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ARoBERT: An ASR Robust Pre-Trained Language
Model for Spoken Language Understanding

Chengyu Wang , Suyang Dai, Yipeng Wang, Fei Yang, Minghui Qiu , Kehan Chen, Wei Zhou, and Jun Huang

Abstract—Spoken Language Understanding (SLU) aims to inter-
pret the meanings of human speeches in order to support various
human-machine interaction systems. A key technique for SLU is
Automatic Speech Recognition (ASR), which transcribes speech
signals into text contents. As the output texts of modern ASR
systems unavoidably contain errors, mainstream SLU models ei-
ther trained or tested on texts transcribed by ASR systems would
not be sufficiently error robust. We present ARoBERT, an ASR
Robust BERT model, which can be fine-tuned to solve a vari-
ety of SLU tasks with noisy inputs. To guarantee the robustness
of ARoBERT, during pretraining, we decrease the fluctuations
of language representations when some parts of the input texts
are replaced by homophones or synophones. Specifically, we pro-
pose two novel self-supervised pre-training tasks for ARoBERT,
namely Phonetically-aware Masked Language Modeling (PMLM)
and ASR Model-adaptive Masked Language Modeling (AMMLM).
The PMLM task explicitly fuses the knowledge of word phonetic
similarities into the pre-training process, which forces homophones
and synophones to share similar representations. In AMMLM, a
data-driven algorithm is further introduced to mine typical ASR
errors such that ARoBERT can tolerate ASR model errors. In
the experiments, we evaluate ARoBERT over multiple datasets.
The results show the superiority of ARoBERT, which consistently
outperforms strong baselines. We have also shown that ARoBERT
outperforms state-of-the-arts on a public benchmark. Currently,
ARoBERT has been deployed in an online production system with
significant improvements.

Index Terms—ASR robust representation learning, pre-trained
language model, spoken language understanding.

I. INTRODUCTION

S POKEN Language Understanding (SLU) is the task of
interpreting and understanding the meanings of human
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speeches. Typical SLU tasks include slot filling [1], user intent
classification [2] and speech event detection [3]. To solve SLU
tasks, a variety of methods apply Automatic Speech Recognition
(ASR) to transcribe human speeches into texts before training
downstream SLU models. By combining ASR systems and SLU
models, the meanings of speech signals and textual contents
can be extracted and utilized in applications with rich human-
machine interactions.

Due to the importance of speech-to-text conversion, the
ASR task has been extensively addressed in both research and
industrial communities, mostly by means of designing deep
speech-to-text neural networks [4], [5]. Notable neural network
architectures for ASR systems include Deep Speech 2 [6],
the Speech Transformer [7], the wav2vec self-supervised sys-
tems [8] and many others. Despite the success, the transcripts
generated by ASR systems unavoidably contain errors, such as
the substitution of words by their homophones or synophones.
The errors produced by ASR systems can easily propagate to
the downstream SLU models [9], [10]. In the literature, several
lines of research have been proposed to address the problem
of the low robustness of SLU models. (i) ASR error detection
methods [11]–[13] recognize ASR errors in transcribed texts. (2)
Several approaches [14]–[16] modify the encoder-decoder ar-
chitectures in ASR systems to improve the language correctness
and fluency when the systems decode the latent representations
into discrete text outputs. When the two types of approaches are
applied to SLU tasks, users must modify existing ASR systems,
resulting in additional technical burdens. It would be more
desirable if there is an end-to-end SLU model that generates
robust predictions from ASR-transcribed texts directly.

Recently, the emergence of large-scale Pre-trained Lan-
guage Models (PLMs) has significantly improved the perfor-
mance of various language understanding tasks [17], including
BERT [18], ALBERT [19], GPT-3 [20] and many others. It is
thus straightforward to adopt PLMs for building an end-to-end
SLU model. The learning process involves a PLM pre-training
stage and a PLM fine-tuning stage for downstream SLU tasks.
However, if the representations learned during PLM pre-training
are not robust to ASR errors, the performance of PLM fine-
tuning would suffer to a large extent. There exist a few studies on
learning domain-invariant representations, more robust to ASR
errors [21]–[23]. Yet none of the prior studies consider ASR
error robustness in pre-training language models for boosting
the performance of a variety of SLU tasks.

To bridge the gap, we present ARoBERT (short for ASR Ro-
bust Bidirectional Encoder Representation from Transformers)
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in this paper. Since the majority of ASR errors are on word
homophones or synophones, we design ARoBERT to decrease
the fluctuations of language representations when part of the
input texts are replaced by their homophones or synophones.
In ARoBERT, inspired by BERT [18], a stack of transformer
encoders [24] are employed to learn input token representations.
Then, the transformer encoders in ARoBERT should tolerate the
ASR errors that are phonetically similar to those without errors.
Apart from the classical Masked Language Modeling (MLM)
task [18], we further propose two new self-supervised tasks
for pre-training ARoBERT, namely Phonetically-aware Masked
Language Modeling (PMLM) and ASR Model-adaptive Masked
Language Modeling (AMMLM), briefly summarized as follows:
� PMLM: This task is a significant extension to MLM such

that the model suffers from a smaller loss when it incor-
rectly predicts the masked tokens to be the homophones
or synophones of the actual words. Hence, homophones
and synophones share similar representations. In PMLM,
heuristic-based phonetic similarities are injected into the
loss function as knowledge priors.

� AMMLM: As different ASR systems may have diverse
types of errors, simple phonetic heuristics may have low
coverage of ASR errors. We further extend PMLM such
that the loss function can be adaptive to particular ASR
models. Specifically, we introduce a data-driven algorithm
to extract ASR errors as the seed error set. The errors
are then generalized and fused into a novel loss function
AMMLM. In this way, the pre-trained ARoBERT model
can fit specific errors created by particular ASR systems
that can not be captured by heuristics used in PMLM.

As for fine-tuning, ARoBERT utilizes the same training
paradigm as that of BERT [18], such that it can be directly
applied to various PLM-based approaches for SLU tasks with-
out any modifications. In the experiments, we evaluate the
effectiveness of the ARoBERT model over the benchmark of
the Chinese Audio-Textual SLU Challenge (CATSLU)1 and
two real-world, labeled datasets in industrial applications. The
results show the superiority of ARoBERT over strong base-
lines, and confirm ARoBERT’s capacity of preserving ASR
error robustness in language representation learning. We have
also deployed ARoBERT in an online production system and
observed significant improvements, compared to existing online
systems.

In summary, we make the following major contributions in
this paper:2
� We formally introduce the ARoBERT model for solving

various SLU tasks. To the best of our knowledge, our work
is the first to incorporate ASR error robustness into the
pre-training process of deep neural language models.

� We propose two novel self-supervised learning tasks for
pre-training ARoBERT, namely PMLM and AMMLM.

1[Online]. Available: https://sites.google.com/view/catslu/home/
2The source codes, the pre-trained ARoBERT model and the sampled

datasets will be publicly available at: https://github.com/alibaba/EasyTransfer/
tree/master/scripts/arobert.

The former incorporates heuristic-based phonetic similar-
ities, while the latter considers a data-driven algorithm to
be adaptive to ASR errors.

� Extensive experiments over multiple datasets and different
types of downstream SLU tasks prove the effectiveness of
ARoBERT, outperforming strong baselines.

The rest of this paper is organized as follows. Section II sum-
marizes the related work. Details of ARoBERT and experimental
results are presented in Sections III and IV. We discuss the
limitations and extensions of our work in Section V. Finally, we
draw the conclusion and discuss the future work in Section VI.

II. RELATED WORK

In this section, we briefly summarize the related work from
the literature in the following two aspects: PLMs and SLU tasks.
Specifically, we focus on how to learn ASR robust representa-
tions to improve the performance of SLU models.

A. Pre-Trained Language Models

In recently years, the rapid development of large-scale PLMs
has boosted the research of Natural Language Processing
(NLP) [17]. After the PLMs are pre-trained over massive cor-
pora, only a simple fine-tuning process is required to produce
models for downstream NLP tasks. ELMo [25] is one of the early
works that learns deep contextual representations. BERT [18] is
probably the most influential PLM that encodes words by a stack
of transformer encoders. In BERT, two self-supervised objec-
tives are employed for pre-training, i.e., MLM and next sentence
prediction. RoBERTa [26] improves the pre-training process of
BERT by various optimization techniques. ALBERT [19] re-
duces the sizes of BERT-style models by parameter sharing and
factorization. StructBERT [27] considers the syntactic structures
of languages for pre-training. A limitation of these PLMs is that
they utilize vanilla transformer encoders that have fixed-length
contexts. For longer sequences, Transformer-XL [28] learns the
long-term contextual dependencies by recurrence and relative
positional encoding. Apart from using transformer encoders
only, the encoder-decoder architecture has also been employed
in PLMs, such as T5 [29]. The GPT-3 model [20] uses the
transformer decoder architecture to generate texts for various
texts.

Despite the success, we notice that existing PLMs learn token
representations based on clean texts with high accuracy. To
the best of our knowledge, the proposed ARoBERT model is
the first to incorporate ASR error robustness into pre-training,
in order to improve the performance of downstream SLU
tasks.

B. Spoken Language Understanding

SLU is the process of understanding the semantic meanings
of utterances in human speeches. Typical SLU tasks include
slot filling [1], user intent classification [2], speech event detec-
tion [3] and many others. After human speeches are transcribed
into texts by ASR systems, NLP models (especially PLMs) can
be used to solve these SLU problems by fine-tuning.
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Fig. 1. Illustration of the pre-training tasks in ARoBERT. In the figure, each Chinese character is accompanied by its Chinese phonetic symbols (named pinyin)
to show its pronunciation. (Best viewed in color.).

Different from standard NLP tasks, a unique challenge for
SLU is that, some input texts of SLU contain errors generated
by ASR systems. If the underlying models are trained with clean
texts, they may perform poorly when the inputs for prediction
contain ASR errors. Similarly, models trained using noisy texts
may suffer from performance degradation over a dataset without
ASR errors [22]. In order to improve the robustness of such
models, several types of methods have been proposed. As texts
with and without ASR errors for the same task can be viewed as
different “domains,” several transfer learning approaches have
been proposed. For example, Wang et al. [30] employ transfer
learning to learn domain-invariant features between the two
types of texts. Tan et al. [31] use the minimum edit distances
between ASR results and correct candidates to rebuild the tuples
affected by ASR errors. The work [10] utilizes adversarial learn-
ing to train the SLU model encoders for ASR error adaptation.
Ruan et al. [22] add an additional loss in SLU models to
minimize the distribution differences between prediction outputs
of correct and incorrect texts. One potential disadvantage is
that it requires the labeled, training data with both inputs. Yet
a few works focus on end-to-end SLU, which perform SLU
tasks directly from audio inputs and are less vulnerable to ASR
errors [32]–[35].

Another stream of research aims to learn word embeddings
considering phonetic information for SLU tasks. SpellGCN [36]
integrates phonological and visual similarities of Chinese char-
acters into language models. Phoneme2vec [37] learns the sim-
ilarities between phonemes that benefit downstream SLU tasks,
without considering the semantic similarities between words.
Confusion2vec [38] uses both semantic similarities and phonetic
ambiguities to learn word embeddings. The confusion informa-
tion is leveraged in [23], which fine-tunes the ELMo [25] model
to make it more robust to ASR errors. Different from existing
works, ARoBERT is one of the first attempts to integrating
ASR ambiguities into the pre-training stages of PLMs, which
makes it capable of addressing a variety of downstream SLU
tasks.

III. AROBERT: THE PROPOSED MODEL

In this section, we formally present ARoBERT in detail. We
begin with an overview of the three pre-training tasks used in

ARoBERT. After that, the detailed techniques of ARoBERT are
elaborated.

A. An Overview of ARoBERT

ARoBERT shares the same transformer encoder architecture
as that of BERT [18] to learn token representations. It differ-
entiates itself from BERT-style models in that it incorporates
rich phonetic knowledge during pre-training. Specifically, the
transformer encoders should tolerate the ASR errors that are
phonetically similar to correct transcripts without errors.

In Fig. 1, we give an illustrative example on three pre-
training tasks of ARoBERT, namely Masked Language Mod-
eling (MLM), Phonetically-aware MLM (PMLM), and ASR
Model-adaptive MLM (AMMLM). Denote the loss functions of
the three tasks asLMLM ,LPMLM andLAMMLM , respectively.
The overall loss function of ARoBERT is defined as follows:

L = LMLM + λ1LPMLM + λ2LAMMLM , (1)

where λ1 and λ2 are balancing hyper-parameters. In the follow-
ing, we describe the three tasks in detail.

B. Pre-Training Tasks in ARoBERT

1) Masked Language Modeling: As Liu et al. [26] show,
MLM is more effective for BERT pre-training, compared with
next sentence prediction. Hence, in ARoBERT, we employ
MLM as a basic pre-training task. Before we introduce PMLM
and AMMLM, it is necessary to take a closer look at the mecha-
nisms of MLM. Let the underlying PLM be parameterized by θ.
The vocabulary set is denoted as V . Assume an arbitrary token
(with m as the index in the vocabulary V ) is masked for model
prediction. The token-wise MLM loss LMLM (m) is defined as:

LMLM (m) = −
|V |∑
i=1

yi,m · log Pr(i,m|θ), (2)

which is the cross-entropy between an one-hot vector �ym (with
the m-th element to be 1 and otherwise 0) and the model’s
prediction probability distribution. yi,m is the i-th element of
�ym and Pr(i,m|θ) is the probability of m being the i-th token
in the vocabulary V , predicted by the PLM parameterized by θ.
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The overall loss function LMLM is the sum of the losses of all
masked tokens in the corpus.

2) Phonetically-Aware Masked Language Modeling: As de-
scribed, MLM is unable to encode the phonetic knowledge of
words. In ARoBERT, we further define the token-wise PMLM
loss LPMLM (m):

LPMLM (m) = −
|V |∑
i=1

y′i,m · log Pr(i,m|θ), (3)

where y′i,m integrates the phonetic knowledge that requires the
model to approximate. Denote the phonetic similarity between
the i-th and m-th tokens in the the vocabulary V as sim(i,m).
A naive approach to define y′i,m is by setting y′i,m ∝ sim(i,m).
However, it ignores the semantic relations between the two
words. Additionally, this practice significantly enlarges the size
of the pre-training data, hence increasing the computational
complexity. To specify, during pre-training, |V | numeric values
(i.e., y′i,m for i = 1, . . . , |V |) are required to feed to the model
for each masked token. In ARoBERT, for each masked token m,
we retrieve the top-k most phonetically similar tokens. Denote
the collection of indices of these tokens as Cm. The value y′i,m
is then defined as follows:

y′i,m =

⎧⎪⎨
⎪⎩

M m = i
(1−M)·sim(i,m)∑

j∈Cm
sim(j,m) i ∈ Cm

0 otherwise

(4)

where M is a pre-defined constant (0 < M < 1). Thus
LPMLM (m) can be re-written by the following formula:

LPMLM (m) = −M · log Pr(m,m|θ)
−

∑
i∈Cm

y′i,m · log Pr(i,m|θ). (5)

Compared to LMLM (m), LPMLM (m) gives a higher toler-
ance of incorrectly predicting a token to be its homophones or
synophones, with degrees linearly proportional to the phonetic
similarity between the two words. Hence, the representations
learned by ARoBERT is less sensitive to ASR errors. Similar
to MLM, the loss function LPMLM is the sum of the losses
(LPMLM (m)) of all masked tokens.

A remaining problem is how to compute the phonetic simi-
larity sim(i,m) properly. In Mandarin, the pronunciation of a
Chinese character can be represented by the phonetic symbols
(named pinyin).3. Unlike English where vowels and consonants
form the pronunciation of words, Chinese phonetic symbols
mostly consist of three components: initials, finals and tones.
A simple example is shown in Fig. 2. We compute the phonetic
similarity sim(i,m) as follows:

sim(i,m) = α1 · 1 (initial(i) = initial(m))

+ α2 · 1 (final(i) = final(m))

+(1−α1−α2)·1 (tone(i) = tone(m)) , (6)

3[Online]. Available: https://en.wikipedia.org/wiki/Pinyin

Fig. 2. Examples of the three components in Chinese phonetic symbols
(pinyin). (Best viewed in color.).

where 0 < α1 < 1, 0 < α2 < 1 and 0 < α1 + α2 < 1. 1(·) is
the indicator function that returns 1 if the input Boolean expres-
sion is true and otherwise 0. initial(·), final(·) and tone(·)
represent the respective phonetic components of the underly-
ing Chinese characters. We find that the above approach is
heuristic-based, serving as the knowledge prior for pre-training
ARoBERT. Implementation details will be described in the
experiments.

3) ASR Model-Adaptive Masked Language Modeling: The
heuristic-based PMLM task has a relatively strong assumption
that phonetic similarities directly relate to ASR errors. However,
it is not always the case in real-world applications. The AMMLM
pre-training task is complementary to PMLM, which aims to
learn robust representations that can fit errors generated by ASR
models.

Formally, let S be the sequence of texts that an ASR model
generates from human speeches, and S ′ be the corresponding
texts that have been corrected by human annotators. Based on
the alignments between S and S ′, inspired by [23], we generate
a seed error set W = {(m,m′)} such that the m-th token in
the vocabulary V can be incorrectly substituted with the m′-th
token by the underlying ASR model. One disadvantage of the
construction of W is that it requires the tedious work of human
correction of transcribed texts. To minimize the amount of
human labor and make the discovered errors more generalized
to unseen texts, we further propose an ASR error expansion
algorithm, described below.

As seen, the pronunciations of Chinese characters are largely
determined by their initials and finals. Hence, it is necessary to
discover how initials and finals can be replaced when ASR errors
occur. We do not consider the substitution of tones here for two
reasons. i) In PMLM, when α1 and α2 are relatively large for
the computation of the heuristic-based phonetic similarity, two
Chinese characters already have high similarity if they share the
same initials and finals. Hence, the knowledge of tone similarity
is largely captured by PMLM. ii) The inclusion of tones for
ASR error expansion may largely expand the parameter space
of the probabilistic distributions, making them less generalized
to unseen cases. Denote I and F as the collections of all initials
and finals, repectively. For any two initials p, q ∈ I, we compute
the initial substitution probability by the following formula:

Pr(q|p) = #(p, q) + ε∑
p̃∈I #(p̃, q) + |I| · ε , (7)
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Fig. 3. Toy example of the generation process of the initial substitution
probabilistic distribution.

where #(p, q) is the frequency count where a word m’s initial p
is substituted by the initial q of another wordm′ inW , and ε is the
pre-defined smoothing factor (we set ε = 1e− 3 in default). Toy
examples of the computation of initial substitution probabilities
can be found in Fig. 3.

Similarly, for two finals r, s ∈ F , we also have the final
substitution probability, defined as follows:

Pr(s|r) = #(r, s) + ε∑
r̃∈F #(r̃, s) + |F| · ε , (8)

where #(r, s) is the frequency count where a word m’s final r
is substituted by the final s of another word m′ in W .

Based on the two probabilistic distributions, it is straightfor-
ward to expand the seed error set for the computation of the
AMMLM loss. We define the substitution score from the m-th
token to the i-th token (denoted as subs(i,m)) as follows:

subs(i,m)

=

⎧⎪⎨
⎪⎩

Pr(final(i)|final(m)) initial(i) = initial(m)

Pr(initial(i)|initial(m)) final(i) = final(m)

0 otherwise
(9)

We does not consider the situation where both the initial
and the final are different as such cases are very rare in our
Mandarin ASR system. Let LAMMLM (m) be the token-wise
AMMLM loss with:

LAPMLM (m) = −
|V |∑
i=1

y′′i,m · log Pr(i,m|θ), (10)

where y′′i,m fuses the mined and generalized knowledge from
the seed error set made by an ASR model. Similar to PMLM,
we also consider the top-k tokens with the highest substitution
scores when we compute y′′i,m:

y′′i,m =

⎧⎪⎨
⎪⎩

M m = i
(1−M)·subs(i,m)∑

j∈C̃m
subs(j,m) i ∈ C̃m

0 otherwise

(11)

where C̃m is the collection of tokens with the top-k substitution
scores w.r.t. the m-th token. It is trivial to see that:

LAMMLM (m) = −M · log Pr(m,m|θ)
−

∑

i∈C̃m

y′′i,m · log Pr(i,m|θ). (12)

Similar to PMLM, the loss function of the AMMLM task is the
sum of the token-wise losses (LAPMLM (m)) of all the masked
tokens in the pre-training corpus. In the implementation, for all
the Chinese characters in the ARoBERT vocabulary V , we have
computed all the scores y′′i,m and y′i,m w.r.t. the PMLM and
AMMLM tasks before model pre-training. The total number
of scores (y′′i,m and y′i,m) is 2k · |V |. Hence, during the pre-
training process, the optimization algorithm only needs to access
the corresponding values in the memory, which makes the pre-
training process of ARoBERT highly efficient.

4) Updating ARoBERT Through Time: We further analyze
how ARoBERT should be updated when the underlying ASR
systems change. In ARoBERT, we have three parts in the loss
function, namely LMLM , LPMLM and LAMMLM . We can see
that the optimization of LMLM and LPMLM is not ASR model-
specific. Hence, the change of ASR systems does not affect the
values ofLMLM andLPMLM . In contrast,LAMMLM is related
to specific ASR systems.

C. Fine-Tuning ARoBERT for SLU Tasks

As ARoBERT employs transformer encoders to learn ASR
robust representations, it is easy to fine-tune ARoBERT to
solve various SLU tasks. For example, one can follow the same
procedure of BERT fine-tuning [18] when ARoBERT is applied
for user intent classification. For a few complicated tasks such
as slot filling, post-processing steps are required to generate
the complete results. Readers can refer to the experiments for
the implementation details for slot filling over the CATSLU
Challenge. We do not further elaborate.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the proposed ARoBERT over multiple datasets and SLU tasks.
We compare ARoBERT with strong baselines to make the
convincing conclusion. We also deploy ARoBERT in an online
production system to demonstrate its usefulness in real-world
applications.

A. Datasets and Experimental Settings

1) Datasets: To our knowledge, the only publicly available
SLU dataset containing texts with ASR errors in the Mandarin
language is provided by the CATSLU Challenge [39], which
are slot filling tasks divided into four domains: map, music,
weather and video. For each domain, texts containing ASR
errors, together with their correct slot values have been divided
into training, development and testing sets by the organizers. The
dialogue-related statistics of CATSLU datasets are also shown
in Table II.
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TABLE I
STATISTICS OF DATASETS USED FOR EVALUATION

“#Test” for ARoMatch and ARoTopic refers to “#Test (Base)”.

TABLE II
DIALOGUE-RELATED STATISTICS OF CATSLU DATASETS

To fully evaluate the effectiveness of ARoBERT, we also con-
struct two new datasets from real-world industrial applications.
The first dataset ARoMatch is generated from a hotline service
from a popular e-commerce platform in China (i.e., Alibaba).
Each instance is in the form of “user query, product name,
class label” triples, where a user queries about products on
the platform via hotline. The task is to predict whether a user
query that is transcribed by an ASR system matches the product.
This is modeled as a binary classification task in our work. The
second dataset ARoTopic is a fine-grained topic classification
task generated from the same platform, which aims to predict
the fine-grained topic of a commercial audio (which has also
been transcribed by the ASR system) in the fashion domain.
In ARoTopic, there exist 11 different fine-grained class labels,
such as Promotions, Style, Material, Color & Patterns, etc.

The dataset settings of ARoMatch and ARoTopic are signif-
icantly different (and possibly more challenging) from those
in the CATSLU Challenge. The training and development sets
of ARoMatch and ARoTopic are manually constructed to have
relatively low ASR error rate of 10% approximately. To test the
model performance on relatively clean texts and texts with high
ASR error rates. The testing sets of ARoMatch and ARoTopic are
split into two parts: “Test (Base)” and “Test (ASR Error)”. “Test
(Base)” has similar ASR error rates as the training and devel-
opment sets. “Test (ASR Error)” is selected by crowd-sourced
workers such that every transcript has ASR errors which might
harm the model performance. Each instance is manually labeled
by crowd-sourced workers with original audios and transcribed
texts provided. Readers can refer to the statistics of all the
datasets in Table I.

2) Experimental Settings: In the implementation, we pre-
train two ARoBERT models in different sizes: i) the tiny version
(2 layers, with the dimension size 128) and ii) the base version
(12 layers, with the dimension size 768). The former is used
in ARoMatch and ARoTopic to ensure fast inference speed for
online applications, while the latter is used in the CATSLU

Fig. 4. Two-tower version of ARoBERT for query-title matching.

challenge. The underlying ASR system is a commercial system.4

The vocabulary and the pre-training settings are the same as
that of the Chinese version of BERT [18].5 For fine-tuning
on ARoMatch and ARoTopic, we use Adam as the optimizer [40].
The hyper-parameter settings for model pre-training are: λ1 =
λ2 = 0.5, M = 0.4, k = 30 and α1 = α2 = 0.4. We also tune
the models (with different learning rates and epochs) and report
the results in the experiments. During model fine-tuning, we use
the Adam optimizer with the batch size to be 32. The learning
rate and the number of epochs are tuned over the development
sets, with detailed results reported in the experiments.

All the algorithms are implemented with TensorFlow based on
the EasyTransfer platform [41] and trained with NVIDIA Tesla
V100 GPUs. For evaluation, we use accuracy and F1 for ARo-
Match and the CATSLU Challenge as the metrics. As ARoTopic
involves multiple classes, we report accuracy and weighted F1
(which is weighted by the support of different classes) as the
evaluation metrics.

B. General Performance Comparison

In this section, we report the general performance of
ARoBERT and baselines over ARoMatch and ARoTopic. Be-
cause ARoMatch is generally a text matching task, we treat
DAM [43], HCNN [44], SpokenVec [23] and BERT [18] as
strong baselines. Specifically, DAM [43] is a decomposable
attention model that learns the relations of textual inputs by
attention mechanisms. HCNN [44] employs both representation
and interaction learning for the text pairs. SpokenVec [23]
learns ASR-robust contextualized word embeddings for SLU.
Apart from the conventional fine-tuning approach for BERT [18]
and ARoBERT, we also implement the two-tower versions of
BERT and ARoBERT that uses two BERT/ARoBERT models
with shared parameters to learn representations of the query
and the product name separately, and the circle loss as the
matching loss function. A simple example of the two-tower
version of ARoBERT is shown in Fig. 4. As for ARoTopic, we
employ the following baselines: TextCNN [45], TextRCNN [46]
DGCNN [47], SpokenVec [23] and BERT [18]. Specially, base-
lines: TextCNN [45] employs CNN blocks with different sizes
for sentence classification. TextRCNN [46] integrates CNN
and RNN blocks as text encoders. DGCNN [47] is a strong

4[Online]. Available: https://www.alibabacloud.com/product/intelligent-
speech-interaction

5[Online]. Available: https://github.com/google-research/bert
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TABLE III
TESTING RESULTS OF AROBERT OVER THE CATSLU CHALLENGE (%)

Methods with ∗ use additional audio resources as features and hence are not directly comparable with us.

TABLE IV
EXPERIMENTAL RESULTS OVER TESTING SETS OF AROMATCH

TABLE V
EXPERIMENTAL RESULTS OVER TESTING SETS OF AROTOPIC

Gated-CNN model that achieves similar performance to BERT
in several datasets with fast inference speed. We have also
considered several adversarial learning approaches for learning
ASR robust models (such as [10], [22]) as baselines. However,
these methods require the labeled datasets of both clean texts
and texts with ASR errors. Hence, these methods can not be
directly applied to ARoMatch and ARoTopic. We tune ARoBERT
and all the baselines over the development sets and report the
performance on two types of testing sets: “Test (Base)” (with
few ASR errors) and “Test (ASR Error)” (with high ASR error
rates). The results are shown in Table IV and Table V.

From the experimental results over “Test (Base),” we find that
two PLMs (ARoBERT and BERT) without the two-tower set-
tings consistently outperform all the other methods over the two
SLU tasks. On ARoMatch, the F1 score of ARoBERT is higher
than BERT by 6.5%, while on ARoTopic, the improvement is
0.8%. It shows that the ASR robust pre-training technique of
ARoBERT is more important for text matching. As for the most
challenging cases on “Test (ASR Error),” the performance of all
models drops by a large margin, indicating there is still room
for improvement on ASR error robustness. Compared to BERT,
the improvements of ARoBERT in terms of F1 scores are 10.0%

and 5.1%, much higher than those over “Test (Base)”. Therefore,
ARoBERT has a higher robustness level for ASR errors than
BERT, together with other baselines.

To better understand the gap of between human performance
and ARoBERT, we further ask crowd-sourced workers to label
the “Test (ASR Error)” dataset of ARoMatch based on ASR
transcripts only. The results are determined by majority vote.
Overall, the human performance is 64.96% in terms of accu-
racy and 45.64% in terms of F1, which shows that this task
is highly challenging, and ARoBERT is capable of generating
near-human performance.

C. Results of the CATSLU Challenge

To our knowledge, the CATSLU Challenge [39] is the only
public competition of ASR robust SLU for Mandarin. Hence, we
evaluate ARoBERT over the challenge and compare it against
strong published baselines and top systems in the competition.
As CATSLU specifically focuses on slot filling tasks, we fine-
tune the base ARoBERT model for named entity recognition,
which detects key entities from inputs as candidates to fill in the
slots. To generate the complete triples for slot filling, we match
the detected entities with the ontology provided by the organizer.
In CATSLU, both ASR transcribed texts and the original audios
are provided for training and testing. We consider the following
systems as baselines: two official baselines (rule-based and
neural-based), two top F1 systems in the leaderboard (with and
without the audio embeddings as features), and three published
models as strong baselines [30], [31], [42]. Specifically, Wang
et al. [30] employ transfer learning mechanisms for domain
and ASR-error adaption, with multi-task BiLSTM models as
the base models. Multi-classification BERT [31] is particularly
designed for CATSLU, which uses different output components
to generate different slots. Li et al. [42] leverage the BiLSTM
networks with additional domain and acoustic knowledge to
improve the model performance.

Following the guidance [39], we evaluate the model perfor-
mance in terms of both F1 and accuracy. The results are shown in
Table III. From the results, we can observe that ARoBERT con-
sistently outperforms baselines and the top system without audio
features in the competition. Specifically, ARoBERT even has a
higher accuracy score than the top system and the method [42]
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Fig. 5. Parameter analysis over the two development sets when the learning rate varies.

TABLE VI
ABLATION STUDY ON THREE PRE-TRAINING TASKS OF AROBERT OVER

“TEST (BASE)” AND “TEST (ASR ERROR)”

with additional audio features as inputs. As for the F1 score,
ARoBERT achieves comparable results with the top system
with audio features and outperforms [42]. This clearly proves
the effectiveness of ARoBERT for ASR robust SLU tasks, even
without the usage of audio features. In the future, we plan to
fuse rich audio features into ARoBERT.

D. Detailed Model Analysis

In this section, we further investigate the effectiveness of
different techniques used in ARoBERT.

1) Ablation Study: In this experiment, we remove one loss
function of ARoBERT at a time for pre-training, and report
the performance of downstream applications for ablation study.
The results are shown in Table VI. As seen, among the three
tasks MLM, PMLM and AMMLM, MLM plays the dominant
role. This indicates that although we wish to learn phonetic
knowledge during pre-training, the semantic knowledge cap-
tured by MLM is still vital for the model and should not
be ignored. Comparing PMLM and AMMLM, we find that
AMMLM is slightly more effective than PMLM over ARoMatch
and ARoTopic. Hence, our data-driven process of mining and
generalizing ASR errors is more capable of fitting errors made
by a given ASR model. Combining the three pre-training tasks
together, ARoBERT achieves the best performance.

TABLE VII
COMPARISON BETWEEN TINY AND BASE MODELS OVER “TEST (BASE)” AND

“TEST (ASR ERROR)”

#Param. refers to the parameter number. Italic figures refer to the phenomenon where
ARoBERT (Tiny) has similar performance to BERT (Base), with a smaller size.

2) Parameter Analysis: We tune the learning rate and the
number of learning epochs of ARoBERT. The performance on
the two development sets is illustrated in Figs. 5 and 6. As
seen, the best learning rates over the two SLU tasks are around
1e−4 ∼ 2e−4 and 5e−4, respectively. When the number of
learning epochs is concerned, the trend of the model perfor-
mance is consistent across the two development sets. We suggest
that a suitable choice of the learning epoch is 4∼5 for both tasks.

3) Learning With Larger Models: Because we use the tiny
versions of BERT and ARoBERT previously to guarantee the
fast online inference speed, we conduct an additional experiment
to study how the performance changes when we use the base
versions of BERT and ARoBERT. The result comparison is
shown in Table VII.

From the experimental results, we have these observations. i)
When the model size becomes larger, the performance increases
correspondingly. This phenomenon holds for both BERT and
ARoBERT. ii) The performance scores of ARoBERT (Tiny) and
BERT (Base) are highly similar (refer to the italic accuracy and
F1 scores in the table). This shows that by using the proposed
pre-training technique in this work, we can use a much smaller
ARoBERT model (with 4.4 M parameters) to replace the original
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Fig. 6. Parameter analysis over the two development sets when the learning epoch varies.

Fig. 7. Performance gap between ARoBERT (Tiny) and ARoBERT (Base) when different proportions of training data are used.

large BERT model (with 110 M parameters) with similar per-
formance. Therefore, the model size is significantly reduced by
25 times, which is particularly desirable for online applications.

We also compare the performance of ARoBERT with both
base and tiny versions when the number of training instances
varies. The results in Fig. 7 show that when the number of train-
ing instances is small, the gap between base and tiny versions
becomes larger. This is possibly because smaller PLMs store
less pre-trained knowledge with fewer parameters. When there
are few training instances in downstream tasks, the pre-trained
knowledge is more important for the generation of good results.
Hence, larger PLMs perform better in these situations.

4) Learning With Different ASR Systems: In the set of ex-
periments, we also report the results of ARoBERT using two
different ASR systems from different providers. The first is
the system described previously. The second is the transformer
ASR model trained in our previous work [48], with a slight
higher error rate than the default ASR model reported previously.
Because the error rates w.r.t. “Test (Base)” are both low over the
two ASR systems, we focus on the results on “Test (ASR Error),”
with the results shown in Table VIII. Note that our transformer

TABLE VIII
RESULTS ON “TEST (ASR ERROR)” W.R.T. TWO ASR SYSTEMS

ASR model is referred as “Alternative”. The results show that
when the ASR system has a higher error rate, the performance
of the ARoBERT slightly decreases, but not significant.

5) Case Studies: To facilitate deeper understanding of the
ASR robustness of ARoBERT, we present the case studies of the
two tasks ARoMatch and ARoTopic, shown in Tables IX and X
respectively. These cases are correctly predicted by ARoBERT
but incorrectly predicted by BERT. We find that without ASR ro-
bust pre-training, it is extremely challenging to make the correct
predictions, for example, matching “compromise” with “man’s
slippers”. The proposed ARoBERT model can be regarded
as a “bridge” to implicitly “find” the correct word “slippers”
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TABLE IX
CASE STUDIES OF PRODUCT MATCHING

The task is to match the user query (ASR-transcribed) with the product name. The correct user queries are for human reference only and unseen by our models. The second
and third lines of each sample are Chinese phonetic symbols and English translations, respectively. The contents underlined are words with ASR errors.

TABLE X
CASE STUDIES OF FINE-GRAINED TOPIC CLASSIFICATION

The task is to predict the topic labels of input texts (ASR-transcribed). The correct input texts are for human reference only and unseen by our models. The topic
labels predicted by BERT and ARoBERT are listed for comparison.

for “compromise” by assigning similar representations to two
synophones “compromise” and “slippers”.

E. Online Deployment

As our work is motivated by real-world applications in e-
commerce, we briefly introduce how our model is deployed
online to support these applications. Specifically, we have de-
ployed the ARoBERT model in the hotline service in a popular
e-commerce platform in China (i.e., Alibaba), which is used
to retrieve the most possible product information from a cus-
tomer’s history orders that he/she would like to query. Unlike
the experiments over ARoMatch, we are more concerned about
the performance of ARoBERT on the top-1 ranking precision.
In the implementation, we sort the history orders based on
the classification logits generated by ARoBERT and return the
product name and its information with the highest score. To
evaluate the effectiveness of ARoBERT, we conduct an online
A/B test to compare ARoBERT against the online production
system, which directly uses named entity recognition to extract
product names from ASR transcribed texts, and matches the
extracted entities against all possible product names from history
orders. The underlying model for the online production system
is the vanilla BERT model.

The results are reported in Table XI, in terms of Precision@1
and the averaged response time per query. From the results, we
find that ARoBERT improves the precision by a large margin.
Additionally, by applying the 2-layer model, the online infer-
ence process is significantly more efficient, compared to the
production system.

TABLE XI
A/B TEST RESULTS OF THE ONLINE DEPLOYMENT OF THE AROBERT MODEL

FOR PRODUCT NAME RANKING

V. LIMITATIONS AND EXTENSIONS

In this section, we further discuss limitations and extensions
of ARoBERT, aiming to stimulate the research in this field.

A. Extending to Other Languages

In this work, we focus on Mandarin speech understanding
only. However, we can make some simple adjustments to ex-
tend ARoBERT to other languages. Below we discuss a pos-
sible extension of ARoBERT to English language. Consider
the vocabulary set V used in ARoBERT. In most cases, each
token i ∈ V denotes a Chinese character. Based on (6), we
can compute the phonetic similarity between the two tokens,
according to their initials, finals and tones. For non-Chinese
languages (such as English), words in sentences are usually
processed by WordPiece tokenizers [49]. For each token, we
can use their phonetic embeddings to compute the similarities.
The remaining parts of our model can be unchanged when it is
applied to other languages. Interested readers can further refer
to [50] for phonetic embeddings.
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B. Extending to Other ASR Errors

Our work mostly addresses the substitution errors caused
by ASR systems. This is because substitution errors account
for over 90% of all the errors in Mandarin ASR [48]. Yet,
the deletion and insertion errors may also occur. In this part,
we further discuss how to address these errors by ARoBERT.
During the fine-tuning process of ARoBERT, we can augment
the training data by the deletion and insertion of tokens, and
train the ARoBERT model over the augmented training set. In
this way, ARoBERT will be more robust to all types of ASR
errors, including substitution, deletion and insertion.

C. Extending to Text Generation Tasks

The backbone of the proposed ARoBERT is primarily based
on BERT [18]. Hence, ARoBERT is capable of dealing with any
downstream tasks that BERT can handle, with increased ASR
error robustness. We also notice that, without the decoder archi-
tecture, ARoBERT can not be used for generation tasks, such
as speech summarization and speech translation. One possible
solution to these generation tasks is that we extend ARoBERT
to other encoder-decoder based model architectures such as
BART [51] and T5 [29] with similar pre-training techniques,
which will be left as future work.

D. Incorporating Other Prior Knowledge

Apart from the heuristics used by PMLM, we suggest that
there are other heuristics or prior knowledge that can be used for
pre-training ARoBERT. For example, there may exist confusions
between some initials or finals in the Mandarin language. In
our work, we use Eq. (6) to compute the phonetic similarities
sim(i,m), which is relatively “hard”. By incorporating accent-
specific similarities between initials or finals into Eq. (6), the
resulted ARoBERT model would be more robust to accents,
which is an open research topic in this field.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present an ASR robust PLM named
ARoBERT, which fuses various phonetic knowledge into the
BERT pre-training process to support SLU tasks. In ARoBERT,
two novel pre-training tasks are proposed to learn ASR robust
language representations, namely Phonetically-aware Masked
Language Modeling (PMLM) and ASR Model-adaptive Masked
Language Modeling (AMMLM). The PMLM fuses word pho-
netic similarities into ARoBERT, and the AMMLM mines typ-
ical ASR errors to help the model. Experiments on multiple
open datasets prove the effectiveness of ARoBERT. We have
also deployed ARoBERT in real-world e-commerce applica-
tions, and observed significant improvements. Future works
include i) applying the ARoBERT model to other languages
and tasks, ii) fusing rich audio features into ARoBERT to
further improve the model performance by using a cross-modal
neural architecture; and iii) extending ARoBERT to other ASR
errors.
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