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ABSTRACT
Predicting query intents is crucial for understanding user demands
in chatbots. In real-world applications, accurate query intent clas-
sification can be highly challenging as human-machine interac-
tions are often conducted in multiple turns, which requires the
models to capture related information from the entire contexts. In
addition, query intents tend to be fine-grained (up to hundreds
of classes), containing lots of casual chats without clear intents.
Hence, it is difficult for standard transformer-based models to cap-
ture complicated language characteristics of dialogues to support
these applications. In this demo, we present AliMeTerp, a multi-turn
query interpretation system, which can be seamlessly integrated
into e-commercial chatbots in order to generate appropriate re-
sponses. Specifically, in AliMeTerp, we introduce SAM-BERT, a
pre-trained language model for fine-grained query intent under-
standing, based on Sparse-to-dense Attentive Modeling. For model
pre-training, a stack of Sparse-to-dense Attentive Encoders are em-
ployed to model the complicated dialogue structures from different
levels. We further design Hierarchical Multi-grained Classification
tasks for model fine-tuning. Experiments show SAM-BERT con-
sistently outperforms strong baselines over multiple multi-turn
chatbot datasets. We further show how AliMeTerp is deployed in
real-world e-commercial chatbots to support real-time customer
service.
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Dialogue Query 1: How much is the shipping fee?
Answer 1: Free shipping over 39.
Query 2: I meant the return of the product.

Incorrect Intent Return & Refund
Response You can send the product back as long as the original

packaging is undamaged.
Correct Intent Shipping Fee for Returns

Response You need to pay for the shipping fee if you return the
product for personal reasons.

Table 1: An example of multi-turn QIU. The texts are in Chi-
nese and have been translated into English. Responses w.r.t.
the predicted intents are printed in italics.

AZ, USA.ACM, NewYork, NY, USA, 4 pages. https://doi.org/10.1145/3488560.
3502189

1 INTRODUCTION
Chatbots are ubiquitous systems that conduct conversations with
humans, especially in e-commercial services [7]. In chatbots, Query
Intent Understanding (QIU) is crucial for understanding needs of
humans, in order to generate appropriate responses [9].

In the literature, extensive research has focused on dialogue state
tracking in closed domains [10]. Different from previous studies,
e-commercial chatbots in industry work in boarder domains, often
associated with a fine-grained categorization of query intents [2].
For example, the number of query intents in the e-commercial
chatbot of Alibaba Group called Alime1 is over three hundred, in-
cluding a special label UNK (meaning no clear intents expressed).
Such queries are highly informal and fragmented, lacking standard
grammatical structures for accurate semantic analysis. Additionally,
interactions between humans and machines are often in multiple
turns, with complicated dialogue structures involved. Consider the
example in Table 1. The actual intent of the customer is expressed
across multiple turns, rather than by a concrete sentence. Hence, it
is necessary for chatbots to understand the meanings of the entire
dialogue to predict the correct query intent. Recently, pre-trained
language models such as BERT [3] have achieved state-of-the-art
performance on various NLP tasks. However, these models are not
optimized to capture contextual information from utterances in
chatbots. Chao et al. [1] learn contextual representations of dia-
logues, but mostly focus on closed-domain, task-oriented scenarios.

In this demo, we present AliMeTerp, a multi-turn query inter-
preter that can be seamlessly integrated into e-commercial chatbots.
AliMeTerp predicts query intents of the customer by analyzing the
entire dialogue and then generates suitable responses by retriev-
ing answers from the Knowledge Bases (KBs) of the underlying
1https://www.alixiaomi.com/
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Figure 1: The general workflow of the AliMeTerp system.

online shops. In AliMeTerp, we design a BERT-style pre-trained
language model for multi-turn QIU named SAM-BERT based on
Sparse-to-dense Attentive Modeling. Here, we design the stacked
Sparse-to-dense Attentive Encoders (SAEs) to model the dialogue
characteristics from three levels, i.e., the utterance-level, the utter-
ance pair-level and the entire dialogue-level. A fine-grained QIU
model is obtained by fine-tuning SAM-BERT, which particularly
handles queries without any intents and fine-grained semantics of
queries. Our AliMeTerp system integrates the complete process of
training, evaluating and deploying SAM-BERT models, together
with the answer retrieval functionalities for e-commercial chatbots.

To verify the effectiveness of our approach, we evaluate SAM-
BERT over multiple real-world multi-turn chatbot datasets. The
results show that SAM-BERT consistently outperforms strong base-
lines. Currently, the AliMeTerp system is deployed in various busi-
ness scenarios of Alibaba Group to provide better online shopping
service through our AliMe chatbot. We will further demonstrate
how AliMeTerp can benefit a variety of e-commercial chatbots and
how SAM-BERT can be easily trained by our high-level APIs.

2 SYSTEM DESIGN
In this section, we first describe the system flow of AliMeTerp
briefly. After that we introduce the multi-turn, fine-grained QIU
task and the technical details of the SAM-BERT model.

2.1 Workflow of AliMeTerp
The system workflow of AliMeTerp is presented in Figure 1. When
a customer issues a query to the chatbot, our system restores the
entire dialogue session and employs SAM-BERT to predict the query
intent. The meta information is also included in the session, such as
the product or the order that the customer queries. For online shops,
the owners may upload various types of KBs to the system, such as
the FAQ KB and the product KB. The response generator returns
the answer from certain KB with the corresponding intent to the
customer (which is not our major focus). As seen, SAM-BERT is
the most important part in AliMeTerp that controls the flows of the
dialogue. In the following, we introduce the details of SAM-BERT.

2.2 Model Architecture of SAM-BERT
We start with some basic notations. LetL be a finite, pre-defined set
of query intent labels, which includes a special label UNK, meaning
no specific intent is associated with the corresponding query. To
facilitate fine-grained QIU, we assume the size of L is large. Denote
S = {𝑞1, 𝑎1, · · · , 𝑞𝑘 } (𝑘 > 0) as a dialogue session, where 𝑞1, · · · , 𝑞𝑘
and 𝑎1, · · · , 𝑎𝑘−1 are user and chatbot utterances, respectively. Let

𝐷 = {(S, 𝑙)} be the training set, containing the dialogue S and the
intent label 𝑙 ∈ L pairs. The task is to train a classifier 𝑓 from 𝐷

that is capable of predicting the query intent label of the 𝑘-th query
𝑞𝑘 in the session S, given 𝑞1, 𝑎1, · · · , 𝑞𝑘−1, 𝑎𝑘−1 as the context.

In SAM-BERT, as a pre-processing step, each dialogue session
S is converted into a sequence of tokens: [CLS][QUE]𝑡 (𝑞1)[ANS]
𝑡 (𝑎1) · · · [QUS]𝑡 (𝑞𝑘 ) where [CLS], [QUE] and [ANS] are special
tokens for the classification output, the starting positions of queries
and answers, respectively. 𝑡 (𝑞𝑛) and 𝑡 (𝑎𝑛) are token sequences for
the 𝑛-th query and answer in S, respectively. In the input layer,
the sequence of tokens are mapped to WordPiece, segment and
positional embeddings [3]. After that, the embedding sequences
are passed through 𝐾 stacked Sparse-to-dense Attentive Encoders
(SAEs) before it reaches to the final classifier 𝑓 to generate the
predicted query intent label 𝑙 ∈ L. Let ®ℎ (𝑝)𝑚 be the 𝑚-th token
embeddings of the entire sequence generated by the 𝑝-th layer
of SAEs. We have: ®ℎ𝑝𝑚 = SAE( ®ℎ𝑝−11 , · · · , ®ℎ𝑝−1

𝑀
) where 𝑀 is the

maximum length of the sequence. Finally, we have the last-layer
embeddings of all the tokens ®ℎ𝐾1 , · · · , ®ℎ

𝐾
𝑀
, which are used as features

for prediction.
Sparse-to-dense Attentive Encoder. Let 𝑑 be the dimension of
output of the embedding layer. In each layer of SAEs, we randomly
divide ®ℎ𝑝𝑚 into three parts, each with 𝑑

3 channels, which corre-
spond to input embeddings of modeling from different levels of
dialogue structures, denoted as ®ℎ𝑝𝑚,𝛼 (the utterance-level), ®ℎ𝑝

𝑚,𝛽
(the

utterance pair-level) and ®ℎ𝑝𝑚,𝛾 (the dialogue-level).
For the utterance-level, the embeddings ®ℎ𝑝𝑚,𝛼 are the self-attentive

output of ®ℎ𝑝−1𝑚−𝑟,𝛼 , · · · , ®ℎ
𝑝−1
𝑚+𝑠,𝛼 , where tokens within the range [𝑚 −

𝑟,𝑚 + 𝑠] form the same utterance (either the query or the answer
with maximum length of 𝑟 + 𝑠). The computation for the utterance
pair-level ®ℎ𝑝

𝑚,𝛽
takes a little step forward w.r.t. the structure scope.

The embeddings are the attentive summarization of all token em-
beddings from the previous SAE block within the scope of the same
utterance pair. 2 The dialogue-level token embeddings ®ℎ𝑝𝑚,𝛾 are gen-
erated with the attention scope of the entire sequence. By concate-
nating the three types of token embeddings, we produce the𝑚-th
token emebddings of the 𝑝-th SAE layer: ®ℎ𝑝𝑚 = ®ℎ𝑝𝑚,𝛼 ⊕ ®ℎ𝑝

𝑚,𝛽
⊕ ®ℎ𝑝𝑚,𝛾 .

For the representations of the [CLS] token, we utilize full attention
in all three cases. Refer to Figure 2 for the attention building blocks.
Pre-training SAM-BERT. Because SAM-BERT has different at-
tentive structures from BERT [3], we do not use BERT checkpoints

2Note that token embeddings of the last query 𝑞𝑘 in the utterance pair-level are com-
puted by the same way as the utterance-level, because the answer to 𝑞𝑘 is unavailable.
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Figure 2: Building blocks of the sparse-to-dense attentions.
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Figure 3: Fine-tuning SAM-BERT for fine-grained QIU.

to initialize SAM-BERT. Instead, we pre-train SAM-BERT over mas-
sive dialogue corpora from scratch by self-supervised learning.

For the pre-training task masked language modeling (MLM), we
keep it the same as in Devlin et al. [3]. To better capture dialogue
structures, the second task is dialogue structure prediction (DSP),
which is a classification task. Three types of labels are introduced: i)
Origin: the dialogue session is unchanged; ii) Permutation: we ran-
domly inter-change two queries in the session; and iii) Replacement:
We replace the last query (𝑞𝑘 ) with one query from other sessions.
The latter two types are particularly designed to learn the semantic
consistency of the dialogue session and the topical coherence of utter-
ance pairs. Overall, the pre-training loss is:J𝑃𝑟𝑒 = J𝑀𝐿𝑀 +𝜆1J𝐷𝑆𝑃 ,
where J𝑀𝐿𝑀 is the MLM loss, J𝐷𝑆𝑃 is the cross-entropy loss for
DSP, and 𝜆1 is the balancing factor.
Fine-tuning SAM-BERT. To identify the large number of UNK
labels and also address fine-grained QIU, the Hierarchical Multi-
grained Classification (HMC) technique is proposed for fine-tuning.
As different fine-grained intents have internal semantic associations,
it is natural to group these intents into clusters. For each intent
label 𝑙 ∈ L \ {UNK}, we represent 𝑙 by the centroid embedding of
its training instances, generated from the pre-trained SAM-BERT
model. By applying hierarchical clustering, the tree-based semantic
structure of query intents can be generated. Denote {L1, · · · ,L𝑄 }
as the collections of nodes in the tree where L𝑖 is node collection
of the 𝑖-th layer, and 𝑄 is the total number of layers in the tree.
Here, L1 only contains the root node and L𝑄 = L \ {UNK}. Refer
to Figure 3 (with 𝑄 = 3). Denote J𝐶𝐿𝑆 (S, 𝑙) as the sample-wise
cross-entropy loss of the final query intent classifier C𝑄 (with |L|
classes). J (𝑖)

𝐶𝐿𝑆
(S, 𝑙) is the auxiliary sample-wise cross-entropy loss

for classifier C𝑖 in label set L𝑖 ∪ {UNK}. Apart from optimizing
J𝐶𝐿𝑆 (S, 𝑙) directly, we add 𝑄 − 1 auxiliary losses J (𝑖)

𝐶𝐿𝑆
(S, 𝑙) (𝑖 =

1, · · · , 𝑄 − 1) to make the model to learn the semantic relations of
fine-grained intents and the UNK labels. The total loss function J
is defined as follows:

J =
∑

(S,𝑙) ∈D
J𝐶𝐿𝑆 (S, 𝑙) + 𝜆2

∑
(S,𝑙) ∈D

𝑄−1∑
𝑖=1

J (𝑖)
𝐶𝐿𝑆

(S, 𝑙)

Dataset # Train # Dev # Test # Intents
JDDC 636,596 9,704 9,877 277
ChatGeneral 123,737 4,428 4,167 309
ChatFashion 46,737 2,586 2,523 307
ChatCosmetic 24,532 1,444 1,390 250

Table 2: Statistical summary of the four datasets.

where 𝜆2 > 0 is a tuned hyper-parameter.

3 SYSTEM EVALUATION
To verify the effectiveness of our system, we conduct extensive
experiments to evaluate SAM-BERT over multiple datasets. After
that, we present the A/B test of our method for online deployment.

3.1 Datasets and Experimental Settings
We conduct experiments on four large-scale datasets generated
from chatbots. The first is a subset of the JDDC Corpus [2], which is
a large-scale real-scenario dialogue corpus. We also construct three
datasets from our in-house e-commercial chatbots in three domains,
namely ChatGeneral (CG), ChatFashion (CF) and ChatCosmetic (CC),
with statistics in Table 2. The ratios of the UNK labels of the four
datasets are 0.45, 0.25, 0.32 and 0.40, respectively. We collect 3
million dialogues from our chatbots and 1million dialogues from the
JDDC corpus to pre-train SAM-BERT (together with other baseline
language models), which contain over 25 million utterances. During
pre-training, 15% of the words are masked for prediction. Utterances
with Origin, Permutation and Replacement labels are sampled with
the uniform distribution. The default parameter settings of SAM-
BERT is as follows: 𝜆1 = 0.9, 𝜆2 = 0.7 and 𝑄 = 3. The hidden
and embedding sizes are 756 and 128. We also tune the parameters
over the development sets. With parameter sharing applied [5], the
total number of parameters is 24M. We train the model with the
Adam optimizer and the learning rate is 1e-5. All the algorithms
are implemented in TensorFlow and run with 8 Tesla V100 GPUs.

3.2 Experimental Results
General Performance Comparison. For fair comparison, we
consider TextCNN [4] and two-tower RNN [6] as non-PLM base-
lines. Here, our TextCNN implementation takes TextCNN to obtain
representations of all utterances, and employs averaged pooling
of representations to make predictions. Our two-tower RNN im-
plementation encodes the context and the target query separately,
and trains the classifier over both features. Several popular base-
version PLMs are employed as strong baselines, namely ALBERT [5],
BERT [3] and ToD-BERT [8], which is the state-of-the-art PLM for
modeling dialogues. The general performance on four testing sets is
in Table 3. SAM-BERT consistently performs better than other base-
lines, compared to the best competitor. Additionally, SAM-BERT
has only 20% of the parameters compared to original BERT (24M
vs. 110M). Hence, SAM-BERT is both more accurate in prediction
and smaller in model size.
Detailed Model Analysis. We conduct ablation experiments to
analyze various aspects of SAM-BERT. As for the model structure,
we remove one type of attention at each time (i.e., ®ℎ𝑝𝑚,𝛼 , ®ℎ

𝑝

𝑚,𝛽
and

®ℎ𝑝𝑚,𝛾 ), and report the performance based on other two types. From
Table 4, we see that utterance-pair level token embeddings (®ℎ𝑝𝑚,𝛼 )
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Model JDDC ChatGeneral ChatFashion ChatCosmetic
TextCNN 0.6308 0.6179 0.6262 0.5728
RNN 0.6327 0.6136 0.6425 0.5847
ALBERT 0.7242 0.6939 0.7169 0.6546
BERT 0.7380 0.7448 0.7490 0.6899
ToD-BERT 0.7342 0.7455 0.7595 0.6939
SAM-BERT 0.7524 0.7629 0.7715 0.7057

Table 3: Testing performance of SAM-BERT and baseline
models over four datasets, in terms of F1-score.

Ablation Model Variants F1-score
Model w/o. utterance level attention 0.7461
Structure w/o. utterance-pair level attention 0.7428

w/o. dialogue level attention 0.7462
Feature [CLS] token 0.7067
Space [CLS] token + token embeddings 0.7583

[CLS] token + CNN sub-network 0.7629
Table 4: Ablation study on the ChatGeneral dataset.

System Accuracy Improvement
Online System 0.72 -
SAM-BERT 0.85 +13%

Table 5: The online deployment performance (A/B test) of
SAM-BERT in terms of accuracy.

contribute the most. We further consider which set of features
is more useful for prediction. Four settings are considered: i) the
[CLS] embeddings only (i.e., ®ℎ𝐾1 ); ii) the [CLS] embeddings and
the averaged all token embeddings; and iii) the [CLS] embeddings,
together with a CNN-based sub-networks with all embeddings as
features. The results show that combining a simple CNN model of
all embeddings has the best results.
Online Deployment. The AliMeTerp system has been deployed
online to produce intelligent customer service in Alibaba Group.
Note that the existing online production system is a TextCNNmodel,
which is able to respond within 3ms for 95% of the requests under
the demand of high performance of the online system. Here, we
report the online A/B test results of SAM-BERT, show in Table 5.
From the results, we can see that SAM-BERT significantly improves
the accuracy by 13%, which is a large margin. Currently, we have
deployed our framework to provide service for over 48,000 online
shops, benefiting millions of customers.

4 DEMONSTRATION SCENARIOS
In this demonstration, we will showcase the entire business process
of AliMeTerp. Some snapshots of AliMeTerp can be found in Fig-
ure 4. As seen, the customers can conduct multi-turn conversations
with our chatbots to fulfill their online shopping experience. Addi-
tionally, in AliMeTerp, the staff of online shops can manage their
KBs and guide the chatbots to generate suitable responses based
on the predicted query intents by SAM-BERT.

Because SAM-BERT is highly useful to model the dialogue se-
mantics, for both pre-training language models with massive online
chat logs and also fine-tuning for fine-grained intents in real-world
chatbot scenarios. We will release the toolkit to public, namely
sambertcmd. With only one line of command, developers can train

Figure 4: The snapshots of AliMeTerp used inAliMe chatbot.
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Figure 5: The command-line APIs for running sambertcmd.

and evaluate the SAM-BERT model on GPU servers, together with
model inference. Readers can refer to Figure 5 for APIs.
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