computer Vision (ECCV). 471–487.

[66] Shuai Zhao, Linchao Zhu, Xiaohan Wang, and Yi Yang. 2022. CenterCLIP: Token
Clustering for Efficient Text-Video Retrieval. arXiv preprint arXiv:2205.00823
(2022).

A CASE STUDY
We present an example in MSR-VTT. Given a text query “a soccer
team walking outside on the field”, Match4Match first output the
top 𝐾 relevant videos using the vector retrieval engine. The top
three video are shown in Figure 4. All three videos show a soccer
team on the field, where video 3 is the ground-truth video. In video
1, they are celebrating something. In video 2, they are fighting. In
video 3, they first go to the field and then begin the soccer match.
Only the second and the third frame in video 3 are related to “walk-
ing”, making the task challenging. In fast vector retrieval mode, the
coarse-grained can find the three videos related to the keyword
“soccer” but cannot guarantee high accuracy. In fine-grained align-
ment mode, we rerank these videos using the fine-grained model
and video 3 becomes the top 1 video. The token-frame similarities
between the text query and video 3 are shown in Figure 5. After fine-
tuning, the similarities of the keyword (“soccer”) and keyframes
(the second frame and the third frame) are highlighted. Most tokens
are aligned to the keyframes and most frames are aligned to the
keyword, thus the text-video similarity is more accurate than that
in fast vector retrieval mode. This example shows how our model
extracts fine-grained information.

3266

https://doi.org/10.48550/ARXIV.2205.00258
https://doi.org/10.48550/ARXIV.2205.00258

Match4Match: Enhancing Text-Video Retrieval by Maximum Flow with Minimum Cost WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Video 1:

Video 2:

Video 3:

Figure 4: The top 3 videos retrieved by fast retrieval mode when the model is given a text query “a soccer team walking outside
on the field”. Video 3 is the ground-truth video.

a

soccer

team

walking

outside

on

the

field

[StartOfText]

[EndOfText]

a

soccer

team

walking

outside

on

the

field

[StartOfText]

[EndOfText]

Before fine-tuning After fine-tuning

Figure 5: The token-frame similarities between the text query and video 3 in fine-grained alignment mode.

3267

	Abstract
	1 Introduction
	2 Related Work
	2.1 Text-Video Retrieval
	2.2 Network Flow

	3 Methodology
	3.1 Overview
	3.2 Fast Vector Retrieval Mode
	3.3 Fine-Grained Alignment Mode
	3.4 Flow-Style Matching Mode
	3.5 Training Algorithm

	4 Experiments
	4.1 Datasets and Evaluation Metrics
	4.2 Implementation Details
	4.3 Performance Comparison
	4.4 Inference Efficiency Analysis
	4.5 Training Efficiency Analysis

	5 Conclusion and Future Work
	Acknowledgments
	References
	A Case Study

