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ABSTRACT
Question Answering (QA) systems have been extensively studied
in both academia and the research community due to their wide
real-world applications. When building such industrial-scale QA
applications, we are facing two prominent challenges, i.e., i) lacking
a sufficient amount of training data to learn an accurate model and
ii) requiring high inference speed for online model serving. There
are generally two ways to mitigate the above-mentioned problems.
One is to adopt transfer learning to leverage information from other
domains; the other is to distill the “dark knowledge” from a large
teacher model to small student models. The former usually employs
parameter sharing mechanisms for knowledge transfer, but does
not utilize the “dark knowledge” of pre-trained large models. The
latter usually does not consider the cross-domain information from
other domains. We argue that these two types of methods can be
complementary to each other. Hence in this work, we provide a
new perspective on the potential of the teacher-student paradigm
facilitating cross-domain transfer learning, where the teacher and
student tasks belong to heterogeneous domains, with the goal to
improve the student model’s performance in the target domain.
Our framework considers the “dark knowledge” learned from large
teacher models and also leverages the adaptive hints to alleviate the
domain differences between teacher and student models. Extensive
experiments have been conducted on two text matching tasks for
retrieval-based QA systems. Results show the proposed method
has better performance than the competing methods including the
existing state-of-the-art transfer learning methods. We have also
deployed our method in an online production system and observed
significant improvements compared to the existing approaches in
terms of both accuracy and cross-domain robustness.
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1 INTRODUCTION
A Question Answering (QA) system is a typical information re-
trieval and NLP system that outputs a response given a user ques-
tion query. It has been extensively studied in both academia and
the research community due to its wide real-world applications
such as Amazon Alexa, Apple Siri and Alibaba Alime. General
approaches for building such QA systems include retrieval-based
methods [38, 39, 49], generation-based methods [27, 30] and hybrid
methods [25, 31, 40]. The fundamental problem for retrieval-based
QA systems is to retrieve the most similar question from the QA
knowledge base given a query, so as to provide the respective an-
swer. Such a text (i.e., query-question) matching problem can be
represented as Paraphrase Identification (PI) or some form of Nat-
ural Language Inference (NLI) [12, 49]. For example, if we could
identify a question as paraphrase or if a question could be entailed
by the query, we can directly retrieve the answer to that question
from the underlying QA knowledge base as the response.

When dealing with such text matching problems in the real-
world industrial-scale QA applications, we are facing two promi-
nent challenges, i.e., i) the lack of abundant data to learn a model
with high accuracy and ii) the requirement of high inference speed
for online model serving. Recent advances on text matching rely
heavily on the flourishment of deep learning models [15, 22]. On
the one hand, those deep models are proven to be effective when
rich in-domain labeled data is available. However, in real-world ap-
plications, it is challenging to obtain a sufficient amount of labeled
data for every domain of interest, as data annotation is commonly
time-consuming and costly. On the other hand, high Query-Per-
Second (QPS) requirements for seamless online serving demand the
deployed models to be light-weight. Thus the trained models have
to be either designed to be simple in structure but effective in perfor-
mance, or compressed if well-performed large models are originally
trained. Therefore, there is a great incentive for researchers to es-
tablish effective algorithms that can utilize data or knowledge from
related domains to train an accurate model for the target domain
which is small in size.

A promising way to mitigate the above-mentioned problems
is to adopt transfer learning. Transfer learning has been widely
studied over recent years to improve the model performance of the
data-insufficient target domain by leveraging knowledge acquired
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Figure 1: A conceptual illustration of the knowledge distillation with multiple cross-domain teachers for training a student
network. Our goal is to selectively distill knowledge from multiple out-domain teachers taking into consideration of teacher
domain expertise for effective adaptive knowledge transfer.

from different but related source domains [23, 33]. The recent ad-
vance of transfer learning is mostly based on deep learning and
typically considers parameter sharing mechanisms such as “fully-
shared” and “shared-private” model architectures [16, 21, 47]. Those
models transfer knowledge by jointly learning domain-shared fea-
ture representations and have demonstrated remarkable success in
many real-world applications in NLP [16, 21, 33, 47]. As shown in
Figure 1(a), such a transfer learning paradigm is able to benefit from
multiple data sources and the model structure is often designed
to be light-weight that enables fast online inference. For exam-
ple, the study in [49] proposes a light-weight CNN-based method
with transfer learning to boost model performance in an online QA
system.

Meanwhile, the recent emergence of large pre-trained models,
such as BERT [7] and XLNet [42], has revolutionized the learning
paradigm of many NLP tasks and pushed the performance of those
tasks to new heights. With those pre-trained models, a fine-tuning
approach is then adopted to improve task-specific model perfor-
mance. Although good model performance can be achieved with
fine-tuning, the resulting model size is unavoidably large. This nat-
urally leads to the question: how can we utilize pre-trained models
together with other data sources from different domains to facilitate
knowledge transfer that is effective in performance and efficient in
serving?

To this end, we propose a new transfer learning framework
named Domain-Aware Knowledge Distillation (DAKD) for cross-
domain text matching. A conceptual illustration of the proposed
method is outlined in Figure 1(b). Departing from the traditional
transfer learning methods outlined in Figure 1(a),we turn to an
alternative solution, i.e., extracting knowledge from pre-trained
models in source domains to guide the training of small models in
the target domain model, as presented in Figure 1(b).

Such teacher-student optimization process is also known asKnowl-
edge Distillation (KD). KD was originally used for compressing pre-
trained large teacher neural networks into smaller ones [11], and

Table 1: Comparison of classical KD approaches on four
dimensions, where “HD” indicates that teacher and stu-
dent tasks belong to heterogeneous domains, “MT” denotes
using multiple teachers for KD, “Dark” and “Hint” spec-
ify whether the “dark knowledge”, i.e., predictions of the
teacher models, or the hints, i.e., intermediate representa-
tions of the teacher models, are leveraged for training the
student. The first three are classical approaches, while the
middle ones are the recent works focusing on utilizing mul-
tiple teachers.

HD MT Dark Hint
Original KD (2015) [11] ✓ ✓
FitNet (2015) [28] ✓
A Gift from KD (2017) [46] ✓ ✓
Born-Again Network (2018) [8] ✓

Multiple Teachers (2017) [48] ✓ ✓ ✓
Diverse Peers (2019) [5] ✓ ✓

Domain-aware KD (Ours) ✓ ✓ ✓ ✓

later it was found to be useful when training a student model that
has the same architecture as the teacher in which the student ex-
cels the teacher [8]. The differences between our proposed DAKD
framework and previous methods are summarized in Table 1. As
seen, previous works pay more attention to model compression or
knowledge transfer among the same task or different tasks in the
same domain, using either the “dark knowledge”, i.e., the predicted
outputs of teacher models [5, 8, 11, 48] or hints, i.e., intermediate
representations [28, 46, 48] of teacher models, mostly for computer
vision applications.

This paper provides a new perspective on the potential of the
teacher-student paradigm facilitating transfer learning across do-
mains, where teacher and student tasks belong to heterogeneous
domains, with the goal to improve the performance of the student

2614



Cross-domain Knowledge Distillation for Retrieval-basedQuestion Answering Systems WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

model in the target domain. The teacher models can be either 1)
small models with the same architecture as the student that are
trained using the source domain data or 2) large models that fine-
tune the pre-trained language models on the source domain data 1.
The resulting student model is a strong text matching model that is
small in model size to meet the online serving needs [24, 26, 49].

As domain shift often exists, the student model employs the
“shared-private” architecture to capture domain-specific and domain-
invariant features. Domain-invariant features are guided by teach-
ers’ hints, while the learning targets are partially supervised by
teachers’ dark knowledge. Although teachers may be from different
source domains, intuitively they can still provide constructive guid-
ance to the student model from a different angle. Thus, to reduce
domain gaps, teachers’ domain expertise scores on the student task
are measured for adaptive distillation. Domain-invariant features
are learned with the objective to reduce the divergence between
the distributions of student’s intermediate layers and those of the
teachers.

Extensive experiments have been conducted on two benchmark
text matching datasets for retrieval-based QA systems. Results show
DAKD has better performance than the competing methods in-
cluding state-of-the-art transfer learning methods. We have also
deployed our method in a chatbot system for an online A/B test and
observed significant improvements. Additional experiments also
show that the proposed framework has generalization capabilities
that are helpful for other NLP tasks, such as review analysis.

The remainder of this paper is organized as follows. Section 2
describes the task followed by presenting the proposed approach in
detail. All the experiments are shown in Section 3. Finally, Section
4 reviews the related work and Section 5 concludes the paper.

2 DAKD: THE PROPOSED APPROACH
In this section, we present the technical details on our proposedDomain-
Aware Knowledge Distillation (DAKD) framework for cross-domain
knowledge transfer on text matching in retrieval-based QA systems.

2.1 Problem Formulation and Model Overview
2.1.1 Text Matching. For retrieval-based QA systems, Paraphrase
Identification (PI) and Natural Language Inference (NLI) are crucial
tasks for question matching. Both tasks can be unified as a text
(query-question) matching problem, which is typically modeled as
a text pair classification task. Formally, given two collections of
text pairsX1 = {X 1

1 ,X
1
2 , ...,X

1
l1
} andX2 = {X 2

1 ,X
2
2 , ...,X

2
l2
}, where

l1 and l2 denote the lengths (the size of the datasets) of X1 and
X2 respectively. Our task is to predict a binary classification label
y ∈ {0, 1} that indicates whether a pair of texts X 1 and X 2 are
semantically related.

Note that, for the PI task, the label y = 1 indicates X 1 can be
identified as a paraphrase of X 2, while for the NLI task, the label
y = 1 indicates X 2 can be inferred from the X 1, i.e., entailment.

2.1.2 Transfer Learning Setting. In the scope of DAKD, we consider
the transfer learning setting where we are given labeled data from
multiple source domainsDs

m and one target domainDt [26]. Here,

1In the experiments, we have tested on both kinds of teacher settings to examine the
effectiveness of our proposed framework regardless of the teacher model structure.

we have m ∈ [1,K] and K denotes the total number of source
domains. We seek to use both Ds

m (m ∈ [1,K]) and Dt to help the
learning of the student model in the target domain.

2.1.3 Teacher-student Optimization. The teacher-student optimiza-
tion process was first introduced in Knowledge Distillation (KD)
where the student network tries to mimic the behavior of pre-
trained teacher networks [11]. Such teacher-student paradigm uti-
lizes the supervision signals from the teachers to guide the student’s
learning task by adding extra terms to the loss function.

Let (Mteacher
1 ,Mteacher

2 , ...,Mteacher
m ) denote the set of teacher

networks. In the context of cross-domain transfer learning, those
teacher networks can be either small networks with the same ar-
chitecture as the student or large pre-trained language models with
domain-specific fine-tuning. The student network Mstudent opti-
mizes its own in-domain task objective and leverages the teachers’
knowledge by regularizing the outputs and the intermediate hints.

Figure 2 shows an overview of the proposed DAKD framework.
The teacher networks are first pre-trained using their respective
source domain data Ds

m . Different from standard KD, our teacher
network is not required to be deeper or larger than the student.
Subsequently, the parameters of teacher networks are frozen and
the student network is trained using the target domain data Dt

with the guidance from the teacher networks.

2.2 Learning from Heterogeneous Teacher
Models

In this section, we introduce how the knowledge is transferred from
heterogeneous domain teachers via KD and domain adaptation. For
easy explanation, we start with the single-teacher setting, followed
by the multi-teacher setting.

2.2.1 Domain-aware Distillation. Domain-aware distillation aims
to distill the knowledge from the teacher model to the student
model, considering the gap between the two domains. Specifically,
the distillation process seeks to minimize the prediction differences.
There are generally two types of distillation strategies, i.e., a soften
version and a hard one. The former aligns a softer probability dis-
tribution over the classes, while the latter aligns the final one-hot
predictions.

Let
(
X 1
i ,X

2
i ,yi

)
be an input instance. We denote f s (X 1

i ,X
2
i ) as

the logits from the output layer and дs (X 1
i ,X

2
i ) as the prediction

label from the teacher model. For the student side, f t (X 1
i ,X

2
i ) and

дt (X 1
i ,X

2
i ) represents the logits and the prediction label, respec-

tively. For a batch of data B, We then define soft and hard KD losses
as:

LKDsof t = −
1
|B|

|B |∑
i=1

f s (X 1
i ,X

2
i ) · log

(
f t (X 1

i ,X
2
i )/T

)
, (1)

LKDhard =
1
|B|

|B |∑
i=1

(
дs (X 1

i ,X
2
i ) − дt (X 1

i ,X
2
i )
)2
, (2)

whereT is the temperature value that is set as 1 by default. A higher
T value produces a softer probability distribution over classes.

Besides learning from the teacher, the student also seeks to fit
the training labels. For binary classification, a cross-entropy loss is
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Figure 2: The proposed DAKD framework with heterogeneous teachers. Those teachers with distance-aware guidance can be
either in-domain or out-domain. The student models seeks to leverage both the dark knowledge, i.e., softened outputs, and
the hints, i.e., hidden representations/features from the teachers during the distillation process. More specifically, domain
expertise is taken into consideration when distilling the dark knowledge, while hints are adaptively transferred via features
adaptation.

adopted, defined as follows:

Lt = −
1
|B|

|B |∑
i=1

(
yi log(дt (X 1

i ,X
2
i )
)
+

(1 − yi ) log
(
1 − дt (X 1

i ,X
2
i ))

)
.

(3)

2.2.2 Domain Expertise. Traditional KD models work well when
the student and the teacher are in the same domain, which is often
the assumption. Model performance can drop significantly with
increasing domain discrepancy [4]. Nevertheless, in the transfer
learning setting, source and target domains are different. We con-
sider the teacher’s expertise on the target domain when transferring
the distilled knowledge from the teacher model to the student.

Specifically, we use a scalar λmi to represent the distance between
the prediction of the teacher modelMteacher

m and the ground truth
label yi for a particular input instance (X 1

i ,X
2
i ). Such distances can

be viewed as evidences of confidence for the teacher. Intuitively we
can use the teacher’s prediction error to measure this distance. The
rationale is that if a teacher is able to make good predictions for a
target input, the teacher should be trusted more for this judgment,
thus can provide suitable guidance for the student. Hence, we define
the domain expertise λmi as follows:

λmi =
1

exp(дs (X 1
i ,X

2
i )−yi )

2
+1
. (4)

Clearly, the weight λmi is the largest when the teacher model
makes perfect predictions on the target input, i.e., дs (X 1

i ,X
2
i ) = yi .

From the experiments, we find the soft KD loss is able to encode
more distribution information. Hence, a soft KD loss is adopted in

our final model. To incorporate λmi , the soft KD loss is rewritten as:

LKDsof t = −
1
|B|

|B |∑
i=1

λmi f s (X 1
i ,X

2
i ) · log

(
f t (X 1

i ,X
2
i )/T

)
. (5)

2.2.3 Feature Adaptation. To improve the efficacy of knowledge
transfer, we also incorporate the teacher’s hints, where the hints
are the intermediate features at the hidden layers in the teacher
network. As domain difference poses a major obstacle in transfer-
ring features across domains, we use the “shared-private” archi-
tecture [16] for the student network, which consists of two sub-
networks that allows modeling both domain-specific and domain-
invariant features. As shown in Figure 2, domain-specific features
are learned independently by the student-specific sub-network,
while domain-invariant features in the teacher-guided sub-network
are adaptively guided by the teacher’s hints.

Specifically, for the text matching task, we denote H0 and H1 as
the text representation layers for the teacher-guided sub-network
and the student-specific sub-network in the student model, respec-
tively. Let H teacher

m be the text representation layers in a pre-
trained teacher model Mteacher

m . We confine the student repre-
sentation H0 to be as close as the teacher representation H teacher

m
by an adaptation loss:

Ld = Dist
(
H teacher
m (X 1

i ,X
2
i ),H

0(X 1
i ,X

2
i )
)
, (6)

=
1
|B|

|B |∑
i=1

KL
(
H teacher
m (X 1

i ,X
2
i ),W

⊤
mH0(X 1

i ,X
2
i )
)

(7)

where |B| denotes the batch size, KL is the Kullback–Leibler diver-
gence function, andWm serves as a projection matrix to project the
student’s representations to the teacher’s.
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Algorithm 1 Training Procedure of DAKD
Require:

K source domain datasets Ds
m , m ∈ [1,K]

The target domain dataset Dt

Stage 1: Pre-training source domain models:
1: for each source domainm ∈ [1,K] do
2: Pre-train the teacher modelMteacher

m using the source do-
main dataset Ds

m
3: end for

Stage 2: Domain-aware teacher-student optimization:
4: for each batch B in training data Dt do
5: for each teacherm ∈ [1,K] do
6: Feed batch data B to modelMteacher

m
7: Obtain meta-information Im (logits, predictions, hints,

etc.)
8: end for
9: Update model Mstudent using meta-information and train-

ing instances (B, {Im }Km=1)
10: end for

Thus, the student network’s classification loss of the target do-
main Lt is rewritten as follows:

дt (X 1
i ,X

2
i ) = σ

(
H0(X 1

i ,X
2
i ) ⊕ H1(X 1

i ,X
2
i )
)
, (8)

Lt = −
1
|B|

|B |∑
i=1

(
yi log(дt (X 1

i ,X
2
i )
)
+

(1 − yi ) log
((
1 − дt

(
X 1
i ,X

2
i

)))
(9)

where σ is the output layer that transforms the text representations
into the predictions.

Finally, the complete training loss of the student network is
defined as:

L = Lt + aLd + bLKD , (10)

where Lt , Ld , LKD are the prediction loss, the adaption loss and the
distillation loss, respectively. Scalars a,b are applied to balance the
losses. For simplicity, we omit the regularization terms of model
parameters in the loss function.

2.2.4 Combining Multiple Teachers. Our framework can easily in-
corporate K teachers. Similarly, the overall training loss of the
student network is defined as follows:

L = Lt + a
1
K

K∑
m=1

Ldm + b
1
K

K∑
m=1

LKDm , (11)

with λmi being replaced by the normalized expertise score with
respect to all K teachers:

λmi =
1/exp(дsm (X 1

i ,X
2
i )−yi )

2∑K
m=1 1/exp

(дsm (X 1
i ,X

2
i )−yi )

2 . (12)

2.3 Training Procedure
We present the overall training procedure of DAKD in Algorithm 1.
The training procedure consists of two stages. For the transfer learn-
ing setting, the teacher network(s) are first pre-trained by source

domain datasets, which can be either deep or shallow depending on
task-specific model choices. The student network leverages knowl-
edge from teachers that may come from multiple source domains
by taking into consideration their supervision signals. Task-specific
classification, domain-aware distillation, and feature adaptation
losses are jointly minimized via the teacher-student optimization
paradigm.

3 EXPERIMENTS
In this paper, we follow the previous works on retrieval based
QA systems [26, 49] and conduct extensive experiments on two
frequently studied text matching tasks, i.e., Natural Language In-
ference and Paraphrase Identification to quantitatively and qual-
itatively examine the effectiveness of our proposed method. Our
proposed method is also deployed in the production system and
the extrinsic evaluation is conducted to verify its benefits on the
online QA system. Additional experiments on text analysis task
are performed to verify the generalizability of our method to other
NLP tasks.

3.1 Datasets and Experimental Setups
3.1.1 Tasks andDatasets. Two representative textmatching datasets
are used for evaluation. Data statistics are summarized in Table 2.
Detailed task descriptions and the datasets are briefly introduced
below:

• Paraphrase Identification (PI) task aims to examinewhether
two texts have the same meaning. We treat the Quora Ques-
tion Pairs (Quora QP) 2 dataset released by Quora3, as the
source domain and the AnalytiCup 4 dataset released by
CIKM AnalytiCup 2018 as the target domain. Quora QP is
a large-scale dataset that covers a variety of topics, while
the AnalytiCup dataset consists of question pairs only from
the E-commerce domain for cross-lingual text matching. For
data preprocessing in both tasks, we follow the previous
works of [26, 49].

• Natural Language Inference (NLI) is a task to determine
the relations between sentence pairs, i.e., entailment, contra-
diction, or neutral, between sentence pairs. We useMultiNLI
[37] as the source domain dataset and SciTail [1] as the tar-
get domain. SciTail is a recently released challenging textual
entailment dataset, specifically collected from the science
sources, which contains around 550k hypothesis/premise
pairs. MultiNLI [1] is a large crowdsourced benchmark cor-
pus with textual entailment information from a wider range
of text genres/sources, which is more diverse. We use the
1.0 version of MultiNLI with the examples drawn from five
domains. Thus, in the experiments, MultiNLI can be used as
a whole to train one teacher model or separately for multi-
ple teachers. Note that, the labels in SciTail only consist of
“entailment” and “neutral”. Thus, following the study in [26],
we delete the “contradiction” samples from MultiNLI for the
transfer learning purpose.

2https://www.kaggle.com/c/quora-question-pairs
3https://www.quora.com/
4https://tianchi.aliyun.com/competition/introduction.htm?raceId=231661
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Table 2: Data statistics for paraphrase identification and natural language inference tasks.

Task Dataset S-T Paradigm Domain Train Dev Test

Paraphrase Identification (PI) Quora QP Teacher Quora QA Pairs 404,287 - -
AnalytiCup Student E-commerce QA Pairs 6,668 3,334 3,330

Natural Language Inference (NLI) MultiNLI Teacher(s)

Fiction 77,348 2,000 2,000
Travel 77,350 2,000 2,000
Slate 77,306 2,000 2,000
Telephone 83,348 2,000 2,000
Government 77,350 2,000 2,000
All domains 392,702 10,000 10,000

SciTail Student Science 23,596 1,304 2,126

3.1.2 Baselines. To examine the effectiveness of the DAKD frame-
work, we compare it with several transfer and non-transfer learning
baselines:

• DAM [24]: the decomposable attention model (DAM) with-
out considering knowledge transfer from other domains. It
is a light-weight model that enables fast online inference
and has shown strong performance on text matching tasks
in real-world applications [26].

• Fully-Shared (FS) [21]: a classic transfer learning method
that utilizes a shared encoder to learn transferable represen-
tations for both source and target data.

• Shared-Private (SP) [16]: extends the fully-shared model by
incorporating domain-private sub-networks.

• Knowledge Distillation (KD) [11]: vanilla teacher-guided KD
via transferring only the “dark knowledge”. Two variants are
considered when evaluating the distillation strategies.

3.1.3 Choice of Student Models. In the real world, it is a common
practice to consider not only the training but also the inference
efficiency [49]. Following the previous works for industrial applica-
tions, we use DAM [24] as the base model for the student network.
In theory, we can also use more advanced models such as BERT [7]
as our base student model. Such models have huge parameter size
(with billions of parameters), which makes them difficult to be
deployed for real-world applications. Our framework is able to
leverage the strong representation learning power of those large
models by treating them as teachers and distilling their knowl-
edge into an efficient small student model such as DAM for online
systems.

3.1.4 Evaluation. As both NLI and PI can be viewed as sentence
pair classification, we employ the classification Accuracy (ACC)
and the Area under the ROC curve (AUC) as our evaluation metrics.
Significant tests are performed on accuracy only, because AUC is
an overall metric that does not support significant tests.

3.1.5 Implementation Details. For DAM, we set the size of the
hidden layers as 200. The max sequence length is set as 40 for PI and
50 for NLI. DAM is used as the basemodel for the student network in
all the experiments. We also conduct experiments on large models,
where BERT is adopted as the teacher. As for the BERT teacher,
in PI and NLI tasks, we concatenate the text pairs X 1 and X 2 and
pad them with special tokens as an input to the BERT. Specifically,

the input is in the format: {[CLS] X 1 [SEP] X 2 [SEP]} 5. The max
sequence length for the sentence-pair is set as 80 for both PI and
NLI. After BERT encoding, we use the contextual representation
of the [CLS] token as input and add two fully-connected layers
with the size of 64×2 to generate the output predictions. ReLU is
used as the activation function, and Adam [14] is used with the
initial learning rate of 0.001 for optimization. For both tasks, the
data segmentation method [49] is employed. All the models are
implemented with TensorFlow6 and trained with NVIDIA Tesla
P100 GPU. All the models are tuned with the validation data in
target domain and results are reported on the test datasets, each
averaged over 5 random runs.

3.2 Learning from Single Heterogeneous
Teacher

We first compare DAKD with transfer learning baselines under the
single teacher setting. In this setting, for KD-based methods, only
one teacher is trained with the training data in the source domain.
Results are shown in Table 3.

Regardless of how the knowledge is transferred, we find that
knowledge learned from the source domain improves the perfor-
mance of models for the target domain, evidenced by the fact that
FS, SP, and KD-based methods outperform the base model without
knowledge transfer. Interestingly, SP does not always outperform
FS, which means different transfer learning methods may have their
advantages on different datasets. KD has shown comparable results
with transfer learning baselines. DAKD outperforms all the base-
lines by a large margin especially on the AUC metric, which shows
the effectiveness of the teacher-student paradigm in transferring
knowledge. Unlike vanilla KD, the proposed DAKD framework is
better at adapting information from a heterogeneous source domain
to help model learning in the target domain.

3.3 Learning from Multiple Teachers
3.3.1 Single teacher v.s. multiple teachers. To help us get deeper
insights on learning from heterogeneous teachers, we conduct ex-
periments to compare the effectiveness of a versatile teacher trained
by using all the five domain data in MultiNLI versus five teach-
ers trained separately by each domain data, denoted with “single

5Without ambiguity, in [CLS] X 1 [SEP] X 2 [SEP], we assume that X 1 and X 2 also
represent tokens of the corresponding sentence pair.
6https://www.tensorflow.org/
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Table 3: Results for PI and NLI under the single teacher set-
ting. †means significant difference over other baselineswith
p < 0.1.

Datasets PI NLI
ACC AUC ACC AUC

Base Model 0.846 0.869 0.730 0.766
FS 0.849 0.871 0.745 0.804
SP 0.854 0.875 0.727 0.798
KD 0.860 0.871 0.751 0.805
DAKD 0.867† 0.881 0.755† 0.811

0.15
0.16
0.17
0.18
0.19
0.2

0.21
0.22

fiction slate telephone travel government

Figure 3: Domain expertise λm learned for multiple
MultiNLI teachers.

teacher” and “multiple teachers” respectively. Aside from DAKD,
we also extend the original KD to multiple heterogeneous teachers
by directly assembling the soft targets of the teachers. Classifica-
tion AUC and accuracy results are presented in Table 5. Clearly,
both teacher settings boost the performance of the target domain.
The performance gain of multi-domain teachers for both KD and
DAKD is larger than the gain of a single teacher. DAKD is the
more effective than KD when incorporating knowledge from mul-
tiple cross-domain teachers. We speculate exposing the student
to a diverse set of teachers can be beneficial in a similar way that
the model ensemble benefits from multiple heterogeneous mod-
els, but further studies may be required to better understand this
phenomenon.

3.3.2 Visualizing domain expertise. Furthermore, we average the
domain expertise scores λmi as defined in Eqn. 4 for all the data
instances and visualize the importance of different domains in Fig-
ure 3. We find the results are insightful. It reveals the importance of
heterogeneous teachers from different source domains to the target
task. Specifically, the domain “SciTtail” is close to “fiction” and
“slate”, but not close to “telephone” and “government” in MultiNLI.
This is intuitive as the SciTail data is created from multiple-choice
science exams and web sentences. To summarize, the domain ex-
pertise scores are interpretable and provide us an insight into the
importance of different domains, which boost the model perfor-
mance in DAKD.

3.4 Learning from Pre-trained Language
Models

Pre-trained language models such as BERT [7] have shown to be
very successful in many NLP applications. A typical approach is
fine-tuning pre-trained models for specific downstream tasks. To

examine the generalization capability of DAKD, we adopt task-
specific fine-tuned BERT 7 as our teacher model and DAM as the
student model (denoted as DAKD from BERT), comparing with
using DAM for both teacher and student models (denoted as DAKD
from DAM).

The results are shown in Table 6. We find that fine-tuning BERT
is a very strong baseline as it shows a clear advantage over the
DAM-based methods. Despite its good performance, its inference
time increases from 10ms to 200ms which is a bottleneck for online
deployment. By replacing the teacher model from DAM to BERT,
DAKD can further improve the results, e.g. from 0.867 to 0.899 in
terms of ACC on the PI dataset. This shows a well-trained teacher
model can provide the student with more transferable information.
DAKD (from BERT) achieves the best performance with a very
good inference speed (13 ms), which is suitable for deployment in
online production, especially for industrial applications.

3.5 Detailed Model Analysis
3.5.1 Distillation Strategies. We compare DAKD with two types
of KD variants with different distillation strategies on both PI and
NLI datasets in Table 4. The soft KD variant distills knowledge by
using soft targets, while the hard variant utilizes the predicted hard
labels from the teachers. For fair comparison, the MultiNLI data is
used as a whole for training one NLI teacher.

From the experimental results, we find that KD generally brings
consistent performance gain for all models, except for Hard on the
PI dataset (0.841 for Hard vs. 0.846 for Base). This can be justified
by the fact that vanilla distillation may not always be beneficial
due to domain difference. Moreover, using soft targets yields better
results than using hard targets. This is intuitive as the soft targets
can encode more distributional information. Furthermore, DAKD
is the most robust for both datasets as it consistently outperforms
the rest by a large margin, which echoes the benefits of domain
adaptation in the KD process.

3.5.2 Knowledge Transfer Strategies. Recall that our method has
two integral parts to facilitate knowledge transfer, i.e., dark knowl-
edge and adaptive hints. We conduct an ablation study to examine
the importance of these two components on both PI and NLI tasks,
with results shown in Table 7. We have the following observations:

• We observe a clear performance drop when we remove the
dark knowledge from DAKD, from 0.867 to 0.851 on the PI
task and from 0.755 to 0.748 on the NLI task. This shows
it is important to include such information for knowledge
transfer.

• Adaptive hints are also crucial for boosting domain adaption
capability. Without this component, the degenerated version
of DAKD has less satisfactory results, i.e., the performance
dropping from 0.867 to 0.859 on the PI task, and from 0.755
to 0.751 on the NLI task.

In a nutshell, both dark knowledge and adaptive hints are impor-
tant to our method. With both of these components, DAKD demon-
strates a clear advantage over the competing methods.

7We use the “bert-base-uncased” model with 12-layers pre-trained model from https:
//github.com/google-research/bert
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Table 4: Comparison of different distillation strategies for PI and NLI tasks. † means statistically significant difference over
other baselines with p < 0.1 measured by the paired t-test. Note that AUC is an overall metric that does not support the
significant test.

KD Strategies Paraphrase Identification (PI) Natural Language Inference (NLI)
Base Model KD-hard KD-soft DKDA Base Model KD-hard KD-soft DKDA

ACC 0.846 0.841 0.860 0.867† 0.730 0.747 0.751 0.755†

AUC 0.869 0.862 0.871 0.881 0.766 0.801 0.805 0.811

Table 5: Results for NLI using either one teacher trained by
all the data in MultiNLI or five teachers trained separately
by data in each domain.

MultiNLI to SciTail ACC AUC
Base Model 0.730 0.766
KD (single teacher) 0.751 0.805
KD (multiple teachers) 0.753 0.807
DAKD (single teacher) 0.755 0.811
DAKD (multiple teachers) 0.761† 0.818

Table 6: Results for learning from large teacher models. Inf.
time refers to the inference time for predicting a sentence
pair.

Setting PI NLI Inf. Time
ACC AUC ACC AUC (ms)

DAM 0.846 0.869 0.745 0.804 10
DAKD (from DAM) 0.867 0.881 0.755 0.811 12
BERT fine-tuning 0.892 0.894 0.905 0.966 200
DAKD (from BERT) 0.899 0.902 0.907 0.971 13

Table 7: Ablation study on two parts of knowledge transfer
for PI and NLI tasks.

Setting PI NLI
ACC AUC ACC AUC

Base-DAM 0.846 0.869 0.730 0.766
DAKD-DAM (whole) 0.867 0.881 0.755 0.811

w/o dark knowledge 0.851 0.868 0.748 0.805
w/o adaptive hints 0.859 0.871 0.751 0.804

3.6 Industrial Deployment
We have deployed DAKD in our chatbot engine under three lan-
guage scenarios, i.e., English, Russian, and Spanish. For each user
query, the chatbot engine retrieves the top-30 relevant questions.
Our method is employed to find the most relevant question and
fetch its corresponding answer as the output. One naive way to
score all the questions is to distribute them asynchronously to a
couple of machines and compute all the scores. To speed up the on-
line serving speed, we pad the user query with all the 30 candidate
questions to form batch data and feed the batch to our method to
obtain batch scores. This can be done via a single machine which

Table 8: A/B test results for industrial online deployment.

Method English Russian Spanish
Baseline (DAM with TL) 0.872 0.890 0.870
DAKD (from BERT) 0.916 0.971 0.944
Relative improvement +5.1% +9.1% +8.5%

shows to be more efficient. As a result, we are able to support a
peak QPS of 40 on a cluster of 5 service machines on an Intel Xeon
E5-2430 server.

To examine the effectiveness of DAKD, we conduct an online
A/B test to compare our method with the online production method,
i.e., DAM with transfer learning from a source domain. The results
are shown in Table 8. Our method has better performance, with
relative improvements of 5.1% ∼ 9.1% in all the three application
scenarios. Meanwhile, the serving latency and the throughput of
our method are nearly identical to the previous online method, as
the student model of our method is also based on DAM.

3.7 Application Study Beyond QA Systems
To examine the generalization capability of DAKD, we evaluate
our method on a review analysis task. The goal is to examine the
quality score of a given review. Due to the high volume of re-
views in E-commerce sites, this task has drawn increasing attention
from both academia and industry [19, 41]. Experiments are per-
formed on reviews from five categories of products in the Amazon
review dataset [20]. Categories include “Electronics”, “Watches”,
“Cellphones”, “Outdoor” and “Home”, each with #354,301, #9,737,
#18,542, #72,796, #219,310 review samples, respectively. To make
a fair comparison with baselines, we adopt TextCNN as the base
model for the student and the teachers and follow exactly the data
processing, base model hyper-parameters, and experiment setup as
in [3]. All experiment results are evaluated in terms of Pearson cor-
relation coefficient. As shown in Table 9, we first perform a transfer
learning study on the single teacher setting, where the “Electronics”
domain is chosen as the source domain, and the remaining domains
are served as target domains. Overall we have similar findings as
in PI and NLI datasets. Comparing with other transfer techniques,
DAKD achieves the best performance. It is intuitive to see target
domains with less data are likely to benefit more from the source
domain. For example, on the smallest domain “Watch”, our method
improves the most.

Moreover, experiments have been conducted with multiple teach-
ers, where the “Phone” domain is used as the target domain and the
remaining four are treated as source domains. Again we observe
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Table 9: Review analysis results where “Electronics” is used
as the source domain while the rest are treated as target do-
mains.

Correlation Watch Phone Outdoor Home
Base Model 0.423 0.552 0.511 0.521
FS 0.510 0.611 0.575 0.598
SP 0.504 0.607 0.576 0.595
DAKD 0.531 0.621 0.590 0.603

the setting of using multiple teachers outperforms using a single
teacher, improving the model performance from 0.621 to 0.632. Af-
ter reviewing the domain expertise scores λm for different teachers,
we find that “Electronics” and “Home” domains are more impor-
tant than “Watch” and “Outdoor” domains, as they are with higher
expertise scores (larger than 0.25). Closer examination shows “Elec-
tronics” and “Home” domains have a lot of reviews in electronic
devices that are close to the domain “Phone”. “Outdoor” domain is
more on outdoor clothing and equipment, and the “Watch” domain
is more on analog watches, both of which are different from the
“Phone” domain. Hence, those domain expertise scores learned are
reasonable and insightful.

4 RELATEDWORK
Our work is closely related to several lines of research topics in-
cluding knowledge distillation and transfer learning.

4.1 Knowledge Distillation
Knowledge Distillation (KD) was first proposed by [11], which aims
to improve a smaller student model by distilling information from a
pre-trained larger teacher model via a teacher-student optimization
paradigm. The intuition behind this is to leverage the guidance
of the teacher. It has been widely applied in model compression
and knowledge transfer among the same task or different tasks in
the same domain [11, 32, 34, 46]. However, few studies consider
to learn from heterogeneous teachers from different domains. It
was also proven to be useful when training a student network that
has the same architecture as the teacher in which the student ex-
cels the teacher [6, 8]. Several attempts have been made to adjust
ways for teacher supervision to improve its effectiveness. Most of
the KD works focus on utilizing either the “dark knowledge”, i.e.,
predicted outputs [5, 8, 11, 48] or hints, i.e., intermediate represen-
tations [28, 46, 48] of the teacher model. The majority of KD models
are applied in computer vision. Recent improvements for distilla-
tion techniques consider adversarial training [10, 35] and feature
distribution matching [13] and few works consider cross-task or
cross-modal distillation for specific CV tasks by embedding align-
ment [9, 45, 50]. A recent study explores a two-stage multi-teacher
distillation for QA system [44], however, for a specific downstream
task, the student model does not leverage cross-domain knowl-
edge from teachers. In this work, we consider both distillation and
adaptation, where we propose to measure the domain expertise of
cross-domain teachers on the student task and “adapt” the knowl-
edge respectively.

4.2 Transfer Learning
Transfer Learning (TL) has been extensively studied to improve
the model performance in data-deficient target domains by lever-
aging knowledge from related source domains [23, 36]. Recently, a
large amount of neural network-based TL methods have been pro-
posed [16, 21, 43]. A simple but effective framework is fine-tuning,
i.e., to train a model on the source domain data and then use the
learned weights as the initialization to perform continued training
on the target domain data. Another widely used technique for TL
is to consider a shared neural network to learn shared features
for both source and target domains [2, 21], often referred to as a
fully-shared model. However, this simple model may not be able
to capture domain-specific features that are useful for boosting do-
main performance. To address this issue, the shared-private model
is proposed [16], which consists of a shared network and domain-
specific networks to learn domain-invariant and domain-specific
features. Both fully-shared and share-specific types of models can
be regarded as parameter sharing based methods, as they all jointly
train a shared network to capture transferable knowledge in a
multi-task fashion.

There is another line of TL methods that aims to align the
hidden feature representations by explicitly reducing the mar-
ginal/conditional distribution divergence between source and target
domains. Such methods are often called domain adaptation. De-
pending on label availability, it further divided into unsupervised
and supervised domain adaptation. Regardless of the different set-
ting categories, they all try to minimize the feature representation
divergence by some distribution difference metrics. Commonly
used metrics include variants of the Maximum Mean Discrepancy
(MMD), the Kullback-Leibler Divergence and the Wasserstein dis-
tance [17, 18, 29, 33].

The main differences between DAKD and existing TL meth-
ods are two-fold. First, unlike typical TL methods that joint train
transferable features in a multi-task fashion, our method utilizes a
student-teacher paradigm. Second, those TL methods seldom utilize
dark knowledge and mostly focus on transferable features only,
while our method can adaptively leverage both dark knowledge
and hints provided by the teacher models.

5 CONCLUSION
In this work, we provide a new framework named Domain-Aware
Knowledge Distillation (DAKD), which enhances the teacher-student
paradigm to facilitate cross-domain transfer learning, where teacher
and student tasks belong to heterogeneous domains, with the goal
to improve the student model performance of the target domain.
Our framework considers both the “dark knowledge” from teacher
models and adaptive hints to alleviate domain differences. Extensive
experiments on two benchmark datasets show the proposedmethod
has better performance than baselines.

We have also deployed our method in an online production
system and observed significant improvements. To examine the
generalization capability of our method, we further evaluate our
model performance on a review analysis task. In the future, we seek
to evaluate more tasks to further examine the generalization power
of our method.
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