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The transferability of adversarial examples enables practical transfer-based attacks. However, existing theoret-
ical analysis cannot effectively reveal what factors contribute to cross-model transferability. Furthermore, the
assumption that the target model dataset is available together with expensive prices of training proxy models
also leads to insufficient practicality. We first propose a novel frequency perspective to study the transferability
and then identify two factors that impair the transferability: an unchangeable intrinsic difference term along
with a controllable perturbation-related term. To enhance the transferability, an optimization task with the
constraint that decreases the impact of the perturbation-related term is formulated and an approximate
solution for the task is designed to address the intractability of Fourier expansion. To address the second
issue, we suggest employing pre-trained models as proxy models, which are freely available. Leveraging these
advancements, we introduce cost-effective transfer-based attack (CTA), which addresses the optimization task
in pre-trained models. CTA can be unleashed against broad applications, at any time, with minimal effort and
nearly zero cost to attackers.This remarkable feature indeed makes CTA an effective, versatile, and fundamental
tool for attacking and understanding a wide range of target models, regardless of their architecture or training
dataset used. Extensive experiments show impressive attack performance of CTA across various models trained
in seven black-box domains, highlighting the broad applicability and effectiveness of CTA.
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1 Introduction
The significance of adversarial examples’ transferability in practical black-box attacks has provoked
a surge of interest within the AI community [10, 12, 31, 42]. Specifically, the adversarial examples
derived from local proxy models have demonstrated their transferability to attack other unknown
models, enabling practical black-box attacks. However, the advancement in this research area is
impeded by two primary constraints.

The first limitation stems from the inadequate theoretical analysis of transferability [33, 38].
Existing studies [3, 22, 32] have employed various tools, such as gradient similarity, to explain
transferability. However, these analyses still remain rudimentary and have yet to unlock their full
potential [3, 38]. To be specific, cross-model transferability is a direct result of gradient similarity. A
deeper understanding is needed to determine why certain adversarial examples exhibit high cross-
model gradient similarity, what factors contribute to this phenomenon, and which aspects of the
model facilitate transferability. Addressing these questions would allow us tomore fully comprehend
the limitations and effectiveness of transfer-based attacks and develop effective countermeasures.

The second limitation arises from the doubtful practicality of existing transfer-based attacks in
real-world scenarios [11, 22, 23], caused by the following reasons. Typically, most attention [6, 7,
19, 30] in this field is paid to explore the cross-model transferability among models trained on the
identical dataset, e.g., ImageNet. However, the dataset information associated with the target model
is rarely disclosed to untrusted individuals and it is difficult to collect sufficiently similar datasets
to train proxy models. For example, in situations where collecting data for a particular label is
difficult, training a suitable proxy model becomes infeasible. Moreover, the expensive computational
price of training a proxy model [5, 38] also makes a significant bottleneck for the practicality of
transfer-based attacks.

Our Contribution. To address the first limitation, we introduce a novel frequency perspective to
study transferability. From the frequency perspective, a function can be decomposed as a weighted
sum of different frequency functions, offering a clear, concise, and consistent representation of
deep neural networks (DNNs) with different architectures. This fresh perspective allows for
circumventing certain issues that plague existing literature [15, 33, 38]. In particular, structural
differences across different DNNs are difficult to handle but have to be taken into consideration
when probing the transferability.

Through the lens of the frequency perspective, we identify two terms that impair the transfer
effectiveness: namely the inherent difference term along with the perturbation-related term. The
former is caused by intrinsic differences between models and is unchangeable. In contrast, the latter
is associated with adversarial perturbation and is controllable. To increase the transfer effectiveness,
we introduce an optimization constraint that seeks to lower the influence of the perturbation-related
term. However, solving this constraint is challenging due to the intractability of Fourier expansion
in high-dimensional spaces. To address the challenge, a bound for the original constraint is derived
to serve as the new constraint. The optimization task with the new constraint can be approximately
solved by exploiting the low-frequency preference principle [26, 39, 41] of DNNs (see Section 5).

The second limitation essentially pertains to the challenge of obtaining a cost-effective proxy
model. To address the problem, we propose leveraging pre-trained models as the proxy model.
Nowadays, there are a sufficient number of well-trained pre-trained models available to the public
[8, 25], which can be accessed free of charge. Moreover, since pre-trained models output embeddings
for fed inputs, we can attack the embeddings instead of minimizing probabilities as in typical
transfer-based attacks. Doing so eliminates the need to pay attention to the problem of the label
space, rendering our attack universally applicable to most deployed models.

By the above analysis, we propose cost-effective transfer-based attack (CTA) that produces
adversarial examples by solving the formulated task in pre-trained models. The effectiveness
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of CTA is evaluated through extensive experimentation, where the produced adversarial ones
show competitive attack performance across various models trained in seven unknown black-
box domains. Besides, our evaluation further consolidates a recently showed counter-intuitive
finding: complex-design attacks are commonly less effective than simplistic attacks, likely due to
overfitting to commonly used benchmarks [19, 44]. Compared to [22], this article incorporates
more state-of-the-art models and transfer attack methods, thereby enhancing the reliability of this
counter-intuitive finding. In other words, the complexity of these complex-design attacks may lead
to excessive optimization for specific benchmarks at the expense of generalization capability.

2 Related Work
Regarding the underlying source of the transferability, some prior works [14, 35] empirically
demonstrated that earlier layers of different models tend to learn similar patterns that induce
transferability, but the exact mechanisms at play remain elusive. Prior studies [3, 22, 32] utilized a
variety of tools including game theory and gradient similarity to model and explain transferability,
as well as measuring differences in model architecture to gain insights into this complex issue.
However, these studies only showed the correlation between the transferability of adversarial
samples and the tools employed, like gradient similarity. The specific factor that causally leads to
the transferability of adversarial samples across different models remains unclear. Therefore, the
source of the transferability of adversarial examples continues to remain shrouded in mystery and
a deeper analysis is urgently needed.

Moreover, another important line of this field is to make adversarial examples even more trans-
ferable across different models. To achieve this, these works modify the backpropagation process
[36, 42], diversifying inputs and models [18, 19, 31, 37], tuning gradients [30], and so on. However,
these studies only showed the correlation between the transferability of adversarial samples and
the tools employed, like gradient similarity. The specific factor that causally leads to the transfer-
ability of adversarial samples across different models remains unclear. Besides, Wang et al. [34]
introduce a regularization term to penalize the distance between adversarial perturbations and
their transformed versions generated by randomly removing certain frequency components of the
original perturbation. In contrast, we conduct theoretical analysis to demonstrate the importance of
low-frequency components to transferability and thus focus on corrupting low-frequency compo-
nents by adding random noises to inputs. Notice that, in these works, the employed proxy models
typically share the same training dataset of the target model, i.e., ImageNet, which mismatches with
a complete black-box setting. Generator-based attacks [23, 43] use a non-identical dataset to train a
generative model, which can produce adversarial examples for arbitrary samples. The generated
ones sometimes can still remain threatening to target models trained in different black-box domains.
Compared to the abovementioned attacks, our attack leverages an off-the-shelf pre-trained model
and eliminates the need to collect data and train models. Therefore, our approach offers better
practicality in real-world scenarios.

3 Approach
We focus on transfer-based black-box adversarial attacks, where adversarial examples generated on
the proxy model sometimes can also fool other unknown target models. Let %\? (·) denote the proxy
model parameterized by \? . Given a sample G ∈ [0, 1]3 with ground-truth label ~ ∈ [0, 1] where
3,  is the dimension of G and  is the number of categories. Formally, the vanilla transfer-based
attacks typically solve the following task to craft the adversarial perturbation X∗:

X∗ = argmax
X

L(%\? (G + X), ~), B .C ., | |X | |∞ ≤ n, (1)
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where L(·, ·) is the loss function and n is the perturbation budget to account for similarity between
G and G + X . The standard practice to solve Equation (1) is to leverage gradient-based optimization
algorithms. However, during the optimization process, the adversarial perturbation is updated
greedily at each iteration to maximize the loss function. This often leads to overfitting of X∗ to the
proxy model, i.e., rendering X∗ less effective against the target model.

To mitigate the overfitting problem, we propose a variant of Equation (1). Intuitively, in Equation
(1), the overfitting problem is generally caused by excessive reliance on corrupting model-specific
features of G . A straightforward solution is to introduce random noises that serve to disrupt
these model-specific features to a certain degree. In this way, during the optimization process,
attention is redirected toward perturbing a broader range of features rather than exclusively
focusing on the model-specific ones. With this consideration in mind, we rewrite Equation (2)
as follows:

X∗ = argmax
X

L(%\? (G + X + h), ~), h ∼ # (0, d� ), B .C ., | |X | |∞ ≤ n, (2)

where h is isotropic Gaussian noises and d is the noise magnitude. Section 5 presents the for-
mal justification for the effectiveness of Equation (2). In detail, given the tendency of DNNs
toward capturing low-frequency components with greater fidelity [39, 40], the divergence in the
high-frequency components across different DNNs is commonly more pronounced compared
to the low-frequency components. We demonstrate that the incorporation of Gaussian noises
in Equation (2) is capable of reducing the impact of the high-frequency components during the
optimization process, thereby enhancing the cross-model transferability of the resulting adversarial
examples.

The remaining problems are the choice of proxy models and the concretization of the loss
function.

Proxy Model. We suggest employing pre-trained models as proxy models, motivated by two key
considerations. First, there are many off-the-shelf pre-trained models. Second, CTA corrupts high-
level semantic information in images given by pre-trained models, which results in a more general-
purpose and convenient attack compared to existing transfer-based attacks that reduce model
confidence for specific labels. For example, existing attacks reduce model confidence associated
with either cats or dogs to attack a DNN distinguishing cats and dogs. However, when switching
from attacking the DNN to another DNN, the adversarial ones for the original DNN cannot be
reused and it is required to train a brand-new proxy model from scratch, i.e., traditional transfer-
based attacks are highly tailored to individual DNN and lack universality. In contrast, CTA does
not require a new proxy model when the target model changes since it corrupts overall semantic
information rather than label-specified information. This feature reduces attack costs and makes
CTA more efficient when attacking multiple DNNs.
Loss Function Design. Let I denote the embedding vector outputted by the pre-trained model

%\? (·) for G +X . It is believed that the high-level semantic information of samples is well encoded in
I and the information is sufficient to linearly separate different categories of samples. Therefore, we
suppose that the target model is similar to a concatenation of the proxy model and a linear layer.
Formally, the target model passes I through the linear layer, parameterized by F8 , 8 = 1, · · · ,  ,
to yield the confidence score for 8th category. The predicted probability of a sample for the 8th
category, denoted by ?8 , can be expressed as follows:

?8 =
4I

)F8∑ 
9=1 4

I)F9

, (3)
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Algorithm 1: CTA
Input: %\? (·): the proxy model; G,~: the natural sample and its ground-truth label; L: the loss

function (Equation (5)); n : perturbation budget; d : noise magnitude;) : the number of iterations;
U : step size; # : the number of sampled Gaussian noise h.

1: Initialize adversarial perturbation X = 0.
2: for each iteration 8 = 1 to ) do
3: for 9 = 1 to # do
4: Sample Gaussian noise h ∼ # (0, d� ).
5: Compute the loss L(%\? (G +X +h), ~) and get the gradients 6 9 = ∇XL(%\? (G +X +h), ~).
6: end for
7: Update adversarial perturbation X = X + U

#

∑9=#−1
9=0 sign(6 9 ).

8: Clip adversarial perturbation X = max(min(X, n),−n).
9: end for

10: Return: the crafted adversarial example G + X .

whereF8 can be regarded as the representation vector of the 8th category. Although employing
the cosine similarity between I) andF8 as the loss function is a straightforward option, the loss
function in fact can be further improved. To show this, we rewrite ?8 as follows:

?8 =
4

(
| |I | |2
| |I | |2

I

)) | |F8 | |2
| |F8 | |2

F8∑ 
9=1 4

(
| |I | |2
| |I | |2

I

)) | |F9 | |
| |F9 | |

F9

=
4 | |F8 | |2 | |I | |2 2>B_B8< (I,F8 )∑ 
9=1 4

| |F9 | |2 | |I | |2 2>B_B8< (I,F9 )
=

(08 ) | |I | |2∑ 
9=1 (08 ) | |I | |2

,

08 = 4
| |F8 | |2 2>B_B8< (I,F8 ) .

(4)

In addition to the cosine similarity between I and F8 , the norm of I also impacts the predicted
probability. To be specific, the magnitude of 08 , which is associated with the norm magnitude ofF8
and the cosine similarity between I andF8 , determines the prediction category of G by the model.
Moreover, the magnitude of the norm of I reflects the confidence of the model in its decision.
In detail, assuming that the model assigns G to the 8th category, we have ?8 = 1/(∑ 

9=1 (
0 9

08
) | |I | |2 )

and 0 9

08
< 1, 8 ≠ 9 . As the norm of I increases, so does the corresponding probability ?8 , i.e., the

model strengthens its belief of a sample belongs to 8th category and is less convinced of other
categories. Similarly, a small magnitude leads to a uniform distribution of prediction probabilities,
indicating that the model is uncertain about which category the sample belongs to. If | |I | |2 = 0,
there is ?1 = ?2 = · · · = ? = 1

 
. Inspired by the above observation, the ultimate loss function

comprises two terms: the cosine similarity and the norm of I. Notably, the form of the loss differs
slightly between white-box and black-box scenarios.

In the white-box scenario, the proxy model is the target model. Thus, by reducing the cosine
distance between I and F8 on the proxy model, it is guaranteed that the target model no longer
correctly identifies G + X , and increasing the norm of I makes the proxy model more confident.
In the black-box scenario, the target model is not the proxy model, indicating G + X may not be
misclassified by the target model due to the divergence between the proxy and target models.
Increasing the norm of I probably reduces attack effectiveness. Thus, a more suitable option is
to reduce the norm of I, as doing so can make the model less confident about its decision. In a
nutshell, we define

L(%\? (G + X + h), ~) = 2>B_B8<(I, I0) − V · | |I | |2,
I = %\? (G + X + h), I0 = %\? (G), h ∼ # (0, d� ), V ≥ 0,

(5)
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Table 1. Comparison of Eight Domains

Domain Number of Categories Granularity Image Size Label Space

SVHN 10 Coarse-grained 32 × 32 Digit
CIFAR-10 10 Coarse-grained 32 × 32 Animals, Transportations
CIFAR-100 100 Fine-grained 32 × 32 Animals, People, Transportations
STL-10 10 Coarse-grained 96 × 96 Animals, Transportations

FGVC AirCraft 102 Fine-grained 224 × 224 Aircraft
CUB-200-2011 200 Fine-grained 224 × 224 Birds

ImageNet 1,000 Mid-grained 224 × 224 Universal Objects
CLIP N/A N/A 224 × 224 Universal Objects

where I0 is used to replaceF8 and V serves a balance factor. In practice, Equation (5) is solved by
gradient descent algorithm with multiple sampled h. Algorithm 1 summarizes the overall process
of CTA.

4 Experimental Evaluation
4.1 Experimental Settings
Proxy Model. We employ the vision encoder of CLIP [25], one of the most common pre-trained
models, as the proxy model to construct CTA.
Competitor. Six state-of-the-art transfer-based attacks are considered to compare: BIM [17], DI

[37], MI [6], TI [7], VR [30], and SSA [19]. These attacks are originally implemented using the
cross-entropy loss function based on ImageNet-trained models. For fair comparisons, we substitute
the proxy models and loss function with the CLIP model and our loss function to evaluate.
Black-Box Domains. To deliver a reliable evaluation of transfer-based attacks, we carefully

select seven different black-box domains together with various model architectures, including
CIFAR-10 [16], CIFAR-100 [16], SVHN [24], STL-10 [1], FGVC AirCraft [21], CUB-200-2011 [29],
and ImageNet [4]. As shown in Table 1, these black-box domains enjoy significant distribu-
tion differences from CLIP. For SVHN, CIFAR-10, and CIFAR-100, we train five model architec-
tures, DenseNet, EfficientNet, MobileNetV2, ResNet18, and ShuffleNetV2, using publicly available
codes, while for STL-10, FGVC AirCraft, CUB-200-2011, and ImageNet, we use publicly avail-
able models to attack, including CNNs, Vision Transformers, and !2, !∞ adversarially trained
models.

Metric. Attack success rate (ASR) serves as the evaluation metric, which is the misclassification
rate of the target models over adversarial ones. Higher ASR indicates better attack performance.
Implementation Details. If not otherwise specified, we use the same hyperparameters as [6, 7,

37] for all attacks, including n = 16
255 , step size of U = 1.6

255 , and iteration of 10. Furthermore, we set
# = 10, V = 1, and d = 1.0 for our method and the hyperparameter setup for other attacks aligns
with their original papers. # is the number of sampled h. Moreover, the test sets of CIFAR-10,
CIFAR-100, and SVHN are hired and a random subset of 10,000 samples is extracted from ST-L10,
FGVC AirCraft, and CUB-200-2011 datasets for the attack evaluations. For ImageNet, we employ
the benchmark sub-dataset [44] to evaluate.

4.2 Attacks over Various Black-Box Domains
Attacks on Coarse-Grained Domains. Table 2 reports the empirical performance of attacks across
three coarse-grained domains: SVHN, CIFAR-10, and STL-10. Overall, it is observed from Table 2
that CTA is significantly more effective than the baselines, with improvements of up to 3.46%,
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Table 2. The Attack Success Rates (ASR) (%) of Different Attacks on Coarse-Grained
Black-Box Domains

Domain Target Model FGSM BIM DI MI TI VR SSA CTA (Ours)

DenseNet 14.58 13.73 15.07 14.51 12.17 15.07 14.84 18.53
EfficientNet 17.59 16.74 18.30 15.85 13.95 17.63 17.52 19.53
MobileNetV2 15.82 14.51 17.19 17.19 14.73 16.18 16.96 20.20

ResNet 14.92 13.62 17.52 15.40 13.73 15.40 15.29 17.08
SVHN

ShuffleNetV2 17.06 16.18 16.41 16.63 16.07 19.08 17.08 19.98

DenseNet 55.85 54.02 53.79 57.37 47.66 54.35 56.47 60.94
EfficientNet 51.08 49.67 52.68 53.35 48.88 52.46 52.23 58.15
MobileNetV2 46.74 45.20 46.54 46.88 41.07 45.31 47.32 51.34

ResNet 43.02 41.85 42.41 46.76 38.17 43.19 44.98 50.56
CIFAR-10

ShuffleNetV2 39.53 38.84 41.07 42.52 38.06 38.39 40.40 42.86

STL-10 ResNet50 43.08 41.55 42.20 45.30 42.53 41.47 41.57 46.30

The best results are in bold.

4.80%, and 1.00% in SVHN, CIFAR-10, and STL-10, respectively. In addition to this main finding, two
intriguing observations emerge from Table 2. Firstly, all attacks only achieve relatively low ASRs,
less than 20.20%, in SVHN as compared to CIFAR-10 and STL-10. This could be due to the limited
discriminative features learning by CLIP for digit images, caused by the huge discrepancy in SVHN
and training data distribution of CLIP. Specifically, as reported in [25], CLIP encounters a major
difficulty in classifying digits as its training dataset only contains a few images of digits. Secondly,
except for CTA, the results in Table 2 reveal no consistent outperformance of any single attack
method over others. More specifically, some sophisticated attack methods, such as VR and SSA,
instead yield inferior performance to simpler alternatives in STL-10. In contrast, MI, a relatively
simple attack, achieves competitive performance across most cases. This indicates that the attacks
may overfit to specified cases like when the training dataset between the proxy model and the
target model is identical. In other words, a simple design may offer a more universally effective
solution.
Attacks on Fine-Grained Domains. Table 3 reports the performance of different attacks in three

fine-grained domains. The principal conclusions in the fine-grained domains align with those
observed in coarse-grained domains. Moreover, we observe that the attack effectiveness in fine-
grained domains is commonly better than in coarse-grained domains. Such phenomena can be
attributed to the high semantic similarity among images within fine-grained domains, which
leads to a substantial degree of feature overlap and the high compactness of images over deci-
sion spaces. As a result, even slight perturbations are sufficient for moving them across decision
boundaries.
Attacks on ImageNet. We examine the performance of CTA in ImageNet, a large-scale domain

widely used as a benchmark in transfer-based attacks. Notice that the evaluation differs from
existing transfer-based attacks in a realistic black-box scenario used here by not training the proxy
model in ImageNet, providing more reliable results. The results are reported in Table 4. Besides
convolutional network architectures, CTA also are evaluated over the transformer-liked model
architectures, Vit and Swin. As can be seen, regardless of the model architecture used, our attack
achieves the best ASRs.
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Table 3. The ASR (%) of Different Attacks on Fine-Grained Black-Box Domains

Domain Target Model FGSM BIM DI MI TI VR SSA CTA (Ours)

DenseNet 81.08 78.79 82.48 83.26 77.57 82.16 82.76 84.58
EfficientNet 75.52 73.77 75.00 75.78 73.66 74.50 72.08 77.92
MobileNetV2 76.87 74.89 76.45 76.00 71.76 74.70 76.01 79.23

ResNet 70.60 67.86 70.09 74.11 66.07 68.45 71.07 73.29
CIFAR-100

ShuffleNetV2 75.25 74.67 74.33 74.22 74.22 71.37 72.98 75.60

ResNet50 66.28 64.83 64.93 68.70 63.03 65.73 67.20 68.80
SeNet 64.51 62.13 62.70 65.73 62.33 62.57 65.40 67.27FGVC AirCraft

SeRes101 80.25 78.43 78.33 80.90 76.97 78.97 79.87 84.50

ResNet50 64.78 62.37 62.33 66.90 62.37 63.23 63.13 76.40
SeNet 49.23 46.90 49.00 50.50 52.50 47.40 47.23 59.87CUB-200-2011

SeRes101 49.47 47.50 47.23 51.40 45.53 45.97 47.47 55.43

The best results are in bold.

Table 4. The ASR (%) of Different Attacks on ImageNet against Regular Models

Target Model FGSM BIM DI MI TI VR SSA CTA (Ours)

ResNet50 55.80 52.70 59.50 53.60 55.90 50.70 53.20 68.60
WideResNet50 48.20 46.40 51.70 45.90 51.40 44.80 49.70 68.50
DenseNet121 56.70 53.20 59.50 51.60 56.50 51.80 54.40 73.20
EfficientNet 55.60 51.60 56.80 51.40 52.60 49.30 54.30 73.00

Inc-V3 57.30 54.70 63.90 55.90 61.60 57.00 58.20 74.30
VGG19 64.60 62.20 66.70 62.90 65.00 61.80 64.50 78.20

MNASNet 70.20 68.50 72.70 69.50 68.80 69.00 70.70 86.80
RegNet 53.70 50.70 55.30 48.90 54.40 49.10 51.80 70.90

MobilenetV2 68.20 65.70 73.00 65.60 71.40 65.40 66.30 78.50
ShuffleNet 70.10 69.40 72.10 71.20 70.20 68.80 69.00 80.40
SqueezeNet 86.30 84.40 85.00 87.80 84.50 84.30 84.20 90.00
ConvNext 22.10 21.40 23.10 23.20 21.30 22.20 26.20 39.00

ViT 30.80 29.70 34.00 30.60 30.20 31.10 35.50 57.50
SwinT 24.80 23.60 25.70 26.70 21.20 25.30 27.10 40.90

The best results are in bold.

4.3 Attacks over Secured (Adversarially Trained) Models
Wehere report the attack results ofCTA against securedmodels trained in dataset corrupted [13] and
dataset augmented with adversarial examples [27] (known as adversarial training).The adversarially
trained models include both single models and ensemble models, which are trained with multiple
combinations of constraint norm type and perturbation budget. Therefore, the evaluation nearly
covers all possible secured models. Table 5 reports the results and CTA considerably outperforms
the baselines for most of the secured models, except against EnsAdvIncV2 and Linf-8.0. In cases
against EnsAdvIncV2 and Linf-8.0, our method only slightly underperforms MI and TI by less
than 0.3%.
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Table 5. The ASRs (%) of Different Attacks on ImageNet against Secured Models

Target Model FGSM BIM DI MI TI VR SSA CTA (Ours)

SIN 65.10 63.30 66.00 63.00 61.50 63.10 62.70 75.20
SIN-IN 49.30 47.40 54.00 46.60 53.50 48.40 49.30 66.40

AdvIncV3 57.20 56.10 57.60 58.40 59.90 55.00 55.40 60.50
EnsAdvIncV2 31.30 29.30 37.30 30.20 37.50 31.30 31.40 37.40

L2-0.03 56.70 54.40 62.00 55.30 56.90 54.30 55.60 73.80
L2-0.05 50.10 47.70 58.10 50.30 52.50 47.40 49.20 68.40
L2-0.1 46.80 44.60 54.00 45.40 51.10 44.70 46.00 66.50
L2-0.5 42.90 39.80 44.30 45.00 44.90 40.10 39.50 55.00
L2-1.0 44.50 41.80 46.50 46.30 46.70 41.50 42.10 54.50
L2-3.0 44.60 42.10 43.30 45.70 46.10 41.70 41.50 51.00
L2-5.0 47.20 44.90 47.30 48.20 47.50 45.80 46.90 50.70
Linf-0.5 38.40 36.90 41.60 40.30 42.30 38.40 37.40 53.20
Linf-1.0 35.60 33.40 36.60 38.70 37.10 34.20 33.20 44.20
Linf-2.0 33.20 31.00 33.60 35.20 32.70 31.80 32.10 36.30
Linf-4.0 38.40 36.90 38.00 40.60 38.40 37.00 37.30 41.10
Linf-8.0 46.70 45.50 45.80 47.30 45.40 45.60 45.40 47.00

The best results are in bold.

Table 6. The ASR (%) of Attacks against ResNet50 with Different
Defenses in ImageNet

Defense RP NIPS-R3 FD ComDefend RS

MI 25.70 29.40 35.60 44.90 22.60
VT 26.80 29.80 39.50 46.90 29.90
SSA 34.80 37.30 43.80 49.50 31.80

CTA (Ours) 39.50 47.90 60.50 58.70 34.60

The best results are in bold.

4.4 Attacks over State-of-the-Art Defenses
In this subsection, we examine the attack performance of different attacks against state-of-the-art
defenses. Table 6 reports the attack results of four attack methods against five state-of-the-art
defenses, including RP, NIPS-R3, FD, ComDefend, and RS, with the target model ResNet50 on
ImageNet. As can be seen, CTA consistently outperforms all baselines across all defenses tested,
further supporting the superior effectiveness of CTA.

4.5 Attacks with Different Proxy Models
In this subsection, we investigate the attack performance of different pre-trained models for
constructing our method. Particularly, we substitute the visual encoders of CLIP with the backbones
of MNASNet, VGG19, InceptionV3 (Inc-v3), InceptionV4 (Inc-v4), Inception-Resnet-v2 (IncRes-v2),
and Resnet-v2-152 (Res-152) trained on ImageNet. Tables 7, 8, and 9 report the attack performance
using these models as proxy models against target models trained on four black-box domains
including CIFAR-10, CIFAR-100, FGVC AirCraft, and ImageNet. Firstly, we observe that the attack
performance of our method consistently outperforms state-of-the-art attacks, VR and SSA, across
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Table 7. The ASR (%) of Attacks with Different Proxy Models on CIFAR-10 and CIFAR-100

Proxy Model Attack CIFAR-10 CIFAR-100
ResNet DenseNet EfficientNet ResNet DenseNet EfficientNet

MNASNet
VR 22.98 33.91 31.19 46.88 61.26 54.91
SSA 25.73 36.69 34.25 50.66 61.98 51.24

CTA (Ours) 34.03 42.02 38.29 52.27 64.61 61.39

VGG19
VR 29.66 36.46 38.77 56.37 72.92 61.79
SSA 32.90 39.92 39.14 57.78 71.88 59.99

CTA (Ours) 37.59 47.55 44.14 59.26 73.81 63.84

Inc-v3
VR 40.29 51.22 48.22 63.74 78.53 70.03
SSA 40.59 52.10 48.71 66.62 80.03 69.18

CTA (Ours) 45.87 57.73 53.70 69.07 83.21 77.98

The best results are in bold.

Table 8. The ASR (%) of Attacks with Different Proxy Models on FGVC AirCraft and ImageNet

Proxy Model Attack FGVC AirCraft ImageNet
ResNet50 SeNet SeRes101 ResNet50 DenseNet121 EfficientNet

MNASNet
VR 48.05 44.00 58.44 30.30 31.70 31.30
SSA 48.66 44.56 61.63 33.40 34.10 32.20

CTA (Ours) 50.81 47.25 64.51 46.40 51.50 53.90

VGG19
VR 52.77 48.17 65.38 39.30 36.30 36.70
SSA 54.86 51.04 66.57 39.10 39.20 43.20

CTA (Ours) 55.20 54.24 70.81 57.00 59.90 61.40

Inc-v3
VR 63.32 60.49 73.93 45.80 48.40 47.40
SSA 64.14 62.02 74.45 49.50 50.20 51.00

CTA (Ours) 68.04 62.95 82.09 63.60 67.60 68.10

The best results are in bold.

all cases. Furthermore, we find that employing CLIP as the proxy model yields the best attack
performance, followed by Inception, VGG19, and MNASNet. It is intuitive that the effectiveness
of transfer-based attacks is correlated with the degree of overlap between the features learned by
the proxy models and the target models. Thus, CLIP, which learns more general object features
[25], is more likely to possess overlapping features with the target models, leading to better attack
performance compared with other models.

4.6 Time Complexity Comparison
We here are interested in the time complexity of different attack methods. The runtime of these
attacks is primarily determined by the number of forward and backward passes needed. Specifically,
FGSM requires only one forward and backward pass through the proxy model, resulting in a time
complexity of $ (1). BIM is an iterative version of FGSM, and its running time scales linearly with
the number of iterations T, i.e., $ () ). Similarly, DI, MI and TI share the same time complexity
$ () ), since they only conduct simple arithmetic operations which can be neglected. On the other
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Table 9. The ASR (%) of Attacks with Four Different Proxy Models on ImageNet

Proxy Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v34=B3 Inc-v34=B4 IncRes-v24=B

Inc-v3

DI 99.7 64.6 59.6 47.8 14.1 14.5 7.0
VR 99.9 75.5 69.0 62.7 32.9 30.9 17.4
SSA 99.2 87.6 85.9 81.4 52.3 51.7 37.8

CTA (Ours) 99.3 90.4 88.3 83.4 53.5 54.1 39.3

Inc-v4

DI 72.7 99.9 61.8 51.2 17.4 15.8 8.5
VR 78.4 99.9 71.9 64.0 37.6 39.0 22.8
SSA 89.9 99.9 86.3 82.5 60.8 60.7 45.5

CTA (Ours) 90.9 99.7 87.7 84.7 63.2 63.5 46.8

IncRes-v2

DI 70.7 66.9 100.0 58.1 25.2 20.8 14.6
VR 79.1 76.4 100.0 67.3 47.1 40.5 34.3
SSA 89.8 88.5 99.8 85.3 64.5 59.8 54.0

CTA (Ours) 91.9 91.5 99.9 88.0 67.0 62.1 55.8

Res-152

DI 79.4 76.2 74.2 100.0 34.9 28.8 19.1
VR 73.9 70.0 66.3 100.0 45.0 41.1 30.4
SSA 89.0 86.6 86.9 99.7 66.5 62.6 50.6

CTA (Ours) 90.6 90.7 89.2 99.8 69.8 64.2 52.9

Inc-v34=B3, Inc-v34=B4, and IncRes-v24=B come from [28]. The best results are in bold.

Table 10. The Empirical Running Time of Eight Attack Methods for Crafting a Single
Adversarial Example Using an NVIDIA A10

Attack FGSM BIM DI MI TI VR SSA CTA (Ours)

Running Time (s) 0.051 0.498 0.501 0.499 0.498 5.012 5.076 5.008

Table 11. The ASR (%) of Attacks with Different Perturbation Budget
n against ResNet50 in ImageNet

Perturbation Budget n 8 10 12 14 16

MI 39.50 43.20 48.40 50.80 53.60
VT 35.30 39.50 46.50 48.30 50.70
SSA 41.30 44.30 47.20 50.20 53.20

CTA (Ours) 50.60 55.30 62.00 65.10 68.60

The best results are in bold.

hand, VR, SSA, and our proposed method require computing gradients of # transformed inputs
per iteration. Accordingly, their running time can be approximated as # times that of BIM, i.e.,
$ ()# ). Table 10 reports the empirical time required by each attack to generate adversarial samples
for a single input, which aligns with our analysis. In general, CTA has an empirical running time
similar to that of VR and SSA.
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Fig. 1. The attack effectiveness of CTA with varying # (sample number) and d (noise magnitude) against
three target models (ResNet50, DenseNet121, and Inc-v3) over ImageNet.

Table 12. The Attack Effectiveness of CTA with Varying V .

V 0 0.01 0.1 1 10 100

ResNet50 66.90 67.20 68.20 68.60 68.80 68.50
DenseNet121 71.80 72.00 72.60 73.20 73.30 73.50

VGG19 75.30 75.80 77.30 78.20 78.40 78.20

The best results are in bold.

4.7 Sensitive Analysis and Ablation Study
Attacks with Varying Perturbation Budget n. We here evaluate the attack performance of CTA under
varying perturbation budgets. Specifically, Table 11 presents the attack effectiveness of different
attack methods with varying n on the target model, ResNet50, trained on ImageNet. Overall,
reducing the perturbation budget weakens the attack performance. Moreover, it is observed that
CTA surpasses baselines by a clear margin regardless of the chosen perturbation budget.

The Impact of # and d . Figure 1 shows the impact of sample number # and noise magnitude d
on CTA. Overall, increasing # leads to a better attack performance, as it induces more accurate
estimation for Equation (5). Besides, the ASRs increase until the peak at a noise magnitude of 1.0,
followed by a gradual decrease. Intuitively, as shown in Figure 4, too small a noise magnitude
results in relatively lower ASRs due to ineffective elimination of high-frequency components; vice
versa.
The Impact of V . We here evaluate the effectiveness of CTA with different V . Table 12 presents

the attack results over different V . As shown in Table 12, the performance of CTA is improved by
setting V ≥ 0. Moreover, we see that the marginal gains from increasing V diminish as the value of
V surpasses 1. Worse, increasing V beyond a certain threshold (1 or 10) may even result in a decline
in attack performance. We hypothesize that an excessively large value of V makes | |I | |2 dominate
the optimization process, neglecting the cosine similarity.

5 Theoretical Justification
In this section, we justify the effectiveness of Equation (2) from the frequency perspective. Fourier
expansion of Equation (1) yields

X∗ = argmax
X

∑
9

0 94G?{8F)9 [G + X,~]}, B .C ., | |X | |∞ ≤ n, (6)

whereF 9 ∈ R3+ , 0 9 , 8 , [·, ·] stand for the frequency vector, the corresponding frequency coefficient,
the imaginary number, and the concatenation operation, respectively. In the frequency domain,
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the difference between two functions can be characterized by the difference in their frequency
coefficients. By denoting the frequency coefficient difference between the proxy and target models
forF 9 as Δ0 9 and assuming n to be small, the loss of G + X∗ in the target model is expressed as

L()\C (G + X∗), ~)

=
∑
9

(0 9 + Δ0 9 )4G?{8F)9 [G + X∗, ~]} =
∑
9

{
0 94G?{8F)9 [G + X∗, ~]} + Δ0 94G?{8F)9 [G + X∗, ~]}

}
≈
∑
9

0 94G?{8F)9 [G + X∗, ~]} + Δ0 94G?{8F)9 [G,~]} + Δ0 94G?{8F)9 [G,~]}8F)9 [X∗, 0] . (7)

The third line of Equation (7) hires linear approximation. The loss is decomposed into three terms,
namely the attack effectiveness term, the inherent difference term, and the perturbation-related
term, from left to right. The attack effectiveness term is identical to the loss of G + X∗ in the proxy
model, quantifying the attack performance of G + X∗ against the proxy model. Commonly, X∗ is
threatening to the proxy model, i.e., G + X∗ has a huge loss in the proxy model. However, G + X∗ is
often of low attack performance against the target model, indicating that the inherent difference
term and the perturbation-related term lower the loss of G + X∗ in the target model and thus
undermining the transferability of G + X∗.

In light of the above insights, producing transferable adversarial ones can be formulated
as follows:

X∗ = argmax
X

L(%\? (G + X), ~),

B .C ., | |X | |∞ ≤ n, f ≥ 0,

����∑
9

Δ0 94G?{8F)9 [G,~]} +
∑
9

Δ0 94G?{8F)9 [G,~]}8F)9 [X, 0]
���� ≤ f. (8)

In Equation (8), the optimization target promotes G + X to be effective against the proxy model and
the constraint ensures the similarity of loss of G + X in proxy and target models (small f makes
better loss similarity). By leveraging Equation (8), the produced adversarial examples G + X∗ are
more transferable, which is formally demonstrated in Theorem 5.1.

Theorem 5.1. Given n and f , let X∗ be the optimal solution for Equation (8), and ;>BB stands for the
corresponding value of !(% (G + X∗), ~). Assume cross-entropy loss function is used. In particular, if
4max{−;>BB+f,−;>BB−f } ≤ 1

 
, G + X∗ can fool the target model.

Proof. Notice ;>BB stands for the loss value of G + X∗ in the proxy model. According to Equation
(8), the loss value of G + X∗ in the target model is bounded between ;>BB ± f . Moreover, as cross-
entropy loss function is used, the predicted probability of the target model to G + X∗ is bounded
between 4−;>BB±f . For a K-classification task, if there exists a predicted probability value less than
1
 
, then another value greater than 1

 
must exist. Otherwise, the sum of the probabilities over

all categories is less than 1. Therefore, if 4max{−;>BB+f,−;>BB−f } ≤ 1
 
, G + X∗ can fool the target

model. �

However, the constraint in Equation (8) poses a significant challenge, primarily due to the
requirement of full access to the target model to evaluate Δ 9 , compounded by the intractability of
Fourier expansion in high-dimensional spaces.

We first simplify Equation (8) by using an upper bound of the constraint as a substitution.
Furthermore, we show the new constraint becomes more manageable by exploiting the fundamental

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 2, Article 52. Publication date: February 2025.



52:14 M. Fan et al.

Fig. 2. The accuracy of target models in adversarial examples produced by DenseNet over different training
iterations.

characteristics of DNNs. In detail, there is����∑
9

Δ0 94G?{8F)9 [G,~]} +
∑
9

Δ0 94G?{8F)9 [G,~]}8F)9 [X, 0]
����

≤
����∑
9

Δ0 94G?{8F)9 [G,~]}| +
∑
9

|Δ0 9 | |4G?{8F)9 [G,~]}8 | |F)9 [X, 0]
����. (9)

In Equation (9), |∑9 Δ0 94G?{8F)9 [G,~]}| is not associated with X and can be discarded. As such,∑
9 |Δ0 9 | |4G?{8F)9 [G,~]}8 | |F)9 [X∗, 0] | ≤ f is used to replace the original constraint.
Although the new constraint is less complex than the original, it still needs to resort to Fourier

expansion. We here present an approximate solution. The core idea behind the solution is that: if
X is unrelated to high-frequency components, the new constraint can be approximately satisfied.
Consequently, the constrained optimization task can be converted into an easy-to-handle uncon-
strained task, if X keeps unrelated to high-frequency components throughout the optimization
process.

Specifically, on the one hand, compared to low-frequency vectors, high-frequency vectors possess
larger norms, i.e., highmagnification strength.Therefore, ifX is related to high-frequency vectors, the
constraint is more likely to be breached. On the other hand, a lot of studies [39, 41], both theoretically
and empirically, show that the coefficients corresponding to low-frequency components across
different models are usually quite close to each other. In detail, the training of DNNs places a
high priority on fitting low-frequency vectors and thus it is more possible that the low-frequency
coefficients between DNNs have a nearly negligible small gap. In contrast, the fitting of high-
frequency coefficients is affected by various factors.

Empirical validation of this is observed in Figures 2 and 3, where we measure the transferability
of adversarial ones generated by DenseNet and EfficientNet over different training iterations to
five black-box target models. Wherein, the transferability increases during the early training stage
since the networks first fit the low-frequency vectors and the resultant adversarial noises are prone
to attack the low-frequency vectors. After that, the transferability decreases as the networks start
to learn high-frequency vectors that attract a part of the attention of adversarial noises. Thus, it is
believed that keeping noises correlated with low-frequency vectors can better align the constraint
compared to high-frequency vectors.
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Fig. 3. The accuracy of target models in adversarial examples produced by EfficientNet over different training
iterations.

Fig. 4. The left image shows a function consisting of a low-frequency and a high-frequency function. Based
on Theorem 5.2, the right image illustrates the smoothed versions of ~ = B8=(G) + B8=(10G) over different d .
With a suitable value of d , the high-frequency component ~ = B8=(10G) can be effectively removed while the
low-frequency component ~ = B8=(G) remains.

Theorem 5.2 [9]. Let h be isotropic Gaussian noises, i.e., h ∼ # (0, d� ) where d is the noise magni-
tude. AssumeL(%\? (·), ·) is U-Lipschitz continuous and gradient function∇! is V-Lipschitz continuous.
The expected gradient of random function L(%\? (· + h), ·) is<8={ U√

d
, V}-Lipschitz continuous.

The optimal solution for Equation (8) can be approximated by selecting the adversarial noises
that maximize the loss function among all noises being unrelated to high-frequency vectors.
However, directly optimizing L(%\? (·), ·) fails to guarantee the resulting X∗ to be unrelated to
high-frequency vectors. To address this issue, we optimize a proxy loss function L(%\? (· + h), ·)
instead. Specifically, Theorem 5.2 shows that the proxy loss function changes more slowly over its
domain than the original one and is considered to be more smooth, because the gradient function
of the proxy enjoys a smaller Lipschitz constant. Moreover, a smooth function tends to contain
fewer high-frequency components, which in turn ensures that the resultant adversarial noises to
less unrelated to high-frequency vectors. Figure 4 intuitively demonstrates Theorem 5.2, with a plot
of a function composed of a low and a high-frequency component, as well as its proxy versions
with varying d . As shown in Figure 4, a bigger noise magnitude delivers a stronger smoothing
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effect, and, given a fixed magnitude, the suppression effect on high-frequency components is more
pronounced, compared with low-frequency ones. In this way, with an approximate noise magnitude,
high-frequency components can be effectively removed while preserving low-frequency ones.

In fact, adding Gaussian noises leads to the value of the proxy at a given point being the aggregated
value of the original around a small neighborhood centered at the point. As the period of the high-
frequency components is short, the neighborhood can be viewed as consisting of several complete
periods together with some incomplete ones. According to the fact that the sum of values within a
period of a periodic function equals 0, we can consider the average value of the remaining points to
represent the function value at that point. With an increase in frequency, the average value of these
points decreases, thus allowing for the effective elimination of high-frequency components using
this approach. In contrast, the slow change in function value corresponding to the low-frequency
component indicates that it is highly preserved within a given neighborhood, making this method
effective for preserving the low-frequency component as well.

Based on our analysis, it is clear that Gaussian noises introduced in Equation (2) in fact effectively
suppress the high-frequency components of the proxy model. By doing so, the adversarial examples
generated by Equation (2) are less related to the high-frequency components, thereby facilitating
their transferability across different models. Moreover, there exist some defenses [2] that leverage
random smoothing, i.e., adding random noises to inputs, to bolster the robustness of models.
Theorem 5.2 shows that models that add random noises to inputs enjoy a smaller Lipschitz constant,
which indicates less sensitivity to input changes and thus explains the effectiveness of random
smoothing. From this interesting perspective, CTA in fact crafts adversarial examples that are
threatening against robust models. Intuitively, the adversarial examples crafted via more robust
models should own better attack effectiveness [20]. In summary, we grasp why the adversarial
examples generated by Equation (2) are more transferable.

6 Conclusion
In this article, we probed the source of the transferability of adversarial ones from the frequency
perspective and identified the intrinsic difference term and the perturbation-related term that im-
pairs transfer effectiveness. To mitigate the impact of the perturbation-related term, we formulated
an optimization task with a constraint and designed an approximation solution. Moreover, we
customized a loss function when using pre-trained models for launching transfer-based attacks.
Extensive experiments demonstrated the superior attack performance of CTA.

References
[1] Adam Coates, A. Ng, and Honglak Lee. 2011. An Analysis of Single-Layer Networks in Unsupervised Feature Learning.

In International Conference on Artificial Intelligence and Statistics, 215–223.
[2] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified Adversarial Robustness via Randomized Smoothing. In

International Conference on Machine Learning. PMLR, 1310–1320.
[3] Ambra Demontis, Marco Melis, Maura Pintor, Matthew Jagielski, Battista Biggio, Alina Oprea, Cristina Nita-Rotaru,

and Fabio Roli. 2019. Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning
Attacks. In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 321–338.
Retrieved from https://www.usenix.org/conference/usenixsecurity19/presentation/demontis

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, K. Li, and Li Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image
Database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255.

[5] Shi Dong, Ping Wang, and Khushnood Abbas. 2021. A Survey on Deep Learning and Its Applications. Computer
Science Review 40 (2021), 100379 (2021). DOI: https://doi.org/10.1016/j.cosrev.2021.100379

[6] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. 2018. Boosting Adversarial
Attacks with Momentum. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 9185–9193.

[7] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. 2019. Evading Defenses to Transferable Adversarial Examples
by Translation-Invariant Attacks. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
4307–4316.

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 2, Article 52. Publication date: February 2025.

https://www.usenix.org/conference/usenixsecurity19/presentation/demontis 
https://doi.org/10.1016/j.cosrev.2021.100379


Cost-Effective Transfer-based Adversarial Attack 52:17

[8] Yifan Du, Zikang Liu, Junyi Li, and Wayne Xin Zhao. 2022. A Survey of Vision-Language Pre-Trained Models. In
International Joint Conference on Artificial Intelligence, 5436–5443.

[9] John C. Duchi, Peter L. Bartlett, and Martin J. Wainwright. 2011. Randomized smoothing for stochastic optimization.
SIAM Journal on Optimization 22 (2011), 674–701. Retrieved from https://api.semanticscholar.org/CorpusID:1182594

[10] Mingyuan Fan, Cen Chen, Chengyu Wang, and Jun Huang. 2023a. On the Trustworthiness Landscape of State-of-the-
Art Generative Models: A Comprehensive Survey. arXiv:2307.16680. Retrieved from https://arxiv.org/abs/2307.16680

[11] Mingyuan Fan, Cen Chen, Chengyu Wang, Wenmeng Zhou, and Jun Huang. 2023b. On the Robustness of Split
Learning against Adversarial Attacks. In European Conference on Artificial Intelligence (ECAI ’23). IOS Press,
668–675.

[12] Mingyuan Fan, Wenzhong Guo, Zuobin Ying, and Ximeng Liu. 2023c. Enhance Transferability of Adversarial Examples
with Model Architecture. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’23).
IEEE, 1–5.

[13] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann, and Wieland Brendel. 2019.
ImageNet-trained CNNs Are Biased towards Texture; Increasing Shape Bias Improves Accuracy and Robustness. In
International Conference on Learning Representations. Retrieved from https://openreview.net/forum?id=Bygh9j09KX

[14] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. 2019.
Adversarial Examples Are Not Bugs, They Are Features. In Advances in Neural Information Processing Systems. H.
Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates,
Inc. Retrieved from https://proceedings.neurips.cc/paper_files/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-
Paper.pdf

[15] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey E. Hinton. 2019. Similarity of Neural Network
Representations Revisited. In International Conference on Machine Learning, 3519–3529.

[16] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images, University of Toronto.
[17] A. Kurakin, I. Goodfellow, and S. Bengio. 2017. Adversarial Examples in the Physical World. (2017). In 5th International

Conference on Learning Representations, Workshop Track Proceedings.
[18] Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, and John E. Hopcroft. 2020. Nesterov Accelerated Gradient and

Scale Invariance for Adversarial Attacks. arXiv:1908.06281.
[19] Yuyang Long, Qi li Zhang, Boheng Zeng, Lianli Gao, Xianglong Liu, Jian Zhang, and Jingkuan Song. 2022. Frequency

Domain Model Augmentation for Adversarial Attack. In Computer Vision - ECCV 2022 - 17th European Conference. Shai
Avidan, Gabriel J. Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner (Eds.), Vol. 13664. Springer,
549–566.

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. 2018. Towards Deep
Learning Models Resistant to Adversarial Attacks. In International Conference on Learning Representations.

[21] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi. 2013. Fine-Grained Visual Classification of Aircraft.
arxiv:1306.5151. Retrieved from https://arxiv.org/abs/1306.5151

[22] Yuhao Mao, Chong Fu, Sai gang Wang, Shouling Ji, Xuhong Zhang, Zhenguang Liu, Junfeng Zhou, Alex X. Liu,
Raheem A. Beyah, and Ting Wang. 2022. Transfer Attacks Revisited: A Large-Scale Empirical Study in Real Computer
Vision Settings. In 2022 IEEE Symposium on Security and Privacy (SP), 1423–1439.

[23] Muzammal Naseer, Salman Hameed Khan, M. H. Khan, Fahad Shahbaz Khan, and Fatih Murat Porikli. 2019.
Cross-Domain Transferability of Adversarial Perturbations. In Advances in Neural Information Processing Systems,
12885–12895.

[24] Yuval Netzer, Tao Wang, Adam Coates, A. Bissacco, Bo Wu, and A. Ng. 2011. Reading Digits in Natural Images with
Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Vol. 2011.
Granada, 4.

[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning Transferable Visual Models
From Natural Language Supervision. In International Conference on Machine Learning, 8748–8763.

[26] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron
Courville. 2019. On the Spectral Bias of Neural Networks. In Proceedings of the 36th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 97). Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.).
PMLR, 5301–5310. Retrieved from https://proceedings.mlr.press/v97/rahaman19a.html

[27] Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. 2020. Do Adversarially Robust
ImageNet Models Transfer Better? In Advances in Neural Information Processing Systems (NIPS ’20). Curran Associates
Inc., Red Hook, NY, Article 298, 13 pages.

[28] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. 2018. Ensemble
Adversarial Training: Attacks and Defenses. In International Conference on Learning Representations.

[29] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. FGVC-Aircraft Benchmark. Technical Report
CNS-TR-2011-001. California Institute of Technology.

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 2, Article 52. Publication date: February 2025.

https://api.semanticscholar.org/CorpusID:1182594
https://arxiv.org/abs/2307.16680
https://openreview.net/forum?id=Bygh9j09KX 
https://proceedings.neurips.cc/paper_files/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://arxiv.org/abs/1306.5151
https://proceedings.mlr.press/v97/rahaman19a.html


52:18 M. Fan et al.

[30] Xiaosen Wang and Kun He. 2021. Enhancing the Transferability of Adversarial Attacks through Variance Tuning. In
2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 1924–1933.

[31] Xiaosen Wang, Xu He, Jingdong Wang, and Kun He. 2021a. Admix: Enhancing the Transferability of Adversarial
Attacks. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 16138–16147.

[32] Xin Wang, Jie Ren, Shuyu Lin, Xiangming Zhu, Yisen Wang, and Quanshi Zhang. 2021b. A Unified Approach to
Interpreting and Boosting Adversarial Transferability. In International Conference on Learning Representations (ICLR).

[33] Yilin Wang and Farzan Farnia. 2022. On the Role of Generalization in Transferability of Adversarial Examples.
arXiv:2206.09238.

[34] Yajie Wang, Yu-an Tan, Haoran Lyu, Shangbo Wu, Yuhang Zhao, and Yuanzhang Li. 2022. Toward Feature Space
Adversarial Attack in the Frequency Domain. International Journal of Intelligent Systems 37, 12 (2022), 11019–11036.

[35] Futa Waseda, Sosuke Nishikawa, Trung-Nghia Le, Huy Hoang Nguyen, and Isao Echizen. 2021. Closer Look at the
Transferability of Adversarial Examples: How They Fool Different Models Differently. In 2023 IEEE/CVF Winter
Conference on Applications of Computer Vision (WACV), 1360–1368.

[36] Dongxian Wu, Yisen Wang, Shutao Xia, James Bailey, and Xingjun Ma. 2020. Skip Connections Matter: On the
Transferability of Adversarial Examples Generated with ResNets. arXiv:2002.05990.

[37] Cihang Xie, Zhishuai Zhang, Jianyu Wang, Yuyin Zhou, Zhou Ren, and Alan Loddon Yuille. 2019. Improving Trans-
ferability of Adversarial Examples with Input Diversity. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2725–2734.

[38] Han Xu, Yao Ma, Hao-Chen Liu, Debayan Deb, Hui Liu, Ji-Liang Tang, and Anil K. Jain. 2020. Adversarial Attacks and
Defenses in Images, Graphs and Text: A Review. International Journal of Automation and Computing 17, 2 (2020),
151–178.

[39] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yan Xiao, and Zheng Ma. 2019. Frequency Principle: Fourier Analysis Sheds
Light on Deep Neural Networks. arXiv:1901.06523. Retrieved from https://arxiv.org/abs/1901.06523

[40] Zhi-Qin John Xu, Yaoyu Zhang, and Yan Xiao. 2018. Training Behavior of Deep Neural Network in Frequency Domain.
In International Conference on Neural Information Processing, 264–274.

[41] Zhi-Qin John Xu and Hanxu Zhou. 2020. Deep Frequency Principle towards Understanding Why Deeper Learning Is
Faster. In AAAI Conference on Artificial Intelligence, 10541–10550.

[42] Jianping Zhang, Weibin Wu, Jen tse Huang, Yizhan Huang, Wenxuan Wang, Yuxin Su, and Michael R. Lyu. 2022b.
Improving Adversarial Transferability via Neuron Attribution-based Attacks. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 14973–14982.

[43] Qilong Zhang, Xiaodan Li, Yuefeng Chen, Jingkuan Song, Lianli Gao, Yuan He, and Hui Xue. 2022a. Beyond ImageNet
Attack: Towards Crafting Adversarial Examples for Black-box Domains. In International Conference on Learning
Representations ( ICLR).

[44] Zhengyu Zhao, Zhuoran Liu, and Martha Larson. 2021. On Success and Simplicity: A Second Look at Transferable
Targeted Attacks. In Advances in Neural Information Processing Systems (NeurIPS), 6115–6128.

Received 15 September 2023; revised 9 April 2024; accepted 14 July 2024

ACM Transactions on Knowledge Discovery from Data, Vol. 19, No. 2, Article 52. Publication date: February 2025.

https://arxiv.org/abs/1901.06523

	Abstract
	1 Introduction
	2 Related Work
	3 Approach
	4 Experimental Evaluation
	4.1 Experimental Settings
	4.2 Attacks over Various Black-Box Domains
	4.3 Attacks over Secured (Adversarially Trained) Models
	4.4 Attacks over State-of-the-Art Defenses
	4.5 Attacks with Different Proxy Models
	4.6 Time Complexity Comparison
	4.7 Sensitive Analysis and Ablation Study

	5 Theoretical Justification
	6 Conclusion
	References

