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ABSTRACT
Image-text retrieval is a challenging cross-modal task that arouses
much attention. While the traditional methods cannot break down
the barriers between different modalities, Vision-Language Pre-
trained (VLP) models greatly improve image-text retrieval perfor-
mance based on massive image-text pairs. Nonetheless, the VLP-
based methods are still prone to produce retrieval results that can-
not be cross-modal aligned with entities. Recent efforts try to fix
this problem at the pre-training stage, which is not only expensive
but also unpractical due to the unavailable of full datasets. In this
paper, we novelly propose a lightweight and practical approach to
align cross-modal entities for image-text retrieval upon VLP models
only at the fine-tuning and re-ranking stages. We employ external
knowledge and tools to construct extra fine-grained image-text
pairs, and then emphasize cross-modal entity alignment through
contrastive learning and entity-level mask modeling in fine-tuning.
Besides, two re-ranking strategies are proposed, including one spe-
cially designed for zero-shot scenarios. Extensive experiments
with several VLP models on multiple Chinese and English datasets
show that our approach achieves state-of-the-art results in nearly
all settings.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval; Retrieval models and ranking.
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1 INTRODUCTION
Image-text retrieval is a challenging cross-modal task, which re-
quires retrieving semantically correlated text (or image) samples for
a given image (or text) sample from a predefined database [7, 17].
With the development of social media, image-text retrieval be-
comes a more and more important and hot research topic in several
communities including multimedia [8], computer vision [40], and
natural language processing [5].

The key challenge in image-text retrieval lies in how to do rep-
resentation learning for image and text data, and then measure the
cross-modal similarity between their representations. To address
the challenge, one line of traditional methods tend to encode sam-
ples of different modalities in a unified embedding space [25], while
the other line of traditional efforts prefer to encode images and
texts separately and then compute the distance between images and
texts through metric learning [5, 7, 45]. However, without sufficient
training data, traditional methods cannot break down the barriers
between the representation learning of different modalities, which
also limits the learning on cross-modal matching mechanisms. Re-
cently, Vision-Language Pre-trained (VLP) models [1, 3, 30] show
increasing power in greatly improving the performance of many
cross-modal tasks under either zero-shot or fine-tuning scenarios.
Based on massive image-text pairs, the VLP models learn more
adequate cross-modal association information through various self-
supervised pre-training tasks [28, 31] and the Transformer struc-
ture [11, 12], thus greatly alleviating the shortcomings of traditional
image-text retrieval methods.
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Figure 1: Three mismatched image-text retrieval cases of
Wukong𝑽 𝒊𝑻−𝑳 [11] fine-tuned on COCO-CN [29]

However, the current VLP models have not yet realized fine-
grained cross-modal semantic matching mechanism. Although some
fine-grained cross-modal association, like image object-token corre-
spondence [1, 27, 30] and region patch-token correspondence [46],
are explored, VLP-based image-text retrieval models may still out-
put incorrect retrieval results where entities cannot be aligned
between the query data and the retrieved data. See the three mis-
matched cases in Figure 1: in the first case, the “pineapple” in the
query does not appear in the predicted image. Similarly, in the
second case, the model only pays attention to the matching of “veg-
etables” and “plates”, but ignores another important entity “kimbap”
in the query. Also, it has a misjudgment about the number of plates.
In the third case, the predicted text does not contain “apple” and
“cake” which can be apparently observed in the query image.

Recent efforts [3, 30, 48] try to fix this problem by emphasizing
the correspondence of cross-modal entities (i.e., the visual entities
in images and the entity mentions in texts) in the pre-training stage
of VLP. Some work [3, 48] constructs scene graphs from images
and texts separately and then align them, while some other works
leverage external knowledge such as external object detector [30]
or multi-lingual datasets [49] for improving fine-grained cross-
modal matching. Despite their success, the improvement in the
pre-training stage of VLP requires to re-train the large models
with extremely high computational costs. Moreover, the full image-
text pair datasets are usually not publicly available, which further
decreases the practical values of these approaches.

In this paper, we novelly propose a lightweight and practical
approach, AGREE, to AliGn cRoss-modal EntitiEs for image-text
retrieval upon VLP models ONLY at the fine-tuning and re-ranking
stages. Particularly, several optimization methods are designed
and adopted to enhance cross-modal entity alignment for both
fine-tuning and zero-shot scenarios. In the fine-tuning step, we
first obtain visual entity-image pairs from the external knowledge
base Visual Genome [19], which can then be used to learn the
alignment between visual entities and their corresponding images
through contrastive learning and image region mask modeling.
Secondly, we construct a sentence only with textual entities and
their visualizable properties (such as color and number) contained

in each text, and then learn the alignment between the sentence and
its corresponding image through contrastive learning and textual
entity mask modeling. Last but not the least, we emphasize the
importance of cross-modal entity alignment by randomly masking
entities either in the image or in the text to let the model be more
sensitive to the missing of aligned entities across modalities. In the
re-ranking step, we take the top-𝑘 (e.g. 𝑘=10) retrieval results to
do reverse image-text retrieval, whose results are then taken into
account for re-ranking. Specifically, for the zero-shot scenarios,
which do not have the fine-tuning step, we also take the top-𝑘
retrieval results to calculate the similarity between the entities
from images and texts, which are also considered in re-ranking.
Our experiments demonstrate that the proposed methods benefit
both fine-tuning scenarios and zero-shot scenarios.

The main contributions of this paper are threefold:

• We novelly propose a lightweight and practical approach to align
cross-modal entities for image-text retrieval upon VLP models
only at the fine-tuning and re-ranking stages.

• Weemploy external knowledge and tools to construct fine-grained
vision-text pairs, and then emphasize cross-modal entity align-
ment through contrastive learning and entity-level mask mod-
eling for fine-tuning. Besides, two strategies are designed for
re-ranking, including one specially designed for zero-shot.

• Extensive experiments with several VLP models on multiple
Chinese and English datasets show that our approach achieves
state-of-the-art results in nearly all settings.

2 RELATEDWORK
Image-text retrieval attracts growing attention in recent years [5,
7, 8, 17, 40]. In the following, we first cover traditional methods
without using Vision-Language Pre-trained (VLP) models [1, 3, 30],
and then introduce the mainstream methods based on VLPs.
Traditional Image-Text Retrieval. Traditional image-text re-
trieval methods usually learn a shared embedding space to directly
compare features of different modalities [21, 25], or to learn an
objective in the embedding space, enabling the distance of matched
pairs closer and mismatched pairs far away [5, 7, 45]. Some work
also combines both of the advantages through knowledge distilla-
tion [22], to transfer fine-grained alignment learning from cross-
attention to dual-encoder fast retrieval model [10], balancing the
retrieval efficiency and accuracy.

For fine-grained local alignment on the text side, a general ap-
proach is to exploit a multi-label detector to detect semantic con-
cepts, and then fuse these concepts with the global representation
of the image [13], or construct scene graphs to utilize consensus
based on the concept co-occurrence relationship [41]. Another type
of frequently-used method pays more attention to local image fea-
tures, by extracting region features for fine-grained vision-semantic
matching [17]. Such methods generally treat all fine-grained in-
formation of images (region) and texts (word) in a unified manner
and obtain a correlation score of fine-grained cross-modal infor-
mation [21] with the help of attention mechanism, which often
requires complex cross-modal interaction. Another disadvantage
brought by this kind of approach lies in the limitations of pre-
defined labels, and the dataset-based co-occurrence statistics may
also introduce strong inductive bias.
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Figure 2: Overview framework of AGREE

VLP-based Image-Text Retrieval. The emergence of VLP models
greatly improves the performance of image-text retrieval [9, 11, 36].
While single-stream VLP models [1, 23] concatenate images and
texts as one input, dual-stream VLP models [24, 36, 39, 46] project
the representations of images and texts into a unified embedding
space by contrastive learning.

To focus more on fine-grained cross-modal alignment, some
work uses patch-token late-similarity calculation [46], or utilizes
region-level image information [9, 27, 30]. Some other work incor-
porates prior knowledge to enhance pretraining [3, 30, 48, 49]. For
instance, [48] finds a novel way to analyze the textual syntactic
structure and introduce scene graphs to fuse with the image’s lo-
cal features, and [3] integrates the cross-modal and intra-modal
knowledge simultaneously in a unified scene graph, all of which
commit to fine-grained interaction and knowledge injection during
the pretraining stage. Despite their success, the improvements in
the pre-training stage are quite expensive and usually impractical
for those who do not have the complete training dataset. Thus, this
paper innovatively proposes a lightweight and practical approach
to align cross-modal entities for image-text retrieval upon VLP
models only at the fine-tuning and re-ranking stages.

3 METHODOLOGY
This section first gives a formal definition to the image-text retrieval
task, and then presents the overview framework of our approach,
followed with the proposed cross-modal entity alignment methods
adopted in the fine-tuning and re-ranking stages respectively.

3.1 Task Formulation
Given a collection of image-text pairs in 𝐷 = {𝑉 ,𝑇 }𝑁 , where
𝑉 = {𝑣𝑚}𝑁

𝑚=1 and 𝑇 = {𝑡𝑚}𝑁
𝑚=1 are the sets of images and texts

respectively, and each image 𝑣 ∈ 𝑉 is associated with one or several
𝑡 ∈ 𝑇 , denoted as 𝑣 ≈ 𝑡 , the task of image-text retrieval can be
performed in two settings: 1) Given a query text sample 𝑡𝑞 ∈ 𝑇 , the
task aims to retrieve all the 𝑣 ∈ 𝑉 satisfying 𝑣 ≈ 𝑡𝑞 ; or 2) Given a
query image sample 𝑣𝑞 ∈ 𝑉 , the task aims to retrieve all the 𝑡 ∈ 𝑇

satisfying 𝑡 ≈ 𝑣𝑞 .

3.2 Framework Overview
The overview framework of AGREE is depicted in Figure 2. Initially,
we identify the textual entities from the texts and the visual entities
from the images, which are then encoded together with the original

texts and images by the pre-trained VLP models. After that, we go
to the fine-tuning stage, where three different modules are designed
to learn the alignment between cross-modal entities:
• Visual Entity-Image Alignment (VEA) obtains visual entity-
image pairs from Visual Genome [19], which are used to learn
the alignment between visual entities and their corresponding
images by contrastive learning and image region mask modeling.

• Textual Entity-Image Alignment (TEA) constructs a sentence
only with textual entities and their visualizable properties (such
as color and number) contained in each text, and then learns the
alignment between the sentence and its corresponding image
through contrastive learning and textual entity mask modeling.

• Text-Image Entity Alignment (TIA) further emphasizes the
importance of cross-modal entity alignment by randomly mask-
ing entities grounded in the image to let the model be more
sensitive to the missing of aligned entities across modalities.
Then we go to the re-ranking stage, which expects to refine the

top-𝑘 ranking results with designed re-ranking strategies below:
• Text-Image Bidirectional Re-ranking (TBR) takes the top-𝑘
(e.g. 𝑘=10) retrieval results to do reverse image-text retrieval,
whose results are then taken into account for re-ranking.

• Textual Entity-Guided Re-ranking (EGR) is specifically de-
signed for the zero-shot scenarios, which takes the top-𝑘 retrieval
results to calculate the similarity between the entities from im-
ages and texts, and then considers the similarities to refine the
ranking result.

3.3 Entity Alignment in Fine-tuning
The fine-tuning of AGREE is built upon an image-text contrastive
learning paradigm [36], which expects to shorten the distance be-
tween related images and texts, and far push those irrelevant ones
in the embedding space.

The overall architecture of the fine-tuning is depicted in Figure 3,
where both global similarity and entity similarity are calculated
and then fused. While the global similarity is the similarity directly
calculated between the embedding of image and text, the entity
similarity is the cross-modal entity alignment that emphasizes sim-
ilarity between an image-text pair based on three novelly proposed
modules including VEA, TEA, and TIA. Particularly, VEA inputs the
entity labels with corresponding images obtained from the external
Multi-modal Knowledge Base (MMKB) and outputs the similarity
between visual image and labels with two sub-modules VEM and
MVC. TEA consists of 2 sub-modules TEE and MEC, which receives
the text with textual entities and the image as input, and outputs the
similarity between textual entities with the image. TIA also accepts
the original image and text with entities, but learns to calculate the
similarity between text entities with grounded images entities.

𝐿 =
1
2

∑︁
𝑘=1

𝑏 (𝐿𝑉
𝑘
+ 𝐿𝑇

𝑘
) (1)

Here we denote visual entities extracted from images as𝑉𝑜𝑏 𝑗 , and
textual entities extracted from texts as 𝑇𝑒𝑛𝑡 . After encoded by VLP
models, the representation of visual entities are 𝑣𝑖𝑜𝑖 = 𝑔(𝑥𝑖 ;𝛾𝛼 ) ∈
R𝑑𝑖 and that of the textual entities are 𝑡𝑡𝑒 𝑗 = 𝑔(𝑥 𝑗 ;𝛾𝛽 ) ∈ R𝑑𝑡 . Under
the same contrastive learning paradigm for all fine-tuning modules,
we sample 𝑏 image-text pairs {𝑖𝑉

𝑘
, 𝑡𝑇
𝑘
}𝑏
𝑘=1 with an image set 𝑉 and

a text set 𝑇 in a training batch, and for an image 𝑖𝑉
𝑘

∈ 𝑉 in the
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selected samples, the text 𝑡𝑇
𝑘
∈ 𝑇 is treated as its positive pair, while

other texts are as in-batch negative samples. The contrastive loss
of images and texts can be expressed as Equation (1), where the 𝐿𝑉

𝑘

and 𝐿𝑇
𝑘
refer to the image-to-text and text-to-image contrastive loss

respectively. Taking image-to-text as an example, the loss function
can be formulated as Equation (2) where 𝑠𝑉

𝑗,𝑘
denotes the 𝑘-th image

to the 𝑗-th text. It is symmetric with the text-to-image part.
Following the contrastive learning paradigm, entities 𝑡𝑇𝑡𝑒𝑘 ex-

tracted from text 𝑡𝑇
𝑘
can be utilized as positive samples of the corre-

sponding image 𝑖𝑉
𝑘
indicating textual-image entity-level alignment,

while entities not mentioned in text 𝑡𝑇
𝑘
are regarded as negative

samples. So as to the label of visual object 𝑖𝑉
𝑖𝑜𝑘

from image 𝑖𝑉
𝑘
, while

labels that are not detected from the image are negative ones.
𝐿𝑉
𝑘
(𝑖𝑉
𝑘
, {𝑡𝑇𝑗 }𝑏𝑗=1 ) = −𝑙𝑜𝑔 (𝑒𝑥𝑝 (𝑠𝑉

𝑘,𝑘
)/
∑︁
𝑗

𝑒𝑥𝑝 (𝑠𝑉
𝑗,𝑘

) ) (2)

In the following, we give more technical details of the three
modules designed for calculating the entity similarity between
each image-text pair.
Visual Entity-Image Alignment. Unlike many existing VLP mod-
els relying heavily on object detection models for fine-grained in-
teractions [1, 9, 27, 30, 34, 39], we simply use the detected labels as
meditation and re-establish an object-image library as MMKB for vi-
sual knowledge to align with their visual images. We choose Visual
Genome (VG) [19], and design simple heuristic rules to filter images.
Details for MMKB construction are described in Section 4.2. During
fine-tuning, a label set of visual entities for in-batch 𝑁 image with 𝑘
entities𝑉𝑂 = {𝑖𝑜𝑚}𝑘

𝑚=1 are collected, and related images of entities
are found from our filtered MMKB. We explore 2 tasks to learn the
entity-image alignment of each visual entity, following the para-
digm of image-text contrastive learning. The overall loss function
can be expressed as Equation 𝐿𝑜𝑠𝑠𝑉𝐸𝐴 = 1

2 (𝐿𝑜𝑠𝑠𝑉𝐸𝑀 + 𝐿𝑜𝑠𝑠𝑀𝑉𝐶 ),
where 𝐿𝑜𝑠𝑠𝑉𝐸𝑀 and 𝐿𝑜𝑠𝑠𝑀𝑉𝐶 are two sub-modules.

𝐿𝑜𝑠𝑠𝑉𝐸𝑀 =
1
2

∑︁
𝑖=1

𝑘 (𝐿𝑉𝑂
𝑖 + 𝐿𝑇𝑂

𝑖 ) (3)

1)Visual Entity Matching. The image of a detected object 𝑣𝑜𝑖 in the
training batch is regarded as the positive sample of object image
𝑖𝑜𝑚 from MMKB. With consideration that short labels of entities
such as "sheperd dog" is inconsistent with the long and complete
sentences in pre-training data, we use a unified rule-based method
to construct the prompt [36] for the entity-level text samples to
align with the images from the visual side. The prompt we use
is expressed as "a photo contains {entity}". Here, we optimize to
match the label text of the visual object 𝑡𝑜𝑚 and its image 𝑖𝑜𝑚 ,
and formulate the loss function consistent with the global training
objective Equation (2).

In Equation (3), 𝑇𝑂 = {𝑡𝑜𝑚}𝑘
𝑚=1 refers to the set of object texts

and 𝑡𝑜𝑚 is the corresponding object caption for recalled image 𝑖𝑜𝑚 .
The distance of visual entity label and entity image is calculated

through the embedding of [CLS] token from visual and textual
entity encoders, denotes as 𝑇𝑡𝑜𝑐𝑙𝑠 and 𝑉𝑐𝑙𝑠 in Figure 3. The simple
framework enables the model to have the capacity of aligning object
images with their correct labels.
2) Masking Visual Entity Consistency Alignment. Inspired by the
pretraining task of VLP models to randomly mask some parts of the
image for Masked Regions Classification [23, 39] or Masked Regions
Features Regression [1, 48], we adopt masking strategy to learn

representations of visual entities, but in a different way. We draw
on the difference of similarity scores calculated between the label
prompt with the original image and the image with masked entities,
and minimize the margin ranking loss for visual entity consistency
learning in Equation 4, where 𝑦 = 1 and 𝑠𝑖𝑜𝑘 ,𝑡𝑜𝑘 denotes similarity
between image and text. The visual embedding of an image with
masked entity regions denotes 𝑉𝑤𝑜/𝑖𝑜𝑐𝑙𝑠 in Figure 3. 𝐿𝑜𝑠𝑠𝑀𝑉𝐶 is to
expect the score of the original image and object label higher, to
stress more on those missing visual entities.

𝐿𝑜𝑠𝑠𝑀𝑉𝐶 =
∑︁
𝑘=1

𝑚𝑎𝑥 (0, −𝑦 · (𝑠𝑖𝑜𝑘 ,𝑡𝑜𝑘 − 𝑠𝑖𝑜𝑘 (𝑤𝑜/𝑖𝑜 ) ,𝑡𝑜𝑘 ) ) (4)

Textual Entity-Image Alignment. Motivated by the case in Fig-
ure 4, we re-consider the asymmetry of the visual and textual in-
formation and pay extra attention to the entity-level information
in the text to align with the corresponding image.
1) Textual Entity Emphasizing Alignment. We first emphasize the
entity-level information in the captions with stress on tokens of
entities. Given an image-text pair {𝑖𝑉

𝑘
, 𝑡𝑇
𝑘
}, 𝑝 multi-level entity in-

formation from 𝑡𝑇
𝑘
are extracted, including named entities and the

attributes (colors and numerical information in particular), denoted
as𝑇𝐸 = {𝑡𝑒𝑚}𝑝

𝑚=1. As shown in Figure 3, we extract "a white boat"
(numerical), "a man" (entity), "blue clothes" (attribute), etc. Then
the constructed entity prompts are treated as additional positive
samples of image 𝑖𝑉

𝑘
for contrastive learning. The embedding of

prompt label is expressed as 𝑇 1
𝑡𝑒𝑐𝑙𝑠

,𝑇 2
𝑡𝑒𝑐𝑙𝑠

, . . . ,𝑇
𝑝
𝑡𝑒𝑐𝑙𝑠

, to calculate the
similarity with image embedding 𝑉𝑐𝑙𝑠 . We adopt average pooling
for multiple entities in the same text, to look out for the impor-
tance of all entities simultaneously but not only consider the align-
ment with part of the entities. The loss function consistent with
Equation (2) is expressed as Equation (5). Specifically, 𝐿𝑇𝐸

𝑖
denotes

𝐿𝑉
𝑘
({𝑖𝑉

𝑗
}𝑏
𝑗=1, 𝑡𝑒

𝑇𝐸
𝑘

) = − 1
𝑏
𝑙𝑜𝑔

𝑒𝑥𝑝 (𝑠𝑇
𝑘,𝑘

)∑
𝑗 𝑒𝑥𝑝 (𝑠𝑇𝐸

𝑗,𝑘
) for each entity text 𝑡𝑒𝑚

and 𝑃 denotes the number of entities limited for each caption.
𝐿𝑜𝑠𝑠𝑇𝐸𝐸 =

1
2𝑃

∑︁
𝑖=1

𝑘 (𝐿𝑉𝑖 + 𝐿𝑇𝐸
𝑖 ) (5)

2) Mask Entity Consistency Alignment. By masking the textual en-
tity tokens, we further consistently align images with text entities.
Though inspired by [50], we do not give an exact vocabulary and
classify entities like most models do, but adopt a more lightweight
way to learn a unified cross-modal representation of textual en-
tities. We re-compute the similarity between the original image
𝑖𝑉
𝑘
and text with masked entities 𝑡𝑤𝑜/𝑡𝑒 , expecting the similarity

𝑠𝑖𝑘 ,𝑡𝑘 (𝑤𝑜/𝑡𝑒 ) between the image and the corrupted sentence smaller
than that of the original text 𝑠𝑖𝑘 ,𝑡𝑘 . The embedding of text with
masked text denotes as 𝑇𝑤𝑜/𝑡𝑒𝑐𝑙𝑠 in Figure 3. Similar to the TEE
module, average pooling is adopted. Within a batch of 𝑏 image-text
pairs samples, the loss function can be formulated as Equation (6).

𝐿𝑜𝑠𝑠𝑀𝐸𝐶 =
∑︁
𝑘=1

𝑚𝑎𝑥 (0, −𝑦 · (𝑠𝑖𝑘 ,𝑡𝑘 − 𝑠𝑖𝑘 ,𝑡𝑘 (𝑤𝑜/𝑡𝑒 ) ) ) (6)

The objective of textual entity-image alignment is uniformed
optimized as 𝐿𝑜𝑠𝑠𝑇𝐸𝐴 = 1

2 (𝐿𝑜𝑠𝑠𝑇𝐸𝐸 + 𝐿𝑜𝑠𝑠𝑀𝐸𝐶 ).
As information in a single modality should be correlated with

another complementary modality, we enhance the textual entities
of image-text pairs to align with their visual representations in
images instead of introducing additional knowledge for entities.
Text-Image Entity Alignment. To further bridge the gap be-
tween modalities and compensate for the aligning defects due to
disordered vocabularies between heterogeneous information, we
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Figure 3: Architecture for AGREE fine-tuning framework. The inputs of the visual entity encoder are images of entities selected
from Visual Genome [19]. The inputs of the textual entity encoder contain entities from the texts using entity linking, as well
as label entities from Visual Genome, depending on the task. The box on the right top of the figure indicates visual and textual
inputs for each module.
utilize a pre-trained visual grounding model as anchors to identify
the region of each entity in the image for detected textual entities
𝑇𝐸 = {𝑡𝑒𝑚}𝑝

𝑚=1. The grounded entity is then masked in the image.

𝐿𝑜𝑠𝑠𝑇 𝐼𝐴 =
∑︁
𝑘=1

𝑚𝑎𝑥 (0, −𝑦 · (𝑠𝑖𝑘 ,𝑡𝑘 − 𝑠𝑖𝑘 (𝑤𝑜/𝑖𝑒 ) ,𝑡𝑘 ) ) (7)

We still maximize the dissimilarity between the image with
masked regions 𝑖𝑤𝑜/𝑖𝑒 , whose embedding is denoted as𝑉𝑤𝑜/𝑖𝑒𝑐𝑙𝑠 in
Figure 3, and 𝑠𝑖𝑘 (𝑤𝑜/𝑖𝑒 ) in Equation 7 is computed between𝑉𝑤𝑜/𝑖𝑒𝑐𝑙𝑠
and 𝑇𝑐𝑙𝑠 . In TIA, we only focus on the consistency of entities in
texts and images, since entity-image alignment on the visual side
has been learned in VEA. Following the training objective men-
tioned above, the loss function is expressed as Equation (7). We
jointly optimize VEA, TEA, and TIA. Each image and text requires
three times of forward propagation, without introducing addi-
tional encoders or parameters. The overall training objective is
𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐶𝐿𝐼𝑃 + 1

3 (𝐿𝑜𝑠𝑠𝑉𝐸𝐴 + 𝐿𝑜𝑠𝑠𝑇𝐸𝐴 + 𝐿𝑜𝑠𝑠𝑇 𝐼𝐴).

3.4 Entity-Alignment in Re-ranking
Entity-Guided Re-ranking. To further boost the performance of
VLPmodels with fine-grained entity-level interaction, we transform
the strategy of the TEA module in Section 3.3 stage into an entity-
alignment score for re-ranking. Following the same procedure,
we on the one side convert extracted entities for text 𝑡𝑇

𝑘
into a

prompt-based caption, and calculate with the candidate image 𝑖𝑉𝑚
as textual entity alignment score 𝑆𝑐𝑜𝑟𝑒𝑇𝐸𝐸 =

∑𝑝

𝑖=1 𝑠𝑖𝑚,𝑡𝑒𝑖 , and on
the other side, entities in the text are replaced with [MASK] for
textual entity consistency score as 𝑆𝑐𝑜𝑟𝑒𝑀𝐸𝐶 =

∑𝑝

𝑖=1𝑚𝑎𝑥 (0,−𝑦 ·
(𝑠𝑖𝑚,𝑡𝑖 − 𝑠𝑖𝑚,𝑡𝑖 (𝑤𝑜/𝑡𝑒 ) ). The entity-guided re-ranking score 𝑆𝑐𝑜𝑟𝑒𝐸𝐺𝑅

is calculated with the combination of 𝑆𝑐𝑜𝑟𝑒𝑇𝐸𝐸 and 𝑆𝑐𝑜𝑟𝑒𝑀𝐸𝐶 .
EGR only mimics the entity-level aligning process into image-

text similarity scores, which is more compatible with VLP models.
We adjust the coefficients of 𝑆𝑐𝑜𝑟𝑒𝐴𝑙𝑙 and 𝑆𝑐𝑜𝑟𝑒𝐸𝐺𝑅 on the valida-
tion set and apply them to the test set. The final score for ranking

is expressed as 𝑆𝑐𝑜𝑟𝑒𝐹𝑖𝑛𝑎𝑙 = 𝛼 · 𝑆𝑐𝑜𝑟𝑒𝐴𝑙𝑙 + (1 − 𝛼) · 𝑆𝑐𝑜𝑟𝑒𝐸𝐺𝑅 . Im-
ages and texts are first pre-ranked with 𝑆𝑐𝑜𝑟𝑒𝐴𝑙𝑙 for 𝑘 candidates
selection, and 𝑆𝑐𝑜𝑟𝑒𝐸𝐺𝑅 is then used to re-rank the 𝑘 candidates.

Figure 4: An example indicates the inconsistency of images
and texts, that captions are always concise but important,
while images usually contain abundant entities.

Text-Image Bidirectional Re-ranking. The inconsistency of re-
dundancy between rich visual information and concise textual
knowledge may lead to misjudgment by incomplete information
in one modality, particularly for those VLP models without fine-
grained interactions. Therefore, we propose to compensate for
the inconsistency by TBR, which introduces mutual information
from complementary modality as additional supervision signals
by reverse retrieval. TBR only relies on cross-modal samples them-
selves. Specifically, following [4], we see the text samples with the
highest similarity {𝑡𝑇

𝑟𝑎𝑛𝑘1
, 𝑡𝑇
𝑟𝑎𝑛𝑘2

, . . . , 𝑡𝑇
𝑟𝑎𝑛𝑘𝑘

} as reciprocal neigh-
bors of image 𝑖𝑉𝑚 , and oppositely retrieve the most similar images
to each text from the candidate pool. Here, we employ ranking
position only instead of the similarity score. Then the top-k candi-
dates of image 𝑖𝑉𝑚 are re-ranked with newly computed positions as
𝑟𝑎𝑛𝑘𝑡𝑇

𝑟𝑎𝑛𝑘𝑖

= (𝑟𝑎𝑛𝑘𝑡𝑇
𝑟𝑎𝑛𝑘𝑖

−𝑡𝑜−𝑖𝑉𝑚 + 𝑖)/2 for 𝑡𝑇
𝑟𝑎𝑛𝑘𝑖

. It is the same for
text-to-image retrieval. The simple but effective self-supervision
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only re-visits the ranking position, without the need for extra data,
but ensures the visual and textual alignment to a certain extent.

Our re-ranking strategy compensates for the lack of fine-grained
interaction, and avoids the wrong decisions made only through
partial information. The TBR module is also applied for fine-tuning
results for post-processing of image-text consistency alignment.

4 EXPERIMENTS
4.1 Experimental Setup

Table 1: Statistics of each image-text retrieval dataset.

Flickr30K [47] Flickr30K-CN [20] COCO-CN [29] MUGE [32]
#img. #sen. #img. #sen. #img. #sen. #img. #sen.

train 29,000 145,000 29,783 148,915 18,341 20,065 129,380 248,786
val 1,014 5,070 1,000 5,000 1,000 1,100 29,806 5,008
test 1,000 5,000 1,000 5,000 1,000 1,053 30,399 5,004

To demonstrate the improvement for the cross-modal retrieval task
of our proposed method, we conduct experiments on both Chinese
and English VLP models with datasets in the two languages.

For Chinese, we experiment onCOCO-CN [29], Flickr30k-CN [20]
and MUGE [32] datasets. COCO-CN is re-splitted from MSCOCO
[33] with human annotations, while Flickr30k-CN [20] is machine
translated from Flickr30k [47] with human-translated for the test
set. MUGE1 is an image-text dataset under e-commerce scenar-
ios, and only considers the text-to-image retrieval task. Since the
test set of MUGE is not released, we use the validation set instead.
Experiments in English are conducted on Flickr30k [47]. Detailed
datasets statistics are shown in Table 1.

We report standard retrieval metrics for evaluation: recall at rank
K denotes R-K and MR (mean recall of R-1, R-5, and R-10).

4.2 Implementation Details
Encoders. Following [11, 36], AGREE adopts the dual-encoder
architecture, with a text encoder and an image encoder. We use
the same encoder with sharing weights to encode visual and tex-
tual entities. Hidden state sequences obtained from image and text
encoders are used to perform global or entity-level computations.
1)Text Encoder. We follow the same architecture of [11, 36], and use
WordPiece [43] for Chinese tokenization and BPE [37] for tokeniz-
ing English. Besides, the special [MASK] token is introduced to mark
the masked entity tokens. Given an input text of 𝑁𝑡 tokens, the text
encoder outputs an embedding sequence {𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡1, . . . , 𝑡𝑁𝑡

, 𝑡𝑒𝑛𝑑 },
where 𝑡𝑠𝑡𝑎𝑟𝑡 denotes [CLS] for Chinese and [SOS] for English, and
𝑡𝑒𝑛𝑑 denotes [SEP] or [EOS], respectively.
2) Image Encoder. We adopt ViT [6] as the visual encoder, with
images uniformly re-scaled to 224× 224 and split into patches. Each
patch is then linearly projected with positional embeddings and a
[CLS] token. ViT-B/32 model includes 12 layers with a patch size
of 32, and ViT-L/14 model includes 24 layers with patch size of 14.

The similarity between image and text is computed between spe-
cial token 𝑡𝑒𝑛𝑑 of texts and [CLS] of images. We choose CLIP [36]
for English, and the CLIPViT−L in Wukong [11] (pre-trained only
with global similarity) for Chinese as the VLP model.
Fine-tuningModules 1) Visual Entity Extraction. We extract visual
entities in images usingmodel fine-tuned [39] onVisual Genome [19].
We select 38,848 images of 1600 image entities from Visual Genome
1https://tianchi.aliyun.com/muge

as the MMKB. We strictly restrict the size of entities in images
should not be smaller than 90 × 90, to avoid the interference which
may be caused by too small visual objects.
2) Visual Grounding. We exploit the pre-trained GLIP [26] 2 model
for visual grounding in the TIA module. The extracted textual
entities are queries, to locate the regions of entities in the image.
3) Textual Entity Linking NLP tools are utilized respectively to obtain
entities and attributes in Chinese and English. We then combine
attributes with corresponding entities as phrases for full semantics.
Specifically, we adopt LAC [16] for pre-processing Chinese captions,
and spacy3 for English text.

4.3 Model Training
To the best of our knowledge, neither Wukong [11] nor CLIP [36]
publicly provides fine-tuning parameters for downstream tasks. As
contrastive learning based VLPmodels usually require an extremely
large batch size, such as [46] using 5120 for fine-tuning, which is
also quite expensive for small laboratories or individual researchers.
Therefore, we reproduce the fine-tuning results of both models
using a smaller batch size with the re-implementation version in
PyTorch of Wukong [11] and CLIP [12] in EasyNLP4. We employ
NVIDIA V100 32G GPUs with a total batch size of 32 for ViT-L/14
and AdamW as the optimizer. The learning rate is set to 10−5, and
0.001 for weight decay, for 50 epochs fully fine-tuning. Compared
to [46], our settings are more acceptable and applicable.

4.4 Image-text Retrieval Results

Table 3: Fine-tuning results on Flickr30k [47].

Method
Flickr30k [47]

Image2Text Text2Image MRR-1 R-5 R-10 MR R-1 R-5 R-10 MR
E2E-VLP[44]† 86.2 97.5 - - 73.6 92.4 - - -
SOHO[14] 86.5 98.1 - - 72.5 92.7 - - -

Unicoder-VL[23]† 86.2 96.3 99.0 93.8 71.5 90.9 94.9 85.8 89.8
ROSITA [3]† 88.9 98.1 99.3 95.4 74.1 92.4 94.1 86.9 91.2
VILLA-L [9]† 87.9 97.5 98.8 94.7 76.3 94.2 96.8 89.1 91.9
UNITER-L [1]† 87.3 98.0 99.2 94.8 75.6 94.1 96.8 88.8 91.8
ERNIE-ViL [48] 89.2 97.3 99.1 95.2 75.1 93.4 96.3 88.3 91.7

LightningDOT [38] 87.2 98.3 99.0 94.8 75.6 94.0 96.6 88.7 91.8
VISTA-L [2]† 89.5 98.4 99.6 95.8 75.8 94.2 96.9 89.0 92.4
LoopITR [22] 89.6 98.6 99.5 95.9 77.2 94.3 97.6 89.7 92.8
Our Baseline 90.7 98.9 99.5 96.4 77.8 94.2 96.7 89.6 93.0

AGREE (FT only) 91.6 98.7 99.2 96.5 78.1 95.1 97.8 90.3 93.4
AGREE 92.1(↑1.4) 98.7 99.2 96.7 82.8(↑4.0) 95.9 97.8 92.1 94.4

Fine-tuning. Fine-tuning results using settings in Section4.3 with
pre-trained models publicly released byWukong [11] and CLIP [36]
are shown in the tables (denotes as Our Baseline), with the best
result for each metric in bold and the second best underlined. For
a fair comparison, we compare with models in their large settings
in Table 3 respectively)5 and also report the reported fine-tuning
results in Wukong [11] besides our baseline. The specific growth
value over "Our Baseline" is highlighted on the tables. We show
results with the full AGREE framework and AGREE without re-
ranking (denotes as AGREE (FT only)), to demonstrate the effects
of AGREE in the fine-tuning stage. We compare AGREE against
methods with complex attention interactions using object detec-
tors, including Unicoder-VL [23], VILLA [9], UNITER [1], as well as
2https://github.com/microsoft/GLIP
3https://spacy.io/spaCy
4https://github.com/alibaba/EasyNLP
5"L" denotes the large settings of models with different variants.

461



AGREE: Aligning Cross-Modal Entities for Image-Text Retrieval Upon Vision-Language Pre-trained Models WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

Table 2: Zero-shot re-ranking results on Chinese datasets with pre-trained weights provided by Wukong [11].

Dataset Method
ViT-B/32 ViT-L/14

Image2Text Text2Image MR Image2Text Text2Image MRR-1 R-5 R-10 MR R-1 R-5 R-10 MR R-1 R-5 R-10 MR R-1 R-5 R-10 MR

COCO-CN [29]

Our Baseline 52.4 79.7 89 73.7 49.1 79.5 88.6 72.4 73.1 50.9 79.5 89.8 73.4 48.6 76.9 86.4 70.7 72.0
+ EGR 53.5 79.7 88.2 73.8 48.8 79.9 88.9 72.5 73.2 51.5 79.7 90.4 73.9 49.6 77.4 86.9 71.3 72.6
+ TBR 55.1 82.2 91.1 76.1 52.8 81.9 90.2 75 75.6 54.2 81.9 91.1 75.7 53.2 79.9 88.7 73.9 74.8

AGREE (RR only) 56.4(↑4.0) 81.6 89.8 75.9 53.7(↑4.6) 81.8 89.8 75.1 75.5(↑2.4) 54.5(↑3.6) 82.8 91.5 76.3 54.2(↑5.6) 80.2 88.7 74.4 75.3(↑3.3)

Flickr30k-CN [20]

Our Baseline 74.1 94.2 97.7 88.7 51.5 78.2 85.8 71.8 80.3 72.4 91.8 96.3 86.8 47.2 74.2 82.9 68.1 77.5
+ EGR 75.9 93.8 97.6 89.1 51.5 78.3 85.7 71.8 80.5 72.1 91.8 96.6 86.8 47.2 74.1 82.9 68.1 77.5
+ TBR 76.1 94.4 97.7 89.4 58.5 82.2 87.5 76.1 82.7 73.3 91.8 96.3 87 53.5 78.9 84.8 72.4 79.8

AGREE (RR only) 77(↑2.9) 94.2 97.8 89.7 58.4(↑6.9) 82.3 87.7 76.1 82.9(↑2.6) 73.4(↑1.0) 91.8 96.4 87.2 53.4(↑6.2) 78.8 84.8 72.3 79.8(↑2.3)

MUGE [32] Our Baseline - - - - 37.3 64 73.5 58.3 58.3 - - - - 43.4 69.4 78.1 63.7 63.7
AGREE (RR only) - - - - 38.5(↑1.2) 64.9 73.9 59.1 59.1(↑0.8) - - - - 44.5(↑1.1) 70.2 78.3 64.4 64.4(↑0.7)

methods incorporating external knowledge for pre-training includ-
ing ERNIE-ViL [48] and ROSITA [3]. Innovative research including
VISTA [2] which aggregates scene text, and LoopITR [22] which
combines the advantages of cross-attention and dual encoder are
also considered. We also compare with three Chinese VLP models
CLIP, FILIP, and Wukong from [11] for COCO-CN [29] as Table 4.
For COCO-CN [29], performance on cross-lingual VLP models in-
cluding M3P [35] and UC2 [49] are also displayed.

We can explore the contributions of cross-modal entities in cross-
modal retrieval from the results. Compared with fine-tuning on
large-scale VLPmodels using only global similarity likeWukong [11]
and CLIP [36], AGREE shows great improvements on COCO-CN,
and is significantly higher than the fine-tuning results on VLP
models with patch-token fine-grained contrastive learning frame-
work [46] in Wukong (named FILIPViT−L), which proves the effec-
tiveness of our entity-based strategy. For the English dataset, results
on Flickr30k also obtain great improvement, higher than VILLA [9]
which incorporates adversarial learning, and Unicoder-VL [18]
which includes several pre-training tasks for in-depth image-text
representation learning. Our approach surpasses UNITER [1] on
both Chinese and English datasets, and higher than knowledge
injected pre-training methods [3, 48]6. Our improvement is mainly
reflected on the results of R-1, on both Chinese and English datasets.
On the premise of VLP models’ strong fitting ability pre-trained
on a large amount of data, our improvement mainly lies in opti-
mizing the re-ranking results. The ranking of the ground-truths
can be moved to the front, so as to improve the mean recall. The
subsequent empirical analysis will further illustrate that.
Zero-shot Re-ranking. We also test the effectiveness of the re-
ranking strategy in AGREE under zero-shot scenarios, and show
results on two modules only (EGR or TBR) as well as their com-
binations (denote as AGREE(RR only)) in Table 2. Experimental
results on different datasets and image encoders show that the MR
of both image-to-text and text-to-image can be improved by 3%, and
is brought by a more significant increase on R-1 with an average of
about 5%. For the dataset MUGE [32] which only includes text-to-
image retrieval task, the reverse retrieval of image-to-text also leads
to apparent improvement. Moreover, the boosting of text-to-image
is more obvious compared with that of image-to-text in most of our
6Since we claim that AGREE is a fine-tuning framework on the basis of dual-streamVLP
models and thus applicable to most VLP models in dual-stream architecture and brings
benefit to further fine-grained interactions, we only demonstrate its effectiveness
on CLIP-style models. Thus, we do not directly compare with dual-stream models
using larger datasets or in-house data for pre-training, such as FILIP [46], ALIGN [15],
SimVLM [42]. For a fair comparison, in Table 4 and Table 3, we use † to mark the
models which adopt multi-modal fusion interaction modules, and mark the methods
utilizing multilingual data for training with *. VLP models with complex similarity
calculations between images and texts are highlighted with ‡.

experiments, which further confirms our observation in Section 3.4
that the inconsistency lies in the richness of image-text information.
With a richer and more specific description of the image through
the image-to-text reverse retrieval result, AGREE can better assist
the text to find a more suitable image, as shown in Figure 4.

Table 4: Fine-tuning results on COCO-CN [29] .

Method
COCO-CN [29]

Image2Text Text2Image MRR-1 R-5 R-10 MR R-1 R-5 R-10 MR
UNITER[1]† - - - - - - - - 87.3
M3P [35]∗ - - - - - - - - 86.2
UC2 [49]∗ - - - - - - - - 88.4

CLIPViT−L [11] 68.3 93.0 97.3 86.2 70.1 92.2 96.4 86.2 86.2
FILIPViT−L [11]‡ 69.1 91.3 96.9 85.8 72.2 92.4 97.2 87.3 86.7

WukongViT−L [11]‡ 73.3 94.0 98.0 88.4 74.0 94.4 98.1 88.8 88.6
Our Baseline 69.9 93.5 97.6 87.0 70.5 92.4 96.6 86.5 86.8

AGREE (FT only) 71.9 93.8 97.6 87.8 71.1 93.2 97.2 87.2 87.5
AGREE 73.0(↑3.1) 94.6 97.6 88.4 73.4(↑2.9) 93.6 97.3 88.1 88.3

4.5 Ablation Studies
To demonstrate the importance of visual and textual entities for
image-text retrieval, we present different variants of AGREE in
Table 5, with 𝐶𝐿𝐼𝑃𝑉𝑖𝑇−𝐿−14 in [11] as our baseline, to show the
effect of AGREE on COCO-CN [29].

Table 5: Ablation studies on COCO-CN [29].

Method
ViT-L/14

Image2Text Text2Image
R-1 R-5 R-10 MR R-1 R-5 R-10 MR

Our Baseline 69.9 93.5 97.6 87.0 70.5 92.4 96.6 86.5
+VEA 70.6 93.6 97.5 87.2 70.2 93.1 96.8 86.7
+TEA 71.4 93.4 97.0 87.3 70.6 93.3 97.0 86.9
+TIA 70.3 92.9 97.8 87.2 71.5 92.5 96.9 87.0

+VEA+TEA 70.3 92.9 97.8 87.0 70.4 92.5 96.8 86.5
+TIA+TEA 70.6 93.2 97.2 87.0 70.6 92.5 97.2 86.7

+TBR 71.6 93.9 97.5 87.7 72.3 93.4 97.3 87.7
AGREE (FT only) 71.9 93.8 97.6 87.8 71.1 93.2 97.2 87.2

AGREE 73.0(↑3.1) 94.6 97.6 88.4(↑2.2) 73.4(↑2.9) 93.6 97.3 88.1(↑1.9)

Impacts of Entity Learning. Retrieval performance on individual
module shows the significant improvement brought by visual and
textual entities, which indicates that aligning cross-modal entities
is crucial to lift effects on image-text retrieval. The results with
only VEA or TEA module on COCO-CN [29] also reveal the effec-
tiveness in utilizing entity information, better learning image-text
representations and alignments. It is also worth noticing the great
improvement brought by TIA module. We believe that the gain
is related to visual grounding, which makes the correspondence
between entities from images and texts more specific.
Combination of Modules. As the combination of modules in
Table 5, an interesting observation is that although exploiting VEA
or TEA alone leads to an increase, it is slightly decreased when they
are combined (e.g. +VEA+TEA, even though still improved compared
to Our baseline). However, the addition of TIA will eliminate the
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contradictory phenomenon. It is the same with the comparison
with +TIA +TEA. Thus we can conclude that the representation
learning of entities from multiple modalities is very important in
AGREE. When aligning visual and textual entities simultaneously,
it is quite necessary to build a bridge (as TIA in AGREE) to align the
image-text entities. To a certain extent, this ensures the consistency
between images and texts, and eliminates the contradiction caused
by utilizing image-text entities for augmentation at the same time.

4.6 Few-shot Experiments
We also verify the effects of AGREE under few-shot scenarios. As
shown in Table 6, we randomly split the training set of COCO-CN
into 5%, 15%, 25% and 50%, and perform experiments on the test
split the same as Table 1. For each volume of data, we conduct three
experiments and report their average. When the amount of data is
quite small, experimental results show a significant improvement
with AGREE (FT only), (e.g.about 1.6% improvement on R-1 for
5% train data). After adopting the optimization strategy of fine-
tuning and re-ranking at the same time, the MR score of a smaller
amount of data can achieve or even exceed the results with a larger
amount of data using the original fine-tuning method (e.g. AGREE
with 25% data compared with 50% using baseline). We consider this
an exciting result, which provides an efficient way of fine-tuning.
Focusing on the alignment of entity-level information during fine-
tuning can greatly reduce training data dependencies. In this way,
we are even able to achieve better results with less data.

Table 6: Few-shot results on COCO-CN [29] with different
volume of training data.

Method
COCO-CN [29]

Image2Text Text2Image
R-1 R-5 R-10 MR R-1 R-5 R-10 MR

5%
Our Baseline 57.2 85.2 93.0 78.5 59.3 84.8 93.0 79.0

AGREE (FT only) 58.6 87.1 93.4 79.7 61.7 85.9 94.0 80.6
AGREE 61.8(↑4.6) 88.4 94.3 81.5 63.7(↑4.6) 86.7 93.9 81.4

15%
Our Baseline 62.4 89.0 95.5 82.3 65.9 88.9 94.9 83.2

AGREE (FT only) 62.4 90.1 95.4 82.6 65.6 89.8 95.3 83.6
AGREE 65.7(↑3.3) 90.5 96.2 84.1 67.2(↑1.3) 90.4 95.8 84.5

25%
Our Baseline 65.5 90.2 96.1 83.9 66.1 89.5 94.9 83.5

AGREE (FT only) 64.7 91.5 96.2 84.1 66.5 90.7 95.5 84.2
AGREE 67.0(↑1.5) 91.9 96.6 85.2 68.6(↑2.5) 91.2 95.4 85.1

50%
Our Baseline 67.3 91.6 97.0 85.3 67.8 91.5 96.1 85.2

AGREE (FT only) 68.0 92.0 96.9 85.6 68.6 91.7 96.7 85.7
AGREE 69.8(↑2.5) 92.9 97.1 86.6 70.3(↑2.5) 92.2 96.4 86.3

4.7 Case Study
Several examples are presented to illustrate the effectiveness of
AGREE, and to reveal the importance of aligning cross-modal enti-
ties for the performance improvement of image-text retrieval. The
examples of text-to-image and image-to-text of COCO-CN [29] are
shown in Figure 4.7 in Figure 4.7 respectively, with ground-truth
framed in the red line. As in Figure 4.7, the Top-5 images with
AGREE obviously contain more entities corresponding to the query
and the correct samples have a higher rank. For example, the Top-1
result of query "Pineapples, bananas and oranges in a glass plate"
does not include the important entity "pineapples". AGREE helps
to re-establish this correspondence between entities, resolving the
problemwith ineffective fine-grained interactions from VLPmodels
as in Figure 1. It is the same as cases in Figure 4.7, where the image
query in the first row is more accurately matched to the text with
entities in the image, including "a plate of pizza", "bottles", "pots".

We pay more attention to the consistency of multiple entities in
both images and texts, thus optimizing the ranking result.

Figure 5: Text-to-image Top-5 retrieval result examples.

Figure 6: Image-to-text Top-3 retrieval result examples.

5 CONCLUSION
In this paper, we propose a lightweight and applicable approach
AGREE, to align cross-modal entities for image-text retrieval at the
fine-tuning and re-ranking stages. We employ external knowledge
and tools to construct extra fine-grained vision-text pairs, and then
emphasize cross-modal entity alignment through contrastive learn-
ing and entity-level mask modeling in fine-tuning. Two re-ranking
strategies are also proposed including one specially designed for
zero-shot scenarios. We conduct extensive experiments with sev-
eral VLP models on multiple Chinese and English datasets, and the
results show that our approach achieves state-of-art results under
various settings for both fine-tuning and zero-short scenarios. Our
experiments under few-shot scenarios also verify that AGREE can
significantly reduce data dependency. We hope our work could
inspire future research in the visual and linguistic communities.
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