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Abstract. Devising an automatic Math Word Problem (MWP) solver
has emerged as an important task in recent years. Various applications
such as online education and intelligent assistants are expecting better
MWP solvers to process complex user queries that involve numerical rea-
soning. Current seq2seq MWP solvers encounter two critical challenges:
ordinal indices without semantics and insufficient training data. In this
work, we propose Entity Random Indexing to equip indices with seman-
tics and design diverse representations of math expressions to augment
training data. Experimental results show that our approach effectively
enhances the seq2seq MWP solver, which outperforms strong baselines.

Keywords: Math word problem - Seq2seq model - Entity
information - Math knowledge

1 Introduction

Math Word Problem (MWP) [20], which aims at answering a mathematical
question automatically according to the textual content, is an essential lan-
guage understanding task. A typical MWP is usually organized as sentences
containing conditions and a final question about an unknown variable. Vari-
ous domain-specific applications such as online education, e-commerce websites,
and intelligent assistants, are expecting better MWP solvers to process complex
queries involving numerical reasoning [3,8,12].

Table 1 shows an MWP example with its problem text, solution expression,
and answer. Most solvers replace numeric values in problems with abstract
indices since we are interested in modeling relations among operands rather
than their specific values. It is a common practice for existing MWP solvers to
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Table 1. An example of MWP.

Original MWP

Problem: Mary has 2 books, Jack’s books are 3 times over Mary’s.
Tom’s books are 4 times over Jack’s. Mike’s books are 6 more than Tom’s.
How many times Mike’s books are compared to Mary’s books?

Solution: (2 *3 *4 4 6)/2 Answer: 15

Indexed MWP

Indices for Numbers:

{NUM1: 2, NUM2: 3, NUM3: 4, NUM/: 6}

Indexed Problem: Mary has NUM1 books, Jack’s books are NUM2
times over Mary’s. Tom’s books are NUMS times over Jack’s. Mike’s

books are NUM/4 more than Tom’s. How many times Mike’s books are
compared to Mary’s books?

Indexed Solution: (NUM1*NUM2*NUM3+NUM/)/NUM1

Indexed Answer: 15

index the numeric values according to their occurrence order and process them
as regular tokens. For example, the token “NUM1” is used to refer to the first
numeric value in the problem text.

Current seq2seq MWP solvers encounter two critical challenges. (1) To cap-
ture relations between operands rather than specific numbers, previous works
replace numbers with ordinal indices. We suggest that such a way of han-
dling numeric values can cause a drawback. Each frequent numeric token (e.g.,
“NUM1”, “NUM?2”, etc.) is associated with various semantic contexts in the
input problems; hence it is challenging for seq2seq models to learn effective
representations that are able to disambiguate different semantic contexts. (2)
Domain-specific MWP training data is not sufficient enough to train an MWP
solver based on deep neural networks, which leads to model overfitting.

To overcome these two challenges, we enhance seq2seq MWP solvers with
entity information and math knowledge. First, we should indexing numeric values
according to related entities. Thus, a solver can infer semantics of indices of
numeric values to better capture the information MWP. Second, we should utilize
math knowledge to augment MWP training data since math knowledge enable
us to produce a lot of variants for original math expressions of MWP.

Our contributions are summarized as follows: (1) We propose an algorithm
named Entity Random Indexing which can equip indices with rich semantics. (2)
We design diverse representations of math expressions to augment training data.
(3) Based on the vanilla seq2seq model and our approaches (Entity Random
Indexing and diverse representations of math expressions), we provide a new
competitive MWP solver that outperforms strong baselines.
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2 Related Work

2.1 Seq2seq-Based MWP Solvers

The earliest work to apply the seq2seq model was proposed by Wang et al. [17],
where a seq2seq model is combined with a similarity-based retrieval model to
generate expressions. Huang et al. [5] propose to incorporate copy and alignment
mechanisms to seq2seq models for performance improvement. Wang et al. [16]
observe that seq2seq models tend to suffer from equation duplication and propose
an equation normalization method to normalize the duplicated equations.

2.2 Tree-Based MWP Solvers

Most state-of-the-art MWP solvers are based on trees since the solution can be
naturally represented as an expression tree. GTS [18] develops a tree-structured
neural network in a goal-driven manner to generate expression trees. Graph2Tree
[21] combines the merits of the graph-based encoder and the tree-based decoder
to generate better solution expressions. RODA [11] makes use of mathematical
logic to produce new high-quality math problems and augments data for GTS
to achieve better results.

2.3 Data Augmentation

Solving MWP is related to common tasks in NLP, such as Natural Language
Inference (NLI) and Question Answering (QA), which can benefit from rule-
based data augmentation. Kang et al. [6] propose NLI-specific logic-based data
augmentation by replacing tokens or changing labels on the original training
examples. Asai and Hajishirzi [1] propose a method that leverages logical and
linguistic knowledge to augment labeled training data. Liu et al. [11] propose
a reverse operation-based data augmentation method that makes use of mathe-
matical logic to produce new high-quality math problems.

3 Methodology

In this section, we elaborate the techniques of the proposed approach for building
MWP solvers.

3.1 Problem Statement

An MWP can be formulated as a triple {P,I, A}. The problem text P is a
sequence of word tokens and numeric values. Let T), = {t1,--- ,%,} denote the
word tokens in P and N, = {ni,---,n,} denote the set of numeric values in
P. Thus, we have P = {p1, -+ ,pe|lpc € Tp UN,}. Given an MWP P, the goal
is to map P to several computable intermediate sequences (CIS) which can
be used to produce the answer of P. I = {i1,---,iq} is the set that consists
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of CIS i4. iq only needs to be a parsable sequence for computation (e.g., a
math expression, a postfix expression) and describes a computational process
including numeric values N,, the set of math operators {+, —, *, /} and constants.
Constants include some special values such as 3.14 (7), 1 and 2. Each correct iq
is able to produce the correct answer A to the problem text P. In this paper,
we only consider problems whose the answers A are unique values. Furthermore,
we convert fractional answers into decimals. Since manipulating floating-point
numbers will result in rounding errors, we consider a problem to be “solved”
when the absolute value of the difference between the produced and true answers
is less than a small acceptable tolerance, i.e., 0.001.

Algorithm 1. Entity Random Indexing (ERI)

Input: Sp = {Pl, te ,Ph} 5 Py, = {Ph,h ce 7Ph,c}
Sp is original training data, P, is one problem text, Py . is one token in P,
Output: D; (the indexed training data)
1: Build Sg containing common entities and units.
2: Variables: Range and Occupied are hashtables; C; is the times for indexing; C; is
the length of the indexing range; C,, is the number of the indexing range.

3: repeat C; times

4: for each element E, in Sg do

5: Random(0,Cy) € {0,1,2,...,C,, — 1}

6: Range[Ey] «+ C; * Random/(0, Cy)

7: Let Sp,c be a copy of Sp.

8: for P in Spc do

9: for Py in P, do

10: if Py . is number then

11: Find the entity or unit E, that follows P .
12: Start numbering rs < Range[Ey].

13: while Occupied|rs] = True do

14: rs < s+ 1 // skip occupied indices.

15: Occupied|rs] < True // occupy the index.
16: Replace P, . with NUMr,.

17: Append Sp,c to D;.

3.2 Entity Random Indexing

We provide a heuristic algorithm to handle numeric values based on an observa-
tion that most numeric values in MWP are followed by entities or units (e.g., “2
books” and “3h”), which incorporate semantic contexts of the numeric values.
Thus, we are motivated to allocate an index interval for each type of entity or
unit. For example, the range NUM16-NUMZ20 is allocated to represent numeric
values associated with “books”. Furthermore, inspired by multi-headed self-
attention [15], where multiple linear transformations are applied to the input
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data for more effective representation learning, we randomly produce multiple
indexing range divisions for the same entity or unit. We name our algorithm
as Entity Random Indexing (ERI) and show the details in Algorithm 1. In con-
trast, the pointer-generator network [13] relies on massive data to learn copying
tokens from the source to the target, while ERI is fully zero-shot and requires
no training data.

3.3 Diverse Representations of Math Expressions

In this section, we offer a series of equivalent transformations based on math
knowledge to augment the MWP training data. Given a solution expression, we
propose four types of equivalent transformation, namely expression transforma-
tion, equation transformation, matrix transformation, and template transforma-
tion, which in total can generate 30 counterparts to the same answer. In the
following, we assume that the solution expression in Table 1 is converted by ERI
into
E : (NUM16« NUM/6x NUM31+ NUM76)/ NUM16

and use it to explain the idea of equivalent transformations. Note that trans-
formed sequences may not be human-readable. However, they can be effectively
calculable by the programs that we implement.

Expression Transformation. Our first equivalent transformation is to inject
spaces to split operands and operators in . We have:

E,: (NUM16 « NUM46 « NUM31 + NUM?76)/NUM16.
The second alternative transformation is to apply postfix expression on Ej, i.e.,
Es: NUM16 NUM46 « NUMS31 « NUM76 + NUM16/.

Note that F3 can be converted uniquely back to F;. Besides postfix expression,
we can also use reversion as a transformation operator. When this operator is
applied on F7 and F3, we obtain Fs and E, respectively.

E,: NUM16/) NUM76 + NUM31 « NUM46 « NUM16 (

E,: /NUM16 + NUM76 x NUM31 « NUM46 NUM16

Equation Transformation. The idea of equation transformation is to intro-
duce an additional unknown variable X and convert an arithmetic expression
into its equivalent form of an equation. For example, expression E can be natu-
rally converted into

E': (NUM16x NUM46* NUM31+ NUM76)/ NUM16 = X.
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] [wvum4] [ x ][ Numi ]
] [voms]
(a) Source tree (b) Manipulation (c) Target tree

Fig. 1. Left shift of the equal sign based on tree manipulations.

From E’, we can generate multiple equivalent variants of equations by shifting
the equal sign leftwards. As shown in Fig.1, we represent the E’ as a binary
tree. Left shift of equal sign involves four steps:

1. Replace root.left_child with reverse operator (e.g., / will be replaced by ).
2. Move root—left_child and root—left_child—right_child to root—right_child.
3. Put root—left_child—left_child as the new left child of root.

4. Put variable X as the left child of root—right_child

After the manipulation, we can generate the target tree that represents the target
equation

E" : NUM16* NUM46x NUM31+ NUM76 = X x NUM16.

Similarly, we can define the manipulation of the right shift to generate equivalent
equations in Fig. 2.

L= o
: ] M/ @

[Numa] [ x| [Numr]

[ = ] [wum4] [ x ][w~umi] [
* NUM3 * NUM3
(a) Source tree (b) Manipulation (c) Target tree

Fig. 2. Right shift of the equal sign based on tree manipulations.

As shown in Fig. 3, among the various equations generated by the left (or
right) shift, we only select two of them based on the following criteria. First, we
prefer the equation

E" : NUM16* NUM/6+ NUM31 = X« NUM16 — NUM76
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+ * ////li‘
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| [vums [ * ] [~vume]
[~ Dus] [~ Gus]
[vumi ] [vumz ] [ x ] [wumi]
NUMI | [ NUM2 NUMI| [ NUM2
(a) Original tree (b) Tree with most * and + (c) Tree with least height

Fig. 3. Among the various equations generated by the left (or right) shift, we prefer
equations with the minimal tree height or with most * and +.

with the minimal tree height. Second, we prefer the equation
E"" . NUM16 x NUM46* NUM31+ NUM76 = X« NUM16

with most * and + for trying to reduce the operator that a solver need to learn
from 4 types (x, /,+, —) to 2 types (*, +). Following the way producing equivalent
transformations F; to E4, we produce E5 to Eg based on E’” and list them in
Table 2. For simplicity, we use N to replace NUM. Similarly, we produce Ey to
E15 based on E"".

Table 2. Equation transformation.

Es |N16 * N6 * N31 = X * N16 — N76
E¢ |[N76 — N16 * X = N31 * N46 * N16
E; |N16 N46 * N31 * X N16 * N76 — =
Eg |=— N76 * N16 X * N81 * NJ6 N16
Ey | N16 * N46 * N31 + N76 = X * N16
Ey N16 * X = N76 + N31 * N/6 * N16
E11 | N16 N46 * N31 * N76 + X N16 * =
Ei2|=* N16 X + N76 * N31 * N6 N16

Matrix Transformation. In this part, we propose a strategy that converts
binary trees into sequences based on the adjacency matrix. Let m denote the
number of operands in an expression and n denote the maximum number of
frequencies for an operand to appear in an expression (since it is possible for the
same operand to appear multiple times in an expression). We transform a binary
tree with m operands into a square matrix M with the maximum size (m x n) x
(m * n). Each element M][i,j] with i # j stores a binary operator represented
by an integer. We assign {1,2,3,4} for operators {4, —, *, /} respectively. The
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diagonal elements, i.e., M[i, j] with ¢ = j, store unary operators that allow us to
build a smaller matrix to capture all the information in the binary tree. Details
of unary operators are presented in Fig.4, where we illustrate an example of
matrix transformation.

Unary Operator 1 2 3 4 5 1
1 get the value
2 _re“procal value INUMI|NUM2|NUM3|NUM4|NUMI | ..
3 increase by 1
4 decrease by 1 1 |vuatit=
2 (vum2)
3 |vuM3|_,

Bi /{NUMfi ! 2
Tary Operator | Nl o
2/ 5 |NuMi
3+
4- (152’1)’(1’331)7(1$4>3)’(1>5’2)3 (1’151)

Fig. 4. Encoding a binary tree to a sequence of triples based on the adjacent matrix.

In Fig.4, each row or column refers to an operand. Rows (and columns)
“1, 2, 3, 4” refer to operands NUM16, NUM46, NUMS81, NUM76 respectively.
Since NUM16 appear twice in the expression, rows (and columns) “5, 6, 7,
8”7 also refer to indexes NUM16, NUM46, NUM31, NUM?76. For matrix trans-
formation, we perform post-order traversal to the binary tree. Each non-leaf
node will output a triple. For example, in (1,2,1), the first “1” stands for left
operand NUM16, “2” stands for right operand NUM46, and the last “1” stands
for binary operator . It can be decoded as a computation “NUM16 * NUM46"
and the temporary result will be stored at the first “1”. Hence, its subse-
quent triple (1,3, 1) represents “(NUM16+ NUM46) « NUMS31”. We can perform
recursive visit on the binary tree to generate the complete sequence of triples
“(1,2,1),(1,3,1),(1,4,3),(1,5,2), (1,1, 1)”.

With the derived sequence “(1,2,1),(1,3,1),(1,4,3),(1,5,2),(1,1,1)”, we
further construct six equivalent variants to include more diversified knowledge
and information. The equivalent transformation E13 is formatted as “1.2_11.3_1
1431521.1.1”. 1) We reverse Ej3 toget Eyq “1.1.115214313.11.2.17.
2) We swap the first and second elements of triples in Ej3 to get Fy5 “2.1_1
3114135121.1.1". 3) We reverse Ey5 to get E1g “1.1.151241331.1
2.1.17. 4) We split triple tokens of Ej3 i.e. “1.2_1” into two sub tokens “1.2”
and “1” to get F17 “1.211.311431521.11".5) We reverse F17 to get Fis
“11.121531411311.2".

Readers can refer to Fig. 5 for the decoding process. For three numbers in a
triple, the first and the second numbers represent a row. We retrieve its NUM-
index and corresponding value and set the value to the corresponding position
in the array. The third number refers to an operator. If the first number is not
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equal to the second number, it is a binary operator. For a binary operator, we
evaluate a temporary expression “first_number binary_operator second_number”
i,e. NUM16 = NUM46 and update the result to the position of its left operand
in the array. For a unary operator, we employ the left operand as the argument
and update the result to the position of the left operand in the array. Until all
triples are processed, the final result is provided.

Template Transformation. Our template transformation is generated by
replacing the numeric tokens with a specific placeholder (e.g., @) and consider
the concrete indexes as arguments of the template. For example, the expression
in By “(NUM16 * NUM46 * NUM31 + NUM76)/NUM16” can be encapsu-
lated as a template “(@*@Q*Q+Q)/@” with sequence “NUM16 NUM46 NUMS51
NUM76 NUM16” as the arguments. In this way, we can produce corresponding
template transformations F1g to Fs3g for E1 to Eqs.

3.4 Architecture of Our MWP Solver

Based on ERI and equivalent transformations aforementioned, we present the
architecture of our MWP solver named Solver with Entity and Math (SEM)
in Fig. 6. Firstly, SEM uses ERI to preprocess problem texts and solutions in
the MWP dataset. SEM repeatedly uses the indexed problem text as the source
sequence and 30 equivalent transformations of MWP solutions as different target
sequences to train 30 vanilla seq2seq models. After 30 seq2seq models are trained,
SEM can solve an MWP by using its indexed problem text as the source sequence
and let 30 seq2seq models produce 30 different target sequences. Then, SEM
will recover numeric values by indices and compute each target sequence by the
corresponding program. Invalid target sequences will be dropped out, while valid
target sequences will result in numeric answers. A plurality vote [4,9,19] will be
conducted on numeric answers and output the answer which receives the largest
number of votes. Ties are broken arbitrarily.

4 Experiments

4.1 Experimental Configuration

Dataset. The dataset Math23K [17] is a large and widely-used benchmark®
for MWP solvers. It contains 23,162 text problems annotated with solution
expressions and answers. Each problem can be solved by one linear algebra
expression with four types of operators {x, /, 4+, —}. The results reported in this
paper are derived from 5-fold cross-validation.

Baselines. We compare our solver to a plenty number of baselines and state-
of-the-art models. DNS [17] uses a vanilla seq2seq model to generate solution

! Zhao et al. [22] build a new large-scale and template-rich math word problem dataset
named Ape210K. However, the publication of the dataset has been withdrawn in
Arxiv (https://arxiv.org/abs/2009.11506).
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Rows (cols) and indexes: {1: NUMI6, 2: NUM46, 3: NUM31, 4. NUM76 ,5: NUMI6, ...}
Indexes and values: {NUM16: 2, NUM46: 3, NUM31: 4, NUM76: 6}

1 2 3 4 5 6
(1,2J1), (1,3,1), (1,4,3), (1,5,2), (1,11) 515

1 2 3 4 5 6
(1,2,1), (1,3,1), (1,4,3), (1,5,2), (1,1,1) 6 | 3

1 2 3 4 5 6
(1,2,1), (1,3}1), (1,4,3), (1,5,2), (LL1L1) ¢ [ 3 [ 4

1 2 3 4 5 6
(1:2:1)9 (17371 s (17473)> (1’5>2)7 (17171) 24 3 4

1 2 3 4 5 6
(1,2,1), (1,3,1), (1,4,L), (1,5,2), (1,1,1) [, 3| 4 | 6

1 2 3 4 5 6
(152a1)7(15371)9(1’4’3 ,(175,2)’ (171’1) 30 3 4 6

‘-] 1 2 3 4 5 6

(L2,1), (1,3,1), (1,4,3), (1L52), (LLD [5073 [ 2 16 |2

1 2 3 4 5 6
(17251)9 (15371)7 (17473)) (1,572 ’ (17171) 15 3 4 6 2

1 2 3 4 5 6
(1.2,1), (1,3,1), (14.3), (1,52, (LLY) 515 4 6 12

Fig. 5. Calculating a sequence of triples to generate the answer of the MWP.

[ Math word problems dataset ] =
| Applications
[ Entity Unit Random Indexing (EURI) j

| !

- N Testing source:
{ (ining sorceindexed problenitext indexed problem text [ Calculation and Plurality vote ]
'
{ Training target 1: equivalent transformation E1 J——'[ Seq2seq model 1 Testing target 1

——
| (.
-

{ Training target 30: equivalent transformation E30 }—{ Seq2seq model 30

Testing target 30 )7

Fig. 6. Overall architecture of the SEM solver.
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expressions. S-Aligned [2] designs the decoder with a stack to track the semantic
meanings of operands. GROUP-ATT [10] adopts the idea of multi-head attention
from the transformer [15]. GTS [18] develops a tree-structured neural network
in a goal-driven manner to generate expression trees. Graph2Tree [21] combines
the merits of the graph-based encoder and tree-based decoder to generate better
solution expressions. RODA [11] makes use of mathematical logic to produce new
high-quality math problems. ERNIE 3.0 [14] is a pre-trained language model with
10 billion parameters and is trained on a 4TB corpus consisting of plain texts
and a large-scale knowledge graph.

Model Configuration. The vanilla seq2seq model used in our architecture is
the 4-layer 16-head transformer [15], with dy = 12, d,, = 32, and d,,04e1 = 512,
where di and d, are the dimension of keys and values respectively, and d.node; 18
the output dimension of each sub-layer. We use the Adam optimizer [7] to train
the model with the learning rate le™3, f; = 0.9, B2 = 0.99, and the dropout
rate of 0.3.

4.2 Results

Overall Performance. Table 3 shows the accuracy of our SEM MWP solver
and its competitors. We observe that SEM achieves competitive performance
compared to state-of-the-art solvers. It proves that entity information and math
knowledge can enhance seq2seq solvers to outperform both tree-based solvers
and solvers relying on massive data pre-training.

Table 3. Answer Accuracy of SEM and baselines on Math23K.

Method Answer accuracy (%)
DNS [17] 58.1
S-Aligned [2] 65.8
GROUP-ATT [10] | 66.9
GTS [18] 74.3
ERNIE 3.0 [14] 75.0
Graph2Tree [21] 75.5
GTS+RODA [11] 76.0
SEM (Our Approach) | 77.1

Effectiveness of ERI. To verify the effectiveness of ERI, we show frequency
percentages of the ordinal indexing and ERI in Fig. 7. Using ordinal indexing,
46% numeric values are indexed as NUM1, 36% numeric values are indexed as
NUM?2, and 12% numeric values are indexed as NUM3. NUM1, NUM2, and
NUMS8 are bound to uncertain semantics and are ambiguous to MWP solvers.
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Fig. 7. Frequency percentages of the ordinal indexing and ERI.

However, when ERI is applied, indices are unambiguous since they are bound
to certain entities. Furthermore, frequencies of ERI indices are similar and the
most frequent indices do not exceed 5%. This is helpful for training a debiased
neural network MWP solver.

Ablation Study. We conduct an ablation study to examine the effect of ERI
and equivalent transformations, as shown in Table 4. When ERI is removed,
there is a significant drop in accuracy (from 77.1% to 74.8%), implying that
ERI is indeed effective. For the four types of solution transformations, we first
investigate the accuracy when one of them is removed. We can see that matrix
transformation is the most effective strategy. As we expected, diversifying the for-
mats of output sequence representation can encourage seq2seq models to master
math knowledge. We also conduct experiments to use only one type of solution
augmentation, with interesting findings in Table 4. We can see that there is sharp
performance degradation since the ensemble model works better if the under-
lying seq2seq models are more diversified. With only one type of augmentation
available, the improvement by the ensemble model is rather limited. At last, the
single vanilla seq2seq model that is trained by representation E; obtains 62.3%
answer accuracy.

Correlation Analysis. As shown in Fig. 6 and Table 4, our SEM MWP solver
obtains competitive performance based on plurality voting of solvers trained on
diverse data.

Given t classifiers designed for binary classification, plurality voting can
derive the correct prediction if at least [t/2+41] classifiers choose the correct class
label. Assume that the outputs of the classifiers are independent, and each classi-
fier has an accuracy p, implying that each classifier makes a correct classification
at probability p. The probability of the ensemble for making a correct decision
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Table 4. Ablation study of SEM.

Model configuration Answer accuracy (%)
SEM (Full Implementation) 77.1

w/o. ERI 74.8, 1 2.3

w/o. Expression Transformation 76.8, | 0.3

w/o. Equation Transformation 77.0, | 0.1

w/o. Matrix Transformation 76.3, | 0.8

w/o. Template Transformation 77.0, 1 0.1

w/ERI & Expression Transformation | 65.3, | 11.8
w/ERI & Equation Transformation |63.5, | 13.6
w/ERI & Matrix Transformation 67.5, | 9.6
w/ERI & Template Transformation |65.8, | 11.3
Single seq2seq model trained on F, 62.3, | 14.8

Table 5. The Jaccard index between correct answers of two solvers.

#1 | #2 | #3 | #4 | #5 | #6 | #T | #8 | #9 | #10 | #11 | #£12 | #13 | #14 | #15 | #16
#1 |1.00|0.74|0.72 | 0.74 | 0.74 | 0.73 | 0.74 | 0.74 | 0.73 | 0.73 | 0.65 | 0.73 | 0.74 | 0.74 | 0.74 | 0.74
#2 074 [1.00|0.70 | 0.74 | 0.74 | 0.73 | 0.74 | 0.73 | 0.72 | 0.73 | 0.65 | 0.72 | 0.74 | 0.72 | 0.73 | 0.73
#3 |0.72/0.70 | 1.00 | 0.70 | 0.69 | 0.69 | 0.70 | 0.70 | 0.69 | 0.69 | 0.62 | 0.69 | 0.71 | 0.70 | 0.70 | 0.70
#4 |0.74]0.74|0.70 | 1.00 | 0.74 | 0.73 | 0.73 | 0.74 | 0.73 | 0.72 | 0.65 | 0.74 | 0.73 | 0.73 | 0.73 | 0.73
#5 |0.74|0.74|0.69 | 0.74 | 1.00 | 0.74 | 0.75 | 0.74 | 0.74 | 0.73 | 0.65 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73
#6 |0.73]0.73|0.69 | 0.73 |0.74 | 1.00 | 0.73 | 0.74 | 0.72 | 0.73 | 0.64 | 0.73 | 0.72 | 0.72 | 0.72 | 0.72
#7 10.74]0.74|0.70 | 0.73 | 0.75 | 0.73 | 1.00 | 0.74 | 0.73 | 0.72 | 0.66 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73
#8 |0.74]0.73]0.70 | 0.74 | 0.74 | 0.74 | 0.74 | 1.00 | 0.73 | 0.73 | 0.64 | 0.74 | 0.73 | 0.73 | 0.73 | 0.73
#9 |0.73]0.72|0.69 | 0.73 | 0.74 | 0.72 | 0.73 | 0.73 | 1.00 | 0.74 | 0.66 | 0.75 | 0.72 | 0.72 | 0.72 | 0.72
#10 | 0.73 | 0.73 | 0.69 | 0.72 | 0.73 | 0.73 | 0.72 | 0.73 | 0.74 | 1.00 | 0.66 | 0.75 | 0.72 | 0.71 | 0.71 | 0.71
#11|0.65 | 0.65 | 0.62 | 0.65 | 0.65 | 0.64 | 0.66 | 0.64 | 0.66 | 0.66 | 1.00 | 0.66 | 0.64 | 0.64 | 0.64 | 0.65
#12|0.73 [ 0.72 | 0.69 | 0.74 | 0.73 | 0.73 | 0.73 | 0.74 | 0.75 | 0.75 | 0.66 | 1.00 | 0.72 | 0.72 | 0.72 | 0.72
#13|0.74 | 0.74 | 0.71 | 0.73 | 0.73 | 0.72 | 0.73 | 0.73 | 0.72 | 0.72 | 0.64 | 0.72 | 1.00 | 0.77 | 0.80 | 0.78
#14 | 0.74 | 0.72 | 0.70 | 0.73 | 0.73 | 0.72 | 0.73 | 0.73 | 0.72 | 0.71 | 0.64 | 0.72 | 0.77 | 1.00 | 0.77 | 0.79
#15 | 0.74 | 0.73 | 0.70 | 0.73 | 0.73 | 0.72 | 0.73 | 0.73 | 0.72 | 0.71 | 0.64 | 0.72 | 0.80 | 0.77 | 1.00 | 0.78
#16 | 0.74 | 0.73 | 0.70 | 0.73 | 0.73 | 0.72 | 0.73 | 0.73 | 0.72 | 0.71 | 0.65 | 0.72 | 0.78 | 0.79 | 0.78 | 1.00

can be calculated using a binomial distribution. Specifically, the probability of
obtaining at least [t/2 4 1| correct classifiers out of ¢ is [4]:

Pz Y (3 )= 1)

k=|t/2+1]

Lam and Suen [9] showed that 1) If p > 0.5, then P,,, is monotonically increasing
in ¢, and limy—, 4 oo Py = 1 2) If p < 0.5, then P,,, is monotonically decreasing
in ¢, and lim;_, 4 oo Py = 0. 3) If p = 0.5, then P,,,, = 0.5 for any t.

Note that plurality voting fails to work well if the underlying models are
highly correlated. Thus, our last experiment is to verify the correlation of our
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solvers. We show the Jaccard index between correct answers of each pair of
seq2seq solvers in Table 5 (Limited by space, we only show results between
solver #1 to #16). The Jaccard index is computed as

AN Ayl

J(A;, Aj) = AUA
i J

(2)

where A; represents the set of correct answers produced by i-th solver, A; repre-
sents the set of correct answers produced by j-th solver. The #i solver is trained
from equivalent representation F;. The maximal Jaccard index 0.799 is achieved
by the pair #13 and #15. The minimal Jaccard index 0.619 is achieved by the
pair #3 and #11. F13 and E15 belong to the same type “Matrix Transformation”
while E3 and F1; belong to different types that are “Expression Transformation”
and “Equation Transformation” respectively. Such evidence support that there
is no highly correlated pair of solvers whose training data should be removed
from the training dataset.

4.3 Demonstration

As shown in Fig. 8, we present a potential application of the SEM solver. Assume
that we have an electric car with some attributes such as the maximum speed,
the endurance mileage, the charging time, and the battery state. Our SEM solver
can be trained to answer users’ questions such as “I want to go to a place 700 km
away, how many hours will it take as fast as possible?”. The SEM solver will offer
a human-readable math equation according to the answer that receives the most
votes in our algorithm. Users can provide feedback on the answers. If “Accept”
is clicked by a number of users, the question and the answer will be appended
to the training set as the positive sample for iterative model improvement. If
the “Reject” button is clicked, another candidate solution will be presented.
Administrators of this system will randomly check user-generated data to filter
out false positive samples. We are also working on adapting this demonstration
to offer shopping recommendations according to the attributes of an item on
e-commerce websites.

| want to go to a place 700 km away, how many hours
will it take as fast as possible?
— VA :
—— —

700

— 700 — . 1 .5 = 5.
Maximum speed: 140 km/h 140 + (( 00 - 550 %0 85)%550 + ) *0.5=55h
Endurance mileage: 550 km

Charging time: 0.5 h

Accept

Fig. 8. A demonstration of the SEM solver.
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5 Conclusion

In this paper, we propose Entity Random Indexing to equip indices with seman-
tics and propose diverse representations of math expressions to augment training
data. Experimental results show that our approaches enhance the seq2seq MWP
solver to outperform strong baselines. As for future work, we seek to integrate
the proposed approach with pre-trained language models to examine the gen-
eralization capability and to further improve the performance of MWP solvers.
We are also planning to collect more and diverse MWP data for training and
benchmarking. Accelerating the seq2seq model inference is also an interesting
topic of making our solver to be a real-time application with low latency.
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