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ABSTRACT
Federated learning is a privacy-focused learning paradigm, which

trains a global model with gradients uploaded from multiple partic-

ipants, circumventing explicit exposure of private data. However,

previous research of gradient leakage attacks suggests that gra-

dients alone are sufficient to reconstruct private data, rendering

the privacy protection mechanism of federated learning unreliable.

Existing defenses commonly craft transformed gradients based on

ground-truth gradients to obfuscate the attacks, but often are less

capable of maintaining good model performance together with

satisfactory privacy protection. In this paper, we propose a novel

yet effective defense framework named guarding against gradient
leakage (Guardian) that produces transformed gradients by jointly

optimizing two theoretically-derived metrics associated with gradi-

ents for performance maintenance and privacy protection. In this

way, the transformed gradients produced via Guardian can achieve

minimal privacy leakage in theory with the given performance

maintenance level. Moreover, we design an ingenious initialization

strategy for faster generation of transformed gradients to enhance

the practicality ofGuardian in real-world applications, while demon-

strating theoretical convergence of Guardian to the performance

of the global model. Extensive experiments on various tasks show

that, without sacrificing much accuracy, Guardian can effectively

defend state-of-the-art gradient leakage attacks, compared with the

slight effects of baseline defense approaches.
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• Security and privacy; • Computing methodologies→ Com-
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1 INTRODUCTION
Recent years have witnessed the unprecedented development of fed-

erated learning (FL) in a variety of privacy-focused scenarios [8, 13].

Through gradient transformation, FL avoids direct upload of private

data during the collaborative model learning process. However, not

long after the proposal of FL, some works [26, 27] point out that

such a privacy protection mechanism of FL is not as reliable as ex-

pected. As shown in Figure 1, a malicious server can easily recover

the private data of any participant by solving the gradient matching

problem, i.e., gradient leakage attack [11, 12, 26, 27]. In more detail,

with fixed model parameters, the attacker can reconstruct a batch

of data points whose corresponding gradients are close to the up-

loaded ones. Starting from random data points, the reconstruction

can be completed in only several rounds of optimization, and the

returned data points can be very close to the original ones [18, 21].

Undoubtedly, gradient leakage poses a great threat to the security

of FL applications, and an effective countermeasure against the

attack is of imperative need.

In response to the rising concerns about FL, there exist two pri-

mary approaches, namely encryption-based methods [6, 25] and

perturbation-based methods [20, 27]. While encryption-based meth-

ods ensure effectiveness, their high computational cost restricts

their applicability in many scenarios [13, 15], often leading to sig-

nificantly slower processing times that can be dozens to hundreds

of times longer [6, 25]. In contrast, perturbation-based methods

offer a more lightweight and efficient alternative, which garner

significant attention in recent research endeavors.

State-of-the-art perturbation-based methods include differential

noises [1] and gradient pruning [20, 27]. However, these defenses

[1, 10, 19, 20, 27] were broken soon after the introductions. Existing

works show that pure differential noises and gradient compression
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Figure 1: The sketch picture of our method.

are not resilient against state-of-the-art attacks [11, 12, 21, 24, 26].

To mitigate the problem, more recently proposed works [10, 19, 20]

introduce the heuristic defense by mixing multiple gradient trans-

formation strategies. Again, Mislav et. al. [2] effortlessly breaches

these advanced defenses by introducing Bayes optimal adversary,

and shows that an adversary can always explore an effective way

against most of the existing defenses based on the Bayes rules.

Therefore, the creation of a more rigorous and theory-backed de-

fense against general gradient leakage attacks is still deemed to be

an open problem for now [2].

We propose a defense guarding against gradient leakage (Guardian)
that can significantly maintain model performance while achieving

less privacy leakage compared with existing works. Specifically,

our design is inspired by the observation: the original data can

be reconstructed from their corresponding gradients because the

specific mapping relationships between them can be easily reversed

by solving the gradient matching problem [27]. Then, a reasonable

idea to block the attacks is adding perturbations to obfuscate the

relationships. However, the dilemma lies in that perturbation is a

delicate work of art in practice [7, 22, 23]. Excessively added per-

turbations easily make gradients no longer informative while mild

ones are unable to provide enough defense effect [21, 27]. To get rid

of the dilemma, Guardian leverages two deftly designed metrics, i.e.,

Performance Maintenance Metric (PMM) and Privacy Protection

Metric (PPM). Theoretically, these metrics are proved to be able

to measure the model performance change and privacy leakage

risk, respectively. By jointly optimizing the two metrics (Figure 1),

Guardian can always approximate to the optimal perturbation point

where privacy is well protected with minimal model performance

degradation. Also, considering the overhead of defense is of vital

importance to practice, we design a better initialization strategy

to substantially accelerate the convergence of Guardian, resulting
to that the computational cost of Guardian becomes competitive

among the state-of-the-art methods. Furthermore, we theoretically

and experimentally analyse the convergence of Guardian, and study
the potential factors that affect the effectiveness of existing defenses,

including security assumptions and etc. Our contributions:

• Built upon solid theory foundations, we design a novel yet

effective defense method called Guardian, which can main-

tain model performance while minimizing privacy leakage

risk by jointly optimizing two deftly designed metrics, PMM

and PPM.

• We conduct an in-depth theoretical analysis for Guardian
including convergence guarantee, security assumptions, etc.,

and propose a better initialization strategy for Guardian.
• To the best of our knowledge, Guardian is the only method

whose defense is still effective even in the most critical sce-

narios suggested by [2], i.e., white-box scenarios with the

Bayes optimal adversary, and this is examined across di-

verse tasks, implying great generalizability of Guardian in

real-world applications. Besides, we are the first to conduct

gradient leakage attacks and defenses on the vision trans-

former architecture.

2 RELATEDWORK
Gradient Leakage Attacks.With the increasing concerns of users’

privacy, FL [16] was introduced to train a deep neural network with-

out directly sharing data. However, Mislav et al. [27] attempted to

examine the effectiveness of the privacy protection mechanism of

FL and proposed gradient leakage attack (GLA) to breach the mech-

anism. GLA reveals the private information by solving a gradient

matching problem (detailed in Section 3). At the beginning, GLA

supposed the ground-truth labels to be unknown, which degraded

the attack effectiveness. Latter, inference gradient leakage attack

(iGLA) [26] proposed that the attacker could steal the labels by an

analytical procedure, thereby significantly enhancing the attack

performance. However, GLA and iGLA are only effective on small

batches (e.g., fewer than 8 data instances a batch) [21, 24, 26, 27].

Follow-up works attempt to relax this constraint by using hand-

crafted input-regularization (prior knowledge) [11] and smarter

initialization [21], etc.

Gradient Leakage Defenses. In response to the rise of gradi-

ent leakage attacks, several defenses [1, 9, 20] are developed. The

core idea of these defenses is imposing noises into ground-truth

gradients to obfuscate the attacker. As the most known privacy-

protection method, differential privacy [1, 2, 27] was introduced to

resist the attacks, which adds Gaussian or Laplace noises into the

gradients to resist gradient leakage attacks. In addition, gradient

compression also was commonly adopted by [11, 24, 26, 27] as a

baseline defense to examine the robustness of attacks. Recently,

Soteria [20] leveraged a similar idea to gradient compression but

with a smarter prune strategy, so as to decrease privacy leakage

risks with similar performance maintenance. However, a recent

work [2] evaluated the so-called effective defenses and broke them
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by introducing a Bayes optimal adversary. Therefore, developing

an effective defense against such attacks is imperative for now.

3 SCENARIO DESIGN
In this paper, we design a defense method against general gradient

leakage attacks. To this end, we introduce a rather harsh scenario

to validate whether a defense method is truly effective.

Scenario description. In FL, a user (i.e., the defender) uploads

local gradients ∇𝜃𝐿(𝐹𝜃 (𝑥), 𝑦) to the server (i.e., attacker), where

𝐿, 𝐹, 𝑥,𝑦 denote the loss function, the training model parameterized

by 𝜃 , a batch of training data and labels with size 𝑛, respectively.

For the simplicity of symbols, in the remainder of this paper, we use

𝐿(𝑥, 𝜃 ) to denote 𝐿(𝐹𝜃 (𝑥), 𝑦), i.e., omitting 𝑦 and 𝐹 . The attacker

attempts to solve an optimization problem (i.e., gradient matching)

to reconstruct user data as follows:

𝑥∗ = argmin

𝑥∗
𝐷𝑖𝑠𝑡 (∇𝜃𝐿(𝑥, 𝜃 ),∇𝜃𝐿(𝑥∗, 𝜃 )) + 𝑅(𝑥∗), (1)

where 𝑥∗ are reconstructed data
1
, and 𝐷𝑖𝑠𝑡 (·, ·) and 𝑅(·) represent

a certain distance between gradients and regularization items for

reconstructed data, like Euclidean distance [27] and total variance

[11], respectively.

Attacker’s abilities. To better evaluate the effectiveness of our

defense methods, we assume the attacker with the most powerful

ability suggested by [2]. The attacker can have full knowledge about

the target model information and the defender’s defense strategy,

including loss functions, hyperparameters, defense methods, etc.

More precisely, except original training data, the attacker is allowed

to access any other information to launch any attacks in polynomial

time. In addition, the attacker, as the server, can also proactively

select “weak” hyperparameters to advantage its attacks, e.g., setting

the batch size 𝑛 = 1 as shown in [18, 26, 27]
2
.

Defender’s goals. The defender aims to alleviate the risk of the

server to derive user private data from uploaded gradients. To

achieve the goal, the defender searches for perturbations 𝛿∗ to

obfuscate the mapping information between gradients and original

data. We call the perturbed gradients as transformed gradients. The
ideal transformed gradients should at least have the following three

properties:

• Performance maintenance. Transformed gradients should be

as informative as the original gradients tomaintain the target

model performance in FL.

• Privacy protection. Transformed gradients should ensure that

the attacker cannot reconstruct data whose distance between

the original data is smaller than a given threshold 𝜀0.

• Practicality in applications. To ensure practicality, the gener-

ation of transformed gradients should cost as few computa-

tional resources as possible for the defender.

4 APPROACH
We formulate a loss function involving two metrics that can mea-

sure the utility and privacy leakage risk of gradients, respectively.

1
Commonly, the attacker can analytically steal the ground-truth labels by adopting

label inference technique introduced by [26]. Thus, instead of labels, most data leakage

attacks focus more on data reconstruction.

2
The larger the batch size is, the harder it is to find 𝑥 ′

. Intuitively, the introduction

of more data into a single batch makes the attacker need to search 𝑥 ′
in a higher

dimensional space, i.e., more epochs required to make Eq. 1 converge.

Table 1: We record the running time for obtaining PMMwith
different methods. The iteration number is fixed to be 20.

Model 𝐿 (𝑥, 𝜃 + 𝛿 ) Our Speedup

ResNet18 6.06s 64.9ms 93.37x faster

ResNet34 11.6s 74.8ms 155.08x faster

ResNet50 18.5s 80.5ms 228.96x faster

ResNet101 33.6s 87.8ms 382.69x faster

By optimizing the loss, the defender can efficiently find a series of

crafted perturbations to obfuscate gradients with minimized model

performance degradation.

4.1 PMM: Measurement of Performance
Improvement

We first give the metric to measure how much the perturbed gradi-

ents can contribute to the model performance improvement. With

this metric, the generated perturbation is constrained to not bias

too much from the desired convergence direction. The derivation

of the metric is based on the expansion of gradient descent based

optimization methods [3]. Given the parameter updates −𝛿 , the
derivation proceeds as follows:

𝐿(𝑥, 𝜃 − 𝛿) = 𝐿(𝑥, 𝜃 ) − ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿 +𝑂 ( | |𝛿 | |), (2)

where 𝐹𝜃 (·) 3
is assumed to be differentiable. Moreover, to make

the above expansion feasible, we set | |𝛿 | | ≤ 𝜖 where 𝜖 is assumed

to be small enough for avoiding the error induced by ignoring the

remainder 𝑂 ( | |𝛿 | |). In fact, 𝜖 can be regarded as learning rate and

generally set into 10
−5 ∼ 10

−2
in practice. Then, the best solution

for 𝛿 to minimize 𝐿 is 𝜖
∇𝜃𝐿 (𝑥,𝜃 )

| |∇𝜃𝐿 (𝑥,𝜃 ) | | [3]. As shown in Equation 2,

the reduced loss before and after parameter updating can be accu-

rately approximated by 𝜖∇𝜃𝐿(𝑥, 𝜃 )𝑇
∇𝜃𝐿 (𝑥,𝜃 )

| |∇𝜃𝐿 (𝑥,𝜃 ) | | . Similarly, if 𝛿 is

set equal to the transformed gradients 𝛿∗ (| |𝛿∗ | | ≤ 𝜖), the reduced

loss associated with 𝛿∗ is ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿∗. Therefore, we can do the

following computations to estimate the performance contribution

change after gradients are transformed.

𝜌𝑃𝑀𝑀 = | |𝜖∇𝜃𝐿(𝑥, 𝜃 )𝑇
∇𝜃𝐿(𝑥, 𝜃 )

| |∇𝜃𝐿(𝑥, 𝜃 ) | |
− ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿∗ | |2 . (3)

In other words, Equation 3 defines the performance maintenance
metric (PMM) used in Guardian. Intuitively, the lower PMM is, the

more 𝛿∗ contributes to the model performance.

In fact, an alternative to define PMM is directly optimizing

𝐿(𝑥, 𝜃 − 𝛿), i.e., searching optimal parameter perturbations 𝛿 to

minimize 𝐿(𝑥, 𝜃 − 𝛿). However, two reasons make us discard such

an idea. First, as shown in Table 1, the computation of 𝐿(𝑥, 𝜃 − 𝛿) is
much slower than our methods because the searching process of 𝛿

needs to be conducted in multiple iterations over the whole model,

while 𝜌𝑃𝑀𝑀 can be directly obtained with past gradients. Second,

iterative optimizations to search 𝛿 can easily make the loss of the

target model about 𝑥 to vanish, i.e., causing the overfitting of 𝑥 .

3
Note, for symbol simplicity, in this paper, we use 𝐿 (𝑥, 𝜃 ) to denote 𝐿 (𝐹𝜃 (𝑥 ), 𝑦) , i.e.,
omitting 𝑦 and 𝐹 .
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4.2 PPM: Measurement of Privacy Leakage
Let 𝑥∗ denote the data reconstructed from the transformed gradient

𝛿∗ by solving the Equation 1, where 𝛿∗ is assumed to be ∇𝜃𝐿(𝑥∗, 𝜃 )
like prior works [18, 21, 27]. To protect the participant’s privacy,

the defender has to maximize the distance between 𝑥 and 𝑥∗, i.e.,
| |𝑥 − 𝑥∗ | |2. Thus, an intuitive way to measure the privacy leakage

risk is to find a general function that can evaluate the change of

| |𝑥 −𝑥∗ | |2 with 𝛿∗. However, considering that deep neural networks
per se are highly non-linear and non-convex functions, finding such

a function that precisely models the relationship between | |𝑥−𝑥∗ | |2
and 𝛿∗ is intractable, particularly when the training process of neu-

ral networks is constantly changed. Therefore, to circumvent this

problem, a feasible idea is to construct a lower bound associated

with 𝛿∗ of | |𝑥−𝑥∗ | |2. Then, as the lower bound increases, the privacy
leakage risk decreases, and vice versa. In mathematics, a common

tool used to tightly bound | |𝑥−𝑥∗ | |2 is the Lipschitz coefficients and

the overwhelming majority of neural networks satisfy the Lipschitz

Assumption 4.1 in practice. But as shown in Assumption 4.1, the

lower bound of | |𝑥 − 𝑥∗ | |2 is not associated with 𝛿∗ and we have to

make some transformation in the lower bound. The lower bound is

the output difference of the model w.r.t. 𝑥 and 𝑥∗ and there is an

intuitive idea to guide us: the output difference will be raised if the

output of the model for 𝑥∗ is unchanged when themodel steps along

the direction that enables the output of the model for 𝑥 changed

sharply, i.e., 𝑥 and 𝑥∗ are treated to be orthogonal from the model

output perspective. Interestingly, the direction commonly accords

with the gradient convergence direction [3], and thus, we can estab-

lish the relationship between the difference of 𝑥 and 𝑥∗ and their

gradients by harnessing the idea. Theorem 4.1 below implements

the idea and reveals that | |𝑥 − 𝑥∗ | |2 ∝ − ∇𝜃𝐿 (𝑥,𝜃 )𝑇
| |∇𝜃𝐿 (𝑥,𝜃 ) | |2

𝛿∗

| |𝛿∗ | |2 . Note

that we force ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿∗ ≥ 0 to guarantee model convergence

according to Theorem 4.2 (in section 4.4), this also can be intuitively

realized by that, the loss function decreases if ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿∗ ≥ 0 in

Equation 2. Therefore, we can evaluate the privacy protection metric
(PPM) by computing:

𝜌𝑃𝑃𝑀 = | ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿∗
| |∇𝜃𝐿(𝑥, 𝜃 ) | |2 | |𝛿∗ | |2

|. (4)

Assumption 4.1. Let 𝐿, 𝐹 satisfy the Lipschitz condition. There
exists a concrete positive real number 𝛼 , which makes the following
inequality relationship stand for ∀𝑎, 𝑏, 𝜃 :

| |𝐿(𝑎, 𝜃 ) − 𝐿(𝑏, 𝜃 ) | |2 ≤ 𝛼 | |𝑎 − 𝑏 | |2 .

Theorem 4.1. Let Assumption 4.1 stand. Given a fixed 𝑥 , a vari-
able 𝑥∗, and ∇𝜃𝐿(𝑥, 𝜃 ) · 𝛿∗ ≥ 0, the lower bound between 𝑥 and 𝑥∗ is
negatively correlated with the cosine distance between ∇𝜃𝐿(𝑥, 𝜃 ) and
𝛿∗. Specifically, if ∇𝜃𝐿(𝑥, 𝜃 ) · 𝛿∗ = 0, the lower bound between 𝑥 and
𝑥∗ can be maximized.

4.3 Putting All into One
Wenow formulate the final optimization problem for defense against

gradient leakage attack. First, to maintain model performance, its

corresponding measurement metric PMM should be minimized.

Then, we have to minimize the gradient leakage attack risk PPM.

Figure 2: Convergence of Guardian with different initializa-
tion strategies.

In all, the final optimization loss can be expressed as:

argmin

𝛿∗
| |𝜖∇𝜃𝐿(𝑥, 𝜃 )𝑇

∇𝜃𝐿(𝑥, 𝜃 )
| |∇𝜃𝐿(𝑥, 𝜃 ) | |

− ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿∗ | |2

+ 𝛽 | ∇𝜃𝐿(𝑥, 𝜃 )𝑇 𝛿∗
| |∇𝜃𝐿(𝑥, 𝜃 ) | |2 | |𝛿∗ | |2

|, 𝛽 ≥ 0, | |𝛿∗ | | ≤ 𝜖,

(5)

where 𝛽 is served as a balance factor. In Equation 5, the left term

is minimal when 𝜖
∇𝜃𝐿 (𝑥,𝜃 )

| |∇𝜃𝐿 (𝑥,𝜃 ) | | , i.e., gradients without perturbation.
The right term aims to increase the cosine distance between 𝛿∗

and ∇𝜃𝐿(𝑥, 𝜃 ) by optimizing 𝛿∗ to be orthogonal with ∇𝜃𝐿(𝑥, 𝜃 ).
Note that Equation 5 demonstrates privacy protection has to come

at a price of model performance. However, compared with prior

works [1, 20], our method allows the defender to pay less “price”

by utilizing more precise metrics to evaluate the losses and gains

simultaneously. Moreover, Equation 5 is a typical convex optimiza-

tion task with constraints that can be well solved by optimization

methods, e.g., projected gradient descent [3].

Better initialization for faster convergence. Besides method ef-

fectiveness, convergence speed also counts a lot for the practicality

of defenses. In our evaluation, we discover that the commonly used

random initialization strategy [1] does not suit for Guardian very

well, shown in Figure 2. To get rid of the issue, Guardian adopts a

faster convergence strategy.

Reconsider that starting an optimization task from a point near

the optimal one can generally reduce the required iterations to

converge. Here, the goal of defender is to minimize the utility

degradation of transformed gradients caused by perturbations. Fol-

lowing the idea, the optimal convergence point for Guardian can

be always around the original gradients. Thus, instead of random

noises [1], a better initialization strategy for Guardian is to leverage
the original gradients as the initial point. Figure 2 validates that

such an initialization strategy can increase the convergence speed

of Guardian significantly.

4.4 Convergence Analysis
In this subsection, we derive the convergence guarantee of the

model updated with transformed gradients obtained by Equation 5.

Following the existing works [20, 21], We assume that the model

is Lipschitz gradient continuity with coefficient of 𝜏 . Then, we can

obtain convergence guarantee of Guardian, as shown in Theorem

4.2.

Theorem 4.2. Let 𝜃∗ denote the optimal parameters of the model
over 𝑥 . Let the iteration number be 𝑘 and the constant update step
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(a) Vanilla (b) Pruning (c) DP-Gaussian (d) DP-Laplace

(e) Soteria (f) Guardian (iter 1) (g) Guardian (iter 5) (h) Guardian (iter 10)

Figure 3: Accuracy of model with various defenses over different iterations in CIFAR-10. We tune the pruning rate for Pruning
and Soteria and noise magnitude for DP-Gaussian and DP-Laplace. We tune 𝛽 and iter (i.e., iteration) for solving Equation 5.

size 𝜂 ≤ 1

𝜏 . Suppose the model is updated using 𝛿∗𝑡 = ∇𝜃𝑡 𝐿(𝑥, 𝜃𝑡 ) +𝛿𝑡
in the 𝑡-th (𝑡 = 0, 1, · · · , 𝑘 − 1) iteration where 𝛿∗𝑡 denotes the op-
timal solution of Equation 5, i.e., 𝛿𝑡 is the crafted gradient pertur-
bations. If ∇𝜃𝑡 𝐿(𝑥, 𝜃𝑡 )𝑇 𝛿𝑡 ≥ 0, and | |∇𝜃𝑡 𝐿(𝑥, 𝜃𝑡 ) | |22 ≥ ||𝛿𝑡 | |2

2
for

𝑡 = 0, 1, · · · , 𝑘 − 1, the following inequality relationship holds:

𝐿(𝑥, 𝜃𝑘 ) ≤ 𝐿(𝑥, 𝜃∗) + 1

2𝑘𝜂
| |𝜃0 − 𝜃∗ | |2

2
+ 𝜂 | |𝛿𝑚𝑎𝑥 | |22, (6)

where | |𝛿𝑚𝑎𝑥 | |2
2
= 𝑚𝑎𝑥{| |𝛿0 | |2

2
, · · · , | |𝛿𝑘−1 | |22}. In particular, if 𝑘 is

large enough, compared to the optimal solution 𝜃∗, the extra loss
induced by our method is no more than 𝜂 | |𝛿𝑚𝑎𝑥 | |2

2
, i.e.,

lim

𝑘→+∞
𝐿(𝑥, 𝜃𝑘 ) ≤ lim

𝑘→+∞
(𝐿(𝑥, 𝜃∗) + 1

2𝑘𝜂
| |𝜃0 − 𝜃∗ | |2

2
+ 𝜂 | |𝛿𝑚𝑎𝑥 | |22)

= 𝐿(𝑥, 𝜃∗) + 𝜂 | |𝛿𝑚𝑎𝑥 | |22 .
(7)

4.5 Comparison with Other Defense Methods
Here, we discuss the relationships among existing defense methods

and the possibility of the defenses being broken by the white-box

attacker [2]. In fact, existing defense approaches resist gradient

leakage attacks by transforming ground-truth gradients into new

gradients, i.e., dubbed transformed gradients, to upload, and the

transformed gradients may fool the attacker to recover false data. If

M denotes the gradient transformation function, existing defenses

can be reduced to concretize M in different fashions. We give a

handful of examples to illustrate this point:

• For differential privacy [1], M first normalizes the ground-

truth gradients and then adds random noises, following a

certain distribution such as Gaussian distribution, into the

normalized gradients to produce transformed gradients.

• For gradient compression [27], M discards the elements

below a certain threshold in the ground-truth gradients to

generate transformed gradients.

• For Soteria [20], similar to gradient compression,M removes

some specified gradients in the fully-connection layer of the

model via analytically solving an optimization task.

• For Guardian, M optimizes Equation 5 to craft transformed

gradients.

Security discussion. In the white-box scenario, the attacker is

allowed to access full information aboutM, e.g., the distribution

for differential privacy. For differential privacy and gradient com-

pression, the attacker can adopt Bayes gradient strategy [2] to

break the defenses. Soteria only optimizes the gradients in the

(last) fully-connected layer, indicating the gradients in other lay-

ers are identical to ground-truth gradients. Therefore, the attacker

can evade the defense Soteria by resetting weights of gradients in

the fully-connected layer in Equation 1 as zero. Now we consider

Guardian. On the one hand, we empirically validate that Guardian
is effective against gradient leakage attacks with Bayes gradient

strategy. On the other hand, adopting the attack strategy similar

to Soteria cannot break Guardian, because Guardian optimizes all

gradients, not gradients belonging to one or several specified layers.

In addition,M defined in Guardian (Equation 5) is not reversible.

Even if the attacker knows the final loss value, it still cannot reverse

the ground-truth gradients, as the equation is under-determined

(there are infinite feasible solutions for solving it).
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5 EXPERIMENTAL EVALUATION
5.1 Setup
Attack methods. We select four strong attack methods, including

GLA [27], iGLA [26], InvertingGradients [11], and GradInversion

[24]. To further raise the attack ability, we also equip these attacks

with techniques that can improve the fidelity of recovered data,

such as input regularization, smarter initialization, and normaliza-

tion. To accurately evaluate the defense performance, we raise the

attack iterations from 200 for GLA and iGLA and 1000 for Inverting-

Gradients and GradInversion to 10000. Notice that, by default, each
attack-defense pair is equipped with the corresponding Bayes optimal
strategy with the same setting to [2] throughout the experiments.
Competitors. We compare Guardian with various state-of-the-art

defenses as follows: 1) gradient compression (Pruning) [27] that

discards a certain percentage of gradients with the lowest magni-

tude, 2) differential privacy (DP) [1] that injects certain random

noises to the gradients to fool the attacker and the gradient norms

are clipped into 1 by default following [2], and 3) Soteria [20] that

perturbs data representation in the final fully-connected layer
4
.

Moreover, we also set 𝜖 in Equation 5 to 1.

Hyperparameter configurations. For fair comparisons, we first

conduct experiments on two benchmark datasets MNIST with

LeNet and CIFAR-10 with ResNet18 [21] to search the optimal

hyperparameters, which are used throughout the experiments. Fol-

lowing the original papers [11, 24, 26, 27], GLA and iGLA leverage

the L-BFGS with a learning rate of 1 while InvertingGradients and

GradInversion use Adam with a learning rate of 0.1. Moreover, we

examine the effectiveness of defenses in the early training process,

as gradient leakage attacks perform better in the stage [18].

Evaluation metrics. Two commonly used metrics [18, 21, 27] are

considered: PSNR and SSIM. PSNR is the logarithmic 𝐿2 distance

between original and recovered images, while SSIM computes the

structural similarity between two images. The lower PSNR or SSIM

is, the higher the defense effect is.

5.2 Hyperparameter Search
We first examine the impact of Guardian on the performance of

the global model. Following [20], in each communication round

(iteration), 5 participants are randomly selected from all ones (10

participants) to upload locally-computed gradients with batch size

of 32. The server averagely aggregates the uploaded gradients and

updates the global model with a learning rate of 0.01. Figure 3

shows the accuracy of defenses with varying hyperparameters over

different iterations in CIFAR-10. For fair comparisons, we select the

highest (optimal defense effect) hyperparameters within the range

that the model can achieve similar performance compared with one

without defenses for CIFAR-10. Specifically, in the following exper-

iments, we use pruning rate of 0.2 for Pruning, noise magnitude of

0.001 for both DP-Gaussian and DP-Laplace, 𝐿0-norm constraint

of 0.2 for Soteria, and 𝛽 of 10 and epoch of 10 for our defense.

Notice that, due to page restrictions, we only provide empirical

convergence results in CIFAR-10, but we highlight that results in

MNIST and for other model architectures also empirically show

4
Since we do not find the official implementation of Soteria, we resort to a third-party

implementation.

Figure 4: Visualization of different defenses.

Figure 5: Defense display on Vision Transformer.

that these hyperparameters are the best in terms of the choices of

hyperparameters.

5.3 Comparison with State-of-the-art
Table 2 and Table 3 report the defense performance, measured by

PSNR and SSIM, of Guardian with four baseline defenses against

four attacks on MNIST and CIFAR-10. There are two key observa-

tions. First, compared with other defenses, Guardian can effectively

lower the attack performance of these advanced attacks. In fact,

we notice that baseline defenses only present negligible defense

effectiveness, as these defenses hardly reduce PSNR or SSIM scores,

which also is validated in [2]. To perceptually demonstrate the effec-

tiveness of Guardian compared with baselines, Figure 4 visualizes

the reconstructed images with different defenses for a randomly se-

lected image instance. We observe the overall semantic information

in the original image can be exactly reconstructed by four attacks

against baseline defenses; whereas, the attacks only can steal a

little trivial information under our defense. Second, the fidelity

of images recovered by InvertingGradients and GradInversion is

worse than GLA and iGLA. This is because, GLA and iGLA adopt

𝐿2-norm distance between gradients as the loss function, which is a

better option over negative cosine distance in our case. In the early

training stage, the convolution filters fail to effectively capture the

semantic information contained in the inputs, i.e., gradient direc-

tion does not make sense. As a result, only encouraging alignment

between dummy gradients and uploaded gradients is not sufficient

to recover ground-truth images.

5.4 Generality Validation for Transformer
Guardian on Vision Transformer [5]. Table 4 reports PSNR

and SSIM of Guardian compared with baselines. Overall, the perfor-

mance of Guardian surpasses baselines by a huge margin. Besides,

we observe that the attack effectiveness on Vision Transformer
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Table 2: The defense effectiveness of different methods measured by SSIM and PSNR on MNIST.

Defense Vanilla Pruning DP-Gaussian DP-Laplace Soteria Our

Metric SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

GLA 0.90 20.20 0.87 19.04 0.88 19.88 0.87 19.22 0.85 18.59 0.66 10.77
iGLA 0.91 20.60 0.90 19.87 0.90 20.03 0.90 19.21 0.89 18.88 0.62 10.98

InvertingGradients 0.85 18.12 0.79 16.94 0.78 16.87 0.78 17.57 0.76 16.89 0.62 9.70
GradInversion 0.88 18.85 0.83 17.68 0.81 18.70 0.80 18.80 0.76 17.03 0.61 10.55

Table 3: The defense effectiveness of different methods measured by SSIM and PSNR on CIFAR-10.

Defense Vanilla Pruning DP-Gaussian DP-Laplace Soteria Guardian (Our)

Metric SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

GLA 0.91 14.82 0.81 11.67 0.88 13.43 0.84 12.09 0.89 11.23 0.53 6.58
iGLA 0.92 15.16 0.83 12.15 0.90 13.62 0.86 12.32 0.91 11.53 0.55 6.64

InvertingGradients 0.83 12.29 0.77 10.60 0.85 12.13 0.82 12.07 0.84 10.53 0.55 5.65
GradInversion 0.86 13.09 0.79 11.45 0.88 12.72 0.84 12.62 0.87 10.71 0.57 6.37

Table 4: The effectiveness of different defenses with Vision Transformer on CIFAR-10.

Defense Vanilla Pruning DP-Gaussian DP-Laplace Soteria Guardian (Our)

Metric SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

GLA 0.65 7.81 0.55 5.65 0.58 7.37 0.57 6.97 0.56 7.65 0.22 2.64
iGLA 0.67 7.94 0.57 5.73 0.64 7.70 0.63 7.14 0.59 7.68 0.24 2.88

InvertingGradients 0.32 3.28 0.24 2.33 0.21 2.20 0.19 1.96 0.22 2.70 0.06 0.99
GradInversion 0.34 3.34 0.28 2.42 0.26 2.66 0.30 2.24 0.25 3.31 0.07 -0.01

Table 5: The effectiveness of different defenses for text clas-
sification task with BERT model.

Attack Defense Vanilla Pruning DP-Gaussian DP-Laplace Soteria Guardian (Our)

iGLA

Precision 34.07 32.02 32.82 30.20 29.66 25.81
Recall 33.31 31.59 33.00 29.03 28.12 27.16
F1 33.69 31.81 32.91 29.62 28.89 26.49

TAG

Precision 32.25 32.33 31.06 30.99 30.30 26.78
Recall 31.93 32.11 30.50 30.25 29.85 26.82
F1 32.09 32.22 30.78 30.62 30.08 26.80

SIM

Precision 52.01 51.90 50.92 52.09 51.21 41.41
Recall 48.59 48.27 47.80 48.76 47.99 38.15
F1 50.30 50.09 49.36 50.42 49.60 39.78

Table 6: The trade-off between model accuracy and privacy
protection of different methods against iGLA in CIFAR-10.

Guardian

ACC 80.36 79.88 79.67 64.73 30.01

PSNR 10.02 9.57 6.64 2.00 0.11

Soteria

ACC 80.33 80.21 78.83 77.40 71.09

PSNR 11.53 11.61 11.30 11.82 11.52

DP-Gaussian

ACC 74.83 74.96 73.72 43.47 18.66

PSNR 18.38 13.62 7.31 3.61 1.59

DP-Laplace

ACC 76.47 74.08 74.20 51.64 20.82

PSNR 17.86 12.32 7.04 3.42 0.73

is seemingly weaker compared to convolutional architectures. To

understand the reason behind it, we visualize the recovered images

shown in Figure 5. Wherein, the important semantic information is

indeed revealed, but the images are reconstructed by some block-

like fragments in improper orders. We speculate that this probably

is caused by that the inputs for vision transformer are commonly

pre-processed to be cut into non-overlap patches. Furthermore, at-

tacks can effectively reconstruct each patch but fail in arranging

the location of these patches, resulting in poor attack performance.

Table 7: The performance of different methods against iGLA
in Non-IID setting (CIFAR-10).

DP-Gaussian

ACC 74.63 72.71 71.23 63.27 19.92

PSNR 18.31 13.79 7.15 3.37 1.36

DP-Laplace

ACC 74.80 73.24 71.59 64.10 20.17

PSNR 17.79 12.68 6.91 3.75 1.08

Soteria

ACC 74.48 74.42 71.87 67.78 65.86

PSNR 11.50 11.08 11.59 11.44 11.46

Guardian
ACC 74.37 73.96 73.63 59.58 27.31

PSNR 10.09 9.44 6.33 1.24 0.35

Guardian on BERT. For NLP tasks, the metrics for CV tasks

are no longer suitable and we leverage precision, recall, and F1

scores to evaluate the defense performance. Precision measures the

ability of attacks to identify only the relevant words while recall

measures the ability of attacks to find all the words within the

ground-truth sentence. F1 is the average value of precision and

recall scores. Moreover, following [4], we evaluate the performance

of defenses on SST-2 dataset for language models BERT. In addition,

some gradient leakage attacks for CV is not available to NLP tasks.

Therefore, aside from using iGLA and a recently-proposed attack

method called TAG [4], we replace 𝐿2-norm loss function in iGLA

with the cosine distance loss function to form a new attack method

called SIM to evaluate the effectiveness of defenses. Table 5 reports

the performance of defenses over three attacks for BERT. As can

be seen in Table 5, Guardian obtains better performance, i.e., lower

precision, recall, and F1 metrics (about 10% drop), against three

attacks. In contrast, other defenses only slightly lower the three

metrics by around 1% to 4%. Moreover, the attack effectiveness

of SIM significantly surpasses other attacks, since parameters of

pre-trained model contain general knowledge, and increasing the
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Table 8: The two reconstructed examples via SIM under dif-
ferent defenses against BERT. The texts in red color indicate
they appear in the original sentence.

Example 1 (short sentence) Example 2 (long sentence)

Original

it’s a charming and

often affecting journey.

even horror fans will most

likely not find what

they’re seeking

with trouble every day;the movie

lacks both thrills and humor.

Vanilla

a affecting often charming

affecting s arc

journey it a and affecting wildly

probable the trouble tortricidae

of not almost triple

what not fans rid find will particular

trouble both even day

Pruning

umm charming a the

and affecting often

it charming s journey

affecting journey

wrongly even will on fans sight not

trouble horror lara each what what find

hammer whatever most

DP-Gaussian

a often affecting it affecting

erinaand seas.

charming a that charming journey

horror hope clive likely trouble day us even

what not cinema lacks a ind will humor

DP-Laplace

and affecting it journey

premises charming

contemporary journey charming

charming

fans likely with not thrills ua dumont

likely will fewer find trouble even

undertaker what are will

Guardian (our)

is your cut ’ Luton

appropriately affecting

differently upside it

say strait horror dessert guiana ad till

smart every solve up even not location albeit

chiefs chimney day dating save orbit will

alignment between gradients makes more sense. We also show the

recovered sentences by SIM (best attack performance) in Table 8.

5.5 Privacy-Utility Trade-off
Here we are interested in whether a better trade-off between model

performance and privacy protection can be obtained by Guardian
compared with baselines when varying hyperparameters (defense

magnitude). We tune 𝛽 for Guardian with fixed iteration over

{0.1,1,10,100,1000}, pruning rate of Soteria over {0.01,0.05,0.1,0.2,0.5},

noisemagnitude for DP-Gaussian andDP-Laplace over {10−4, · · · , 1}
(these hyperparameters correspond to the results in Table 6 from

left to right) and report defense results against iGLA in Table 6.

Compared with DP-Gaussian and DP-Laplace, Guardian consis-

tently obtains better trade-offs, i.e., lower PSNR with better (or

similar) accuracy. Notice that, as shown in [2], Soteria can be easily

evaded by muting the gradients of the fully-connected layer in gra-

dient matching problems, i.e., Soteria only can achieve a negligible

defense performance.

5.6 Model Performance in Non-IID setting
We endeavor to examine the effectiveness of different defenses in

maintaining model performance in Non-IID setting. To do so, we

reuse the training setup in Section 5.2 and solely modify the data

distribution of participants. In particular, the data distribution is

randomly generated by a symmetric Dirichlet distribution with a

concentration parameter of 1 [14, 17]. Following the determination

of the chosen distribution, we proceed to run various defense strate-

gies. The accuracy of the model without defenses is about 74.85%,

and Table 7 reports the results of different defenses against iGLA in

Non-IID setting. Similar to the conclusion in Section 5.5, Guardian
still achieves better trade-offs.

Figure 6: The defense performance of Guardian over differ-
ent hyperparameters 𝛽 and iterations.

Table 9: Time complexity comparison of different defenses.

Defense Vanilla Pruning DP-Gaussian DP-Laplace Soteria Our

Time (s) 5.15 6.18 6.13 6.14 4935.51 6.36

5.7 Sensitivity Analysis
Figure 6 shows that the effectiveness of Guardian over different 𝛽

and iterations. As shown in Figure 6, lower 𝛽 (≤ 10
−2
) and itera-

tions (= 1) only produce negligible defense performance against

attacks. If 𝛼 ≥ 10 together with iterations ≥ 100, the significant

defense performance can be reaped but with the non-trivial sacri-

fice of model performance. In short, there is a trade-off between

performance maintenance and privacy protection. The higher 𝛽 and

iterations are, the stronger the defense performance of Guardian
owns, and the lower the model performance is.

5.8 Time Complexity Comparison
We compare the time complexity of different defenses under the

setting used in Section 5.3. Table 9 presents the time consumption

for 10 iterations of each defense. Guardian demonstrates competi-

tive performance in terms of time efficiency. It is worth noting that

Soteria requires a significant amount of time due to the need to

run backpropagation algorithms multiple times, which is directly

related to the number of neurons in the penultimate layer.

6 CONCLUSION
We developed Guardian which jointly optimizes PMM and PPM

to produce transformed gradients. We showed the convergence

guarantee ofGuardian and introduced a better initialization strategy
to decrease the overhead. We conducted extensive experiments to

illustrate the superior performance of Guardian.
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