
Vol.:(0123456789)1 3

Multimedia Systems (2023) 29:1499–1512
https://doi.org/10.1007/s00530-023-01065-2

REGULAR PAPER

Resizing codebook of vector quantization without retraining

Lei Li1 · Tingting Liu1 · Chengyu Wang3 · Minghui Qiu3 · Cen Chen1,2 · Ming Gao1,2 · Aoying Zhou1

Received: 20 June 2022 / Accepted: 10 February 2023 / Published online: 7 March 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Large models pre-trained on massive data have become a flourishing paradigm of artificial intelligence systems. Recent
works, such as M6, CogView, WenLan 2.0, NÜWA, and ERNIE-ViLG, further extend this diagram to joint Vision Lan-
guage Pre-training (VLP). For VLP, the two-stage architecture is a popular design, which includes the first stage learning
an encoding function of data and the second stage learning a probabilistic model of encoded representation of data. Vector
quantization (VQ) has usually engaged in the encoding function of image data for the first stage. VQ includes a data structure
(codebook) and an algorithm (finding nearest quantization). The publicly available VQ models (e.g., VQGAN, VQVAE,
VQVAE2) include a codebook whose size is assigned empirically (e.g., 1024, 4096, and 16,384) by their authors. If we want
a smaller codebook for a lower computation load of the VQ process, or we want a larger codebook for better reconstruc-
tion quality, we have to retrain VQ models that consist of the down-sampling net, the codebook, and the up-sampling net.
However, retraining VQ models is very expensive since these models, with billions of parameters, are trained on massive
datasets. It motivates us to find an approach to resize the codebook of Vector quantization without retraining. In this paper, we
leverage hyperbolic embeddings to enhance codebook vectors with the co-occurrence information and reorder the enhanced
codebook by the Hilbert curve. Then we can resize the codebook of vector quantization for lower computation load or bet-
ter reconstruction quality. Experimental results prove the efficiency and effectiveness of our approach when compared with
competitive baselines. The code will be released to the public.

Keywords Codebook resizing · Vector quantization · Hyperbolic embeddings · Hilbert curve

1 Introduction

Large models pre-trained on massive data have become a
flourishing paradigm of artificial intelligence systems. BERT
[5] and GPT [27] grow in popularity in the natural language
processing community as they possess high transferability
to a wide range of downstream tasks, yielding state-of-the-
art performance. Recent works, such as M6 [20], CogView
[7], WenLan 2.0 [9], NÜWA [35], and ERNIE-ViLG [39],
further extend this diagram to the joint Vision Language
Pre-training (VLP) domain and show superior results over
state-of-the-art methods on various downstream tasks. For
VLP, the two-stage architecture is a popular design, which
includes the first stage learning an encoding function of
data and the second stage learning a probabilistic model of
encoded representation of data.

Vector Quantization (VQ) has usually engaged in
the encoding function of image data for the first stage.
VQ includes a data structure (codebook) and an algo-
rithm (finding nearest quantization). Equipping VQ with

 * Cen Chen
 cenchen@dase.ecnu.edu.cn

 Lei Li
 leili@stu.ecnu.edu.cn

 Tingting Liu
 ttliu@stu.ecnu.edu.cn

 Chengyu Wang
 chengyu.wcy@alibaba-inc.com

 Minghui Qiu
 minghuiqiu@gmail.com

 Ming Gao
 mgao@dase.ecnu.edu.cn

 Aoying Zhou
 ayzhou@dase.ecnu.edu.cn

1 Shanghai Engineering Research Center of Big Data
Management, School of Data Science and Engineering, East
China Normal University, Shanghai 200062, China

2 KLATASDS-MOE, School of Statistics, East China Normal
University, Shanghai 200062, China

3 Alibaba Group, Hangzhou 311121, Zhejiang, China

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1500 L. Li et al.

1 3

different loss functions and down/up-sampling tech-
niques, we can obtain various encoding functions, such as
VQGAN [8], VQVAE [25], and VQVAE2 [28]. Figure 1
presents a visualization of VQ where Zb×d is a batch of
vector, b is the batch size, and d is the dimensionality of
a vector. Furthermore, we have a codebook Codebookn×d ,
which contains n vectors with the dimensionality as d. For
each vector in Zb×d , VQ aims at finding the nearest vector
(Euclidean distance) from Codebookn×d . ZQb×d consisting
of these quantized replacements will engage in subsequent
computation involving Zb×d . Indices i.e., (n − 3, 0, n − 2)
serve as discrete tokens for vectors in Zb×d.

The publicly a-vailable VQ models (e.g., VQGAN,
VQVAE, VQVAE2) include a codebook whose size is
assigned empirically (e.g., 1024, 4096, and 16,384) by
their authors. If we want a smaller codebook for a lower
computation load of the VQ process, or we want a larger
codebook for better reconstruction quality, we have to
retrain VQ models that consist of the down-sampling net,
the codebook, and the up-sampling net. However, retrain-
ing VQ models is very expensive since these models, with
billions of parameters, are trained on massive datasets, i.e.,
ImageNet with 14,197,122 images. It motivates us to find
an approach to resize the codebook of Vector Quantiza-
tion without retraining. To achieve this goal, we make the
following contributions:

• We leverage hyperbolic embedding to enhance code-
book vectors with the co-occurrence information and
logical similarities since hyperbolic embedding is
proved more effective than euclidean embedding for
learning latent semantics of images [18]. Hyperbolic
embedding enhanced codebook entries will get closer
in the high-dimensional space than the original ones.

• For users who need a smaller codebook size to reduce
computation load, we employ the Hilbert curve to reor-
der the hyperbolic embedding enhanced codebook,
preserving the locality of vectors. Then we can use

a smaller subset of the codebook to achieve similar
reconstruction metrics compared to the original VQ.

• For users who need a larger codebook size for better
reconstruction quality, we can conduct interpolation
between each pair of adjacent entries in the reordered
codebook.

• Extensive experiments show the effectiveness of our
approach compared to various baselines.

The rest of this paper is summarized as follows: Sect. 2 intro-
duces related works, including vector quantization, hyper-
bolic embedding, and Hilbert curve. Section 3 present our
methodology, which contains three significant steps, e.g.,
hyperbolic embedding enhancements, reordering by Hilbert
curve, and resizing the codebook without retraining. Sec-
tion 4 consists of extensive experimental results which prove
the effectiveness and efficiency of our proposed approaches.
Section 5 draws comprehensive conclusions from this paper,
and offers several interesting ideas for future work.

2 Related work

2.1 Vector quantization

Vector quantization (VQ) is widely used as the discrete
encoding approach. To avoid the “neighbor explosion” prob-
lem of GNNs, Ding et al. [6] propose a universal framework
to scale up any convolution-based GNNs using Vector Quan-
tization without compromising the performance. Roy and
Grangier [29] propose a residual variant of vector-quantized
variational auto-encoder to learn paraphrasing models from
an unlabeled monolingual corpus only. van den Oord et al.
[25] propose VQVAE to learn a discrete latent representa-
tion. Using the VQ method allows the model to circumvent
issues of “posterior collapse” (where the latent information
is ignored when they are paired with a powerful autoregres-
sive decoder) typically observed in the VAE framework.
Razavi et al. [28] demonstrate that VQVAE2 (a multi-scale
hierarchical organization of VQ-VAE), augmented with
powerful priors over the latent codes, is able to generate
samples with quality that rivals that of state-of-the-art Gen-
erative Adversarial Networks (GAN) on multifaceted data-
sets. VQGAN [8] utilizes VQ to improve the GAN training
and yields improved performance. VQGAN also encoding
images into discrete tokens for multi-modal models e.g.,
M6 [20], CogView [7], WenLan 2.0 [9], NÜWA [35], and
ERNIE-ViLG [39].

Vector Quantization (VQ) is also integrated with many
non-deep-learning approaches. (1) Quantization-based
techniques are the current state-of-the-art for scaling maxi-
mum inner product search to massive databases. Based on
the observation that for a given query, the database points

Fig. 1 A visualization of VQ. During VQ, a batch of latent vectors
find the nearest quantization vectors and their corresponding indices
from the codebook

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1501Resizing codebook of vector quantization without retraining

1 3

that have the largest inner products are more relevant, Guo
et al. [12] develop a family of anisotropic quantization loss
functions. These functions lead to a new variant of vector
quantization that more greatly penalizes the parallel com-
ponent of a datapoint’s residual relative to its orthogonal
component. (2) Ai et al. [2] propose an optimized residual
vector quantization-based approach for improving the qual-
ity of vector quantization and approximate nearest neighbor
search. Based on residual vector quantization (RVQ), a joint
optimization process called enhanced RVQ (ERVQ) is intro-
duced. Each stage codebook is iteratively optimized by the
others aiming at minimizing the overall quantization errors.
To efficiently find the nearest centroids when quantizing vec-
tors, a non-linear vector quantization method is proposed.
The vectors are embedded into two-dimensional space where
the lower bounds of Euclidean distances between the vec-
tors and centroids are calculated. The lower bound is used
to filter non-nearest centroids for the purpose of reducing
computational costs. (3) [36] propose a multi-scale quan-
tization approach for fast similarity search on large, high-
dimensional datasets. The key insight of their approach is
that quantization methods, in particular product quantiza-
tion, perform poorly when there is a large variance in the
norms of the data points. This is a common scenario for real-
world datasets, especially when doing product quantization
of residuals obtained from coarse vector quantization. To
address this issue, they propose a multiscale formulation that
learns a separate scalar quantizer of the residual norm scales.

2.2 Hyperbolic embedding

There has been an emerging trend for deep learning in
hyperbolic spaces since they possess high capacity and abil-
ity of modeling hierarchical structure. Hyperbolic space is a
homogeneous space with constant negative curvature. It is a
smooth Riemannian manifold and, as such, locally Euclid-
ean space. The hyperbolic space can be modeled using five
isometric models [26], which are the Lorentz (hyperboloid)
model, the Poincaré ball model, Poincaré half-space model,
the Klein model, and the hemisphere model.

As far as we know, the work [24] is the first to propose
learning an embedding using Poincaré model while consid-
ering the latent hierarchical structures. They also proved that
Poincaré embeddings could outperform Euclidean embed-
dings significantly on data with latent hierarchies, both in
terms of representation capacity and in terms of generaliza-
tion ability. Khrulkov et al. [18] have shown that across a
number of tasks, in particular in the few-shot image classifi-
cation, learning hyperbolic embeddings can result in a sub-
stantial boost in accuracy. They speculate that the negative
curvature of the hyperbolic spaces allows for embeddings
that are better conforming to the intrinsic geometry of at
least some image manifolds with their hierarchical structure.

Yang et al. [38] bring up a Hyperbolic Regularization pow-
ered Collaborative Filtering (HRCF) and design a geomet-
ric-aware hyperbolic regularizer. Specifically, the proposal
boosts the optimization procedure via the root alignment
and origin-aware penalty, which is simple yet impressively
effective. Bai et al. [3] present ConE (Cone Embedding), a
KG embedding model that is able to simultaneously model
multiple hierarchical as well as non-hierarchical relations in
a knowledge graph. ConE embeds entities into hyperbolic
cones and models relations as transformations between the
cones. In particular, ConE uses cone containment constraints
in different subspaces of the hyperbolic embedding space to
capture multiple heterogeneous hierarchies. Wang et al. [33]
propose a fully hyperbolic GCN model for the recommenda-
tion, where all operations are performed in hyperbolic space.
Utilizing the advantage of hyperbolic space, their method is
able to embed users/items with less distortion and capture
user–item interaction relationships more accurately. Exten-
sive experiments on public benchmark datasets show that
their method outperforms both Euclidean and hyperbolic
counterparts and requires far lower embedding dimensional-
ity to achieve comparable performance.

2.3 Hilbert curve

In mathematical analysis, a space-filling curve is a curve
whose range contains the entire two-dimensional unit
square, more generally a unit hypercube in n-dimensional
space. The “Hilbert curve” is a specific curve which covers
the interior of the n-dimensional hypercube [0, 2p)n of side 2p
with unit precision. Explicitly using an integer grid absolves
us from formal technicalities of the continuum limit: we can-
not store infinite precision in our physical hardware.

Chen and Chang [4] propose the one-nearest-neighbor
finding strategy directly based on the Hilbert curve. By rela-
tions among orientations, orders, and quaternary numbers,
they compute the relative locations of the query block and
the neighboring block in the Hilbert curve. Then, the nearest
neighbor of one query point can be found directly from these
neighboring blocks.

Tsinganos et al. [32] utilize the Hilbert space-filling curve
for the generation of image representations of surface elec-
tromyography (sEMG) signals that are then classified by
CNN. The proposed method is evaluated on different net-
work architectures and yields a classification improvement
of more than 3%.

Wu et al. [37] propose a spatiotemporal index method
based on the Hilbert curve code. It is more efficient than the
existing spatiotemporal index method and can effectively
support the management of massive multi-scale trajectory
data.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1502 L. Li et al.

1 3

3 Methodology

We name our approach HyperHill which includes three
phases:

1. enhancing codebook entries with co-occurrence infor-
mation provided by hyperbolic embedding;

2. reordering the codebook by the Hibert curve;
3. resizing the codebook without retraining.

3.1 Hyperbolic embeddings enhanced codebook

As shown in Fig. 2, we perform four downsampling steps.
For example, an input image of size 64 × 64 will be mapped
to 4 × 4 latent embeddings z0 to z15 . As aforementioned,
these 16 embeddings serve as a batch in Fig. 1 that engages
in a matrix multiplication with the whole codebook. To
reduce the computation load of VQ, we hope that we can
only use a subset of the codebook to finish vector quantiza-
tion. Thus, we need to cluster similar entries in the codebook
and develop a method to query the subset of the codebook.

Based on Fig. 2, we observe two kinds of similarities. We
denote the first similarity as the perceptual similarity which
indicates image blocks are similar, i.e., block 10 (sky) and
block 11 (sky). We denote the second similarity as the logical
similarity which indicates image blocks are more probable to
co-occur adjacently in a small patch of the image, i.e., block
10 (sky) and block 6 (cloud). Perceptual similarity is already
modeled by the latent embeddings after downsampling. How-
ever, logical similarity has not been considered by previous
VQ works. Besides perceptual similarity, it motivates us to
build another embedding for image tokens based on the logical
similarity. Such logical similarity embedding should make
image tokens that are more probable to co-occur adjacently
in a small patch of the image to get closer in the embedding

space. We employ the Hyperbolic embedding for building
logical similarity embedding of image tokens for two reasons:

1. In many image-related tasks, such as image classifica-
tion, image retrieval, and few-shot learning, Khrulkov
et al. [18] demonstrates that hyperbolic embeddings
provide better representations than linear hyperplanes,
Euclidean distances, or spherical geodesic distances.

2. Hyperbolic embedding is also able to build embedding
with fewer dimensions than euclidean embedding, keep-
ing similar downstream task performance [26]. Fewer
dimensions of image token embedding will reduce the
computation complexity of reordering entries of the VQ
codebook. It should be noted that we do not guaran-
tee the existence of or rely on hierarchical structures of
image tokens.

As an exploratory work, our contribution is defining the train-
ing task as pulling close co-occurred adjacently image tokens
and pushing away non-co-occurred adjacently image tokens
in the Hyperbolic space. Experimental results prove that our
training task is capable of modeling logical similarity, and
logical similarity can be integrated with perceptual similar-
ity by the vector concatenation, to get better representations
of image tokens for the reordering. In future work, we plan
to inspect more embedding approaches for modeling logical
similarity, further reduce dimensions of logical similarity
embedding, and introduce new techniques (e.g., cross-attention
and multi-task learning) for the fusion of perceptual similar-
ity and logical similarity.

Hyperbolic geometry [26] is a non-Euclidean geometry that
studies spaces of constant negative curvature. We choose the
Poincaré ball model [24] among hyperbolic models since it is
well-suited for gradient-based optimization. Figure 3 is a visu-
alization showing the two-dimensional Poincaré ball model of
hyperbolic geometry. The entire geometry is located within
the unit circle. Hyperbolic lines are actually arcs of a circle
that intersect at right angles to the unit circle. Two hyperbolic
lines in Fig. 3 have the same hyperbolic length since the same
Euclidean length near the edge of the circle is much longer
than near the center.

This is due to the hyperbolic geometry, which has a very
different distance function. Let

be the open d-dimensional unit ball, where ‖ ⋅ ‖ denotes the
Euclidean norm. The Poincaré ball model of hyperbolic
space corresponds to the Riemannian manifold (Bd, gx) ,
i.e., the open unit ball equipped with the Riemannian met-
ric tensor

(1)B
d =

�
x ∈ ℝ

d ∣ ‖x‖ < 1
�
,

Fig. 2 After four downsampling steps, an input image of size 64 × 64
will be mapped to a latent embeddings of size 4 × 4

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1503Resizing codebook of vector quantization without retraining

1 3

where x ∈ B
d and gE denote the Euclidean metric tensors.

The distance between points u, v ∈ B
d is given as

The boundary of the ball is denoted by �B . It corresponds
to the sphere Sd−1 and is not part of the hyperbolic space but
represents infinitely distant points. Refer to Peng et al. [26]
for more details about hyperbolic geometry.

Poincaré ball model has been proved to be effective on
organizing objects in large datasets according to a latent hier-
archy. Nickel and Kiela [24] succeed to leverage Poincaré
ball model to model natural language tokens (i.e., WordNet).
Khrulkov et al. [18] employ Poincaré ball model to finish
image tasks i.e., few-shot classification and person re-iden-
tification. To compute Poincaré embeddings for a set of VQ
indices

we need to find embeddings

To estimate Θ , we solve the optimization problem:

(2)gx =

�
2

1 − ‖x‖2

�2

gE,

(3)d(u, v) = arcosh

�
1 + 2

‖u − v‖2
(1 − ‖u‖2)(1 − ‖v‖2)

�
.

(4)S = {xi}
n
i=1

,

(5)Θ = {�i}
n
i=1

, where�i ∈ B
d

where L(Θ) represents the loss function which encour-
ages VQ indices that co-occur probably when we encode
an image, to be close in the embedding space according
to their Poincaré distance. Details of L(Θ) is presented in
Formula (7)

where D = {(u, v)} is the set of observed co-occurrences
between VQ indices.

is the set of negative examples for u (including u).

Algorithm 1 Poincaré Embedding of VQ Indices
1: D ← ∅
2: for image in Datasettrain:
3: indices = VQ(encode(image))
4: for u in indices:
5: for v in neighbours(u):
6: D ← D ∪ {(u,v)}
7: for one epoch in epochs:
8: for one batch in batches:
9: θt+1 = proj −ηt × g−1

x (∇E)
)

We employ Algorithm 1 to show the full process of Poin-
caré embedding of VQ indices. From Line 1 to 6, we traverse
each image in the training dataset. The encode function con-
ducts downsampling steps, and the input image is mapped to
latent embeddings. Then we leverage VQ to get indices of
latent embeddings.

For each index, we find its adjacent neighbors e.g., eight
neighbors of z5 in Fig. 2 are z0, z1, z2, z4, z6, z8, z9, z10 and
three neighbors of z0 in Fig. 2 are z1, z4, z5 . Then we add these
observed co-occurrences between VQ indices into D. Line 7
to Line 9 indicate the training process of Poincaré embedding
[24]. �t denotes the learning rate at time t and the projection
function constrains the embeddings to remain within the Poin-
caré ball

where � is a small constant (i.e., 10−5) to ensure numerical
stability. ∇E is the Euclidean gradient of Formula (7). As
aforementioned, g−1

x
 is inverse of Formula (2) and rescale ∇E

since both distance and gradient are extremely large near the
edge of the Poincaré ball.

(6)Θ�
← argmin

Θ

L(Θ) s.t. ∀�i ∈ Θ ∶ ‖�i‖ < 1,

(7)L(Θ) =
�

(u,v)∈D

− log
e−d(u,v)∑

v�∈N(u) e
−d(u,v�)

,

(8)N(u) = {v ∣ (u, v) ∉ D} ∪ {u},

(9)proj(�) =

�
�∕‖�‖ − � if ‖�‖ ≥ 1

� otherwise,

Fig. 3 A visualization shows the two-dimensional Poincaré ball
model of hyperbolic geometry. Two hyperbolic lines have the same
hyperbolic length since the same Euclidean length near the edge of
the circle is much longer than near the center

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1504 L. Li et al.

1 3

Assuming that entries (i.e., embeddings) in the code-
book of VQ are d-dimensional, the corresponding Poincaré
embedding of each entry is k-dimensional. Then we con-
struct a hybrid embedding

that captures information of both perceptual similarity and
logical similarity.

Furthermore, we use VQGAN to encode images in
each dataset used in our experiments, and we observe that
zq

d (produced by VQGAN) almost always lies within the
range (−1, 1) so that we do not introduce extra normaliza-
tion before concatenating zqd and �k . Some entries of the
codebook are not used by the training dataset and do not
own Poincaré embedding �k . For these unseen entries, we
let corresponding �k be a k-dimensional uniform distribution
on the interval (−1, 1).

3.2 Reordering codebook with Hilbert curve

The hyperbolic embedding enhanced codebook of VQ is
still unordered, so we have to search the whole codebook to
find the nearest quantization for a given latent vector. Sup-
pose we can build a reordered codebook that preserves the
locality of vectors, then we can reduce the search space for
quantization.

To achieve this, there are many previous competitors [10,
11, 13, 16, 23] focusing on the approximate nearest neighbor
search. However, we consider utilizing the Hilbert curve for
the following reasons.

1. The Hilbert curve does not need training, unlike cluster-
ing approaches, i.e., k-means.

2. The results produced by the Hilbert curve are consistent,
unlike random projection-based locality-sensitive hash-
ing.

3. The Hilbert curve does not introduce extra data struc-
tures (e.g., trees and lookup tables) since we need to let
the codebook be a contiguous tensor with the automatic
gradient.

(10)ed+k = concatenate
(
zq

d,�k
)

The “Hilbert curve” is a specific curve which covers the
interior of the n-dimensional hypercube [0, 2p)n of side 2p
with unit precision. Distance H along the Hilbert curve is
representable by a np-bit integer, decomposable as p digits
of n bits each. Figure 4 shows Hilbert curves in two dimen-
sions for p = 1, 2, 3. Hilbert curve can be constructed recur-
sively by:

1. making four replicates of current curve;
2. rotating the left-bottom replicate 90◦ clockwise;
3. rotating the right-bottom replicate 90◦ anticlockwise;
4. adding three lines to connect four replicates.

We follow Skilling [31] to conduct an efficient imple-
mentation to convert one dimensional distance H along a
Hilbert curve into n-dimensional points, (x0, x1, ...xn−1), and
vice versa. Let

where gi represent a bit and gnp−1 is the lowest-order bit. ⊕
is a single exclusive-OR instruction.

Collect these np bits into n preliminary p-bit integers

for i = 0, 1,… , n − 1 . For example, Hilbert point 13 decoded
as 10112 , which is collected as x0 = 112 = 3 , x1 = 012 = 1 ,
namely the point (3, 1) as shown in Fig. 5a. Figure 5a is a
reasonable first step since most points already locate at the
correct coordinates. Algorithm 2 shows the postprocess for
Fig. 5a to transform wrong points into the desired coordi-
nates in Fig. 5b.

We want to emphasize that the Hilbert curve provides
only the “locality”. As shown in Fig. 6, we build a Hilbert
curve with n = 2, p = 5 (i.e., two-dimensional space, 25 = 32
discrete values for each dimension). The x-axis represents
the Hilbert curve distance from the current point to the start-
ing point; the y-axis represents the Euclidean distance from
the current point to the starting point. We can observe that
the Euclidean distance is not strictly monotone increas-
ing but increase with fluctuations. In other words, a pair of

(11)G = g0g1 … gnp−1 = H ⊕ ⌊H∕2⌋,

(12)xi = gigi+ngi+2n … gi+(p−1)n

Fig. 4 Hilbert curves in two
dimensions for p = 1, 2, 3

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1505Resizing codebook of vector quantization without retraining

1 3

embeddings are more probable (not absolute) has a smaller
Euclidean distance when they own a smaller Hilbert curve
distance.

Algorithm 2 Postprocess for Fig.5(a)
1: for (r = p− 2, p− 3, ..., 1, 0):
2: for (i = n− 1, n− 2, ..., 1, 0):
3: if (bit r of xi is 0):
4: exchange low bits(r+1,r+2,...,p-1) of xi and x0
5: else:
6: invert low bits of x0

Algorithm 3 Constructing a Reordered Codebook
1: [ed+k] ← ([ed+k] + 1)/stride
2: [distances] ← H([ed+k])
3: sorted, indices = sort([distances])
4: reordered codebook = [zd][indices]
5: for i in range(0, block number):
6: block list[i]=reordered codebook[i× b len : (i+ 1)× b len]
7: block mean list[i]=mean(block list[i])
8: Construct the power set P of block list

We show how to construct a reordered codebook for
VQ in Algorithm 3. Denote the original codebook as [zd]
and the hyperbolic embedding enhanced codebook as
[ed+k] . Build a Hilbert curve function H() that converts
points to distance. Line 1 represents that we normalize
the range of [ed+k] from (−1, 1) to (0, 2) and convert [ed+k]
to points in n-dimensional hypercube [0, 2p)n of side 2p
with unit precision, where stride = 2∕2p . Line 2 con-
verts points to distance along the Hilbert curve. Lines
3–4 mean we sort the Hilbert curve distances and reor-
der the original codebook [zd] using the indices returned
by the sort function. Lines 5–7 split the whole codebook
into blocks and obtain the mean of each block, where
b_len = reordered_codebook∕block_number . Line 8 con-
structs the power set of block_list.

3.3 Resizing codebook without retraining

When Algorithm 3 is finished, we obtain a codebook
whose embeddings preserving the locality (to some extent,
we can say it is “reordered” or “sorted”). Now we can
resize the codebook of vector quantization without retrain-
ing. There are two typical demands from users: (1) using
a smaller codebook for reducing computation load and
energy consumption; (2) using a larger codebook for better
reconstruction quality.

0

1

3

2

15

14

12

13

7

6

4

5

8

9

11

10

x1

x0
(a)

x1

0

3

1

2

14

13

15

12

4

5

7

6

8

9

11

10

x0
(b)

Fig. 5 An example of conversion from Hilbert curve distance to
two-dimensional points. For example, for a Hilbert curve distance
13 whose binary representation is 11012 , and ⌊13∕2⌋ is 6 whose
binary representation is 01102 . Then we calculate a initial position
11012 ⊕ 01102 = 10112 where ⊕ is a single exclusive-OR instruc-
tion. As shown in (a) part of this figure, 10112 are collected as
x0 = 112 = 3 and x1 = 012 = 1 , i.e., (3, 1) is the initial position for
13. Algorithm 2 shows the postprocess for initial positions in (a) part
of this figure, to transform wrong points into the desired Hilbert curve
coordinates in (b) part of this figure

0

5

10

15

20

25

30

35

40

45

0 200 400 600 800 1000

Hilbert curve distance

Eu
cl

id
ea

n
di

st
an

ce

Fig. 6 We build a Hilbert curve with n = 2, p = 5 (i.e., two-dimen-
sional space, 25 = 32 discrete values for each dimension). We can
observe that the Euclidean distance is not strictly monotone increas-
ing but increase with fluctuations

Table 1 Detailed computation load analysis of Algorithm 4

Line Computation load

1 (768 * MUL +768 * ADD)
2 C * (768 * MUL +768 * ADD)
3 768 * MUL + C * (768 * MUL

+768 * ADD)
4 2 * C * ADD
5 C * CMP

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1506 L. Li et al.

1 3

3.3.1 Smaller codebook

Algorithm 4 Pseudo Code of Vector Quantization
Input: z
Output: zq, indices
1: z pow 2 = torch.sum(z ** 2, dim=1)
2: Codebook pow 2 = torch.sum(Codebook**2, dim=1)
3: 2 z Codebook = 2 * z @ Codebook
4: Euclidean distance = z pow 2 + Codebook pow 2 + 2 z Codebook
5: zq, indices = torch.min(Euclidean distance, dim=1)
6: return zq, indices

Algorithm 4 shows a widely used1 PyTorch-style
pseudo code of VQ. Line 1 to 4 refer to a expansion that
(z − Codebook)2 = z2 + Codebook2 − 2 ∗ Codebook ∗ z . We
show a roughly computation load analysis of Algorithm 4 in
Table 1. Where, we assume the shapes of z and Codebook
are 1 × 768 and C × 768 , respectively. We use bold text to
distinguish basic operators(MUL, ADD, CMP) from other
parameters. We use bold text to distinguish basic operators
(MUL, ADD, CMP) from other parameters. MUL is the
multiplication operator, ADD is the addition operator, and
CMP is the comparison operator between two numerical
values.

We can observe that the computation load of Algorithm 4
depends on the codebook size C. If we can reduce C without
a significant drop in reconstruction quality, we can reduce
the computation load and energy consumption of VQ.

Searching the reordered codebook We let each query
tensor z in a batch firstly finds the nearest mean tensor
block_mean_list[j] and the corresponding candidate block
block_list[j], as aforementioned in Algorithm 3. Then we
dynamically use a smaller codebook (containing unique
candidate blocks) for quantization. We denote this appli-
cation as HyperHill. For example, we split the reordered
codebook into B blocks, and an image is encoded as 256
query tensors. The best case is that these 256 query tensors
have quantized tensors in one block, and we only need about
1/B time consumption compared to the original VQ. The
worst case is that these 256 query tensors have quantized
tensors which align uniformly in B blocks, and it falls back
to the original VQ, which searches the whole codebook. In
addition, manipulating subsets consisting of blocks intro-
duces slow discontinuous memory access. Thus we build

the power set of blocks containing 2B subsets which are all
contiguous tensors.

3.3.2 Larger codebook

For users who need better reconstruction quality, we can
produce a larger codebook by conduct interpolation between
adjacent embeddings in the codebook. We can uniformly
insert k − 1 new embeddings between codebook entries
ei and ei+1 in Formula (13), We denote this application as
HyperHill-EXT.

4 Experiments

In this section, we evaluate HyperHill in various aspects.
We also compare HyperHill against competitive baselines
to show its effectiveness.

4.1 Experiment setup

4.1.1 Model settings

For Poincaré embeddings, the embedding dimension is
32. We train 500 epochs to obtain the embeddings with
the learning rate to be 0.3. In the training process, we ran-
domly sample 50 negative examples per positive example.
For the Hilbert curve, we set n = 256 + 32 = 288 since zq is
256-dimensional and � is 32-dimensional. For all datasets,
we set p = 24 to ensure that there is one point at a distance
along the Hilbert curve on average.

In experiments, we use pre-trained VQGAN models2 to
reconstruct images in the validation datasets. We first report
the averaged percentage of the used codebook in VQ. In
addition, we quantify the degree of “realism” by computing
FID [14] scores of reconstructed images (R-FIDs). We also
evaluate the perceptual similarity between inputs and recon-
structions with the LPIPS [40] metric and the structural sim-
ilarity through PSNR [30] and SSIM [34]. All results are
averaged over five trials on a server with Intel(R) Xeon(R)
Platinum 8163 CPU and NVIDIA V100 32 G.

4.1.2 Datasets

We evaluate our method on following datasets. All RGB
images are resized and center-cropped to 256 × 256, inva-
lid images (i.e. not RGB, width<256, height<256) are

(13)ei +
j

k
∗
(
ei+1 − ei

)
, j = 1, ..., k − 1

1 https:// github. com/ CompV is/ taming- trans forme rs/ blob/ master/
taming/ modul es/ vqvae/ quant ize. py, https:// github. com/ Misha Laskin/
vqvae/ blob/ master/ models/ quant izer. py. 2 https:// github. com/ CompV is/ taming- trans forme rs.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1507Resizing codebook of vector quantization without retraining

1 3

dropped. Experiments are conducted using the validation
split of each dataset. Table 2 show statistics of each dataset
used in our experiments.

1. CelebAHQ [17] is a higher-quality version of the Cel-
ebA dataset, which is a large-scale face attribute dataset
with 40 attribute annotations [22]. We randomly select
25000/5000 images from CelebAHQ for training/valida-
tion;

2. COCO [21] is a large-scale object detection, segmenta-
tion, and captioning dataset. The main change of the
dataset in 2017 is that instead of having an 83K/41K
train/val split, the split is now 118K/5K for train/val
based on community feedback. We use the new split in
the experiments;

3. DIV2K [1, 15] is a large dataset of DIVerse 2K resolu-
tion images with a large diversity of contents. The data-
set has 1000 images in total.

4.1.3 Baselines

VQ integrated with deep learning models (e.g., VQVAE and
VQGAN) differs from VQ in domains, such as information
retrieval and the database. VQ integrated with deep learning
models is not only an approximate nearest neighbor search
method, but its codebook is also a contiguous tensor which
connects to the computational graph, supports gradient cal-
culation, and conducts backpropagation. Thus, we choose
Faiss k-means and LSH as baselines since they can keep
the codebook as a contiguous tensor. Our HyperHill, Faiss
k-means and LSH also do not occupy extra space for the
index structure. It is an attractive feature since most GPUs
have limited device memory. In future work, we will fol-
low recent approximate nearest neighbor search methods
and find effective and efficient codebook index strategies
compatible with deep learning models.

• Faiss Faiss is a library for efficient similarity search
and clustering of dense vectors. We leverage the
Faiss k-means algorithm to build 8 clusters(train
20000 epochs). Each cluster centroid is assigned
codebook_size∕8 nearest codebook entries.

• Locality-Sensitive Hashing (LSH) The problem of find-
ing the nearest neighbors quickly in high-dimensional
spaces can also be solved by LSH. LSH can make nearby
vectors get the same hash with high probability, and dis-
tant ones do not. We realize the LSH baseline by employ-
ing random projections [19] as follows. Following the
config in [19], we build 16 random embeddings that are
256-dimensional uniform distribution on the interval
(−1, 1) . Then we sort the codebook entries by their sum
of dot product with random embeddings and split the
sorted codebook into 8 blocks.

Table 2 Statistics of each dataset

Dataset Split #Images

Train 25,000
CelebAHQ Validation 5000

Test 5,000
Train 118,000

COCO Validation 5000
Test 20,000
Train 800

DIV2K Validation 100
Test 100

Table 3 Overall results of
HyperHill and baselines on
CelebAHQ, COCO, and DIV2K

Dataset Approach Used code-
book
(%)↓

Time(s) R-FID↓ LPIPS↓ PSNR↑ SSIM↑

CelebA Original 100.00 10.41(100%) 16.6711 0.1912 24.4743 0.6876
HQ Faiss 87.42 9.29(89.24%) 24.4032 0.2539 20.8086 0.6052
1024 LSH 78.23 8.44(81.08%) 16.6711 0.1912 24.4743 0.6876

HyperHill 60.36 6.67(64.07%) 16.6482 0.1917 24.4451 0.6878
Original 100.00 16.43(100%) 19.0465 0.3301 17.4712 0.3989

COCO Faiss 78.96 13.39(81.49%) 32.7690 0.3870 17.4236 0.3381
8192 LSH 63.87 10.88(66.22%) 19.0465 0.3301 17.4712 0.3989

HyperHill 60.03 10.24(62.32%) 19.0479 0.3301 17.4712 0.3989
Original 100.00 0.92(100%) 88.4467 0.3222 17.3721 0.4009

DIV2K Faiss 83.88 0.79(85.86%) 130.0410 0.4010 16.5645 0.3627
16384 LSH 64.13 0.63(68.47%) 88.4447 0.3221 17.3721 0.4009

HyperHill 52.00 0.52(56.52%) 88.9347 0.3223 17.3716 0.4010

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1508 L. Li et al.

1 3

4.2 Overall results

Table 3 shows the overall results of HyperHill and base-
lines on three datasets. The number under the dataset name
represents the codebook size of the corresponding VQGAN
model. It will show the robustness of HyperHill for differ-
ent codebook sizes of different datasets. The original per-
formance of VQGAN is italic and bold values indicate the
smallest used codebook percentage. To make a fair compari-
son, for Faiss and LSH, we use the same query method as
HyperHill, described in Sect. 3.3.1. The Time(s) column
reports the total time spent on the VQ process of Original
VQGAN, Faiss, LSH, and HyperHill. Numbers (in parenthe-
ses) after spent time is the percentage of the time spent by
the Original VQ process. From Table 3, we have following
observations.

• Faiss needs to use 80–90% codebook size but obtains
poorer behavior on metrics than the original VQ.

• LSH can achieve similar performance compared to the
original VQ, but LSH uses random projection so that its
behavior is not stable. In addition, the used codebook
for LSH varies from 63.87 to 78.23%, the average of the
used codebook is about 11.28% more than the average of
HyperHill.

• The proposed HyperHill stably uses 50% to 60% code-
book and obtains similar metrics compared to the origi-
nal VQ. As aforementioned, HyperHill provides other
significant features, such as needing no training, produc-
ing consistent results, and keeping the codebook contigu-
ous.

• The percentage of spent time is about 3% higher than
the percentage of used codebook since we need to find
candidate blocks for each query tensor which needs quan-
tization, as aforementioned.

In addition, we do not take the computation cost of training
the hyperbolic embedding and Hilbert codebook reordering
into consideration since they only need to be done offline
once.

Table 4 Overall results of
HyperHill(VQVAE) and
baselines on CelebAHQ,
COCO, and DIV2K

Dataset Approach Used code-
book
(%)↓

Time(s) R-FID↓ LPIPS↓ PSNR↑ SSIM↑

CelebA Original 100.00 4.11(100%) 65.9795 0.5221 5.1383 0.2068
HQ Faiss 85.66 3.65(88.81%) 96.7264 0.6526 4.7612 0.1755
1024 LSH 68.72 2.94(71.53%) 65.9421 0.5224 5.1295 0.2066

HyperHill
(VQVAE)

63.19 2.77(67.39%) 65.9733 0.5229 5.1291 0.2064

Original 100.00 6.35(100%) 64.8080 0.5586 5.0303 0.1960
COCO Faiss 83.82 5.54(87.24%) 98.6372 0.6831 4.2674 0.1668
8192 LSH 65.49 4.36(68.66%) 64.7973 0.5589 5.0301 0.1957

HyperHill
(VQVAE)

61.74 4.09(64.41%) 64.8218 0.5590 5.0298 0.1955

Original 100.00 0.34(100%) 208.3688 0.5533 4.9660 0.1772
DIV2K Faiss 86.64 0.31(91.18%) 295.8846 0.6924 4.1187 0.1525
16384 LSH 69.56 0.25(73.53%) 208.3359 0.5537 4.9655 0.1769

HyperHill
(VQVAE)

58.31 0.22(64.71%) 208.5842 0.5540 4.9654 0.1766

Table 5 Metrics for different block numbers when we reconstruct DIV2K using VQGAN pre-trined on ImageNet

Blocks 1 4 6 8 10

R-FID↓ 88.45 88.70 88.48 88.95 88.57
LPIPS↓ 0.32 0.32 0.32 0.32 0.32
PSNR↑ 17.37 17.37 17.38 17.37 17.38
SSIM↑ 0.40 0.40 0.40 0.40 0.40
Used Codebook(%)↓ 100 80.75 58.00 51.63 42.90
Space 1x 8x 32x 128x 512x

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1509Resizing codebook of vector quantization without retraining

1 3

To test whether our HyperHill is compatible with
other VQ-inside deep learning models, we build a vari-
ant HyperHill(VQVAE) whose VQGAN models are
replaced by a VQVAE3 model (with embedding dimension
is 256, and codebook size is 8192), pre-trained by Ding
et al. [7]. As shown in Table 4, the original performance
of VQVAE is italic and bold values indicate the small-
est used codebook percentage, HyperHill(VQVAE) also
can achieve similar performance to the original VQVAE.
HyperHill(VQVAE) utilize averagely about 60% code-
book and time consumption, outperforming Faiss and
LSH. In the rest of the experiments, we focus on Hyper-
Hill (using VQGAN) rather than HyperHill(VQVAE)
since VQVAE produces poor metrics (e.g., R-FID, LPIPS,
PSNR, and SSIM) in reconstructing images.

4.3 The effects of block numbers

Table 5 shows the metrics for different block numbers
when we reconstruct DIV2K using VQGAN. Italic metrics

of block number 1 represent the original performance of
VQGAN. We can observe that 8 blocks use about half
(51.63%) codebook size. While the codebook size is
16384, it will occupy extra

memory for the power set

P

 in Algorithm 3. Thus, we should select the proper block
number according to available hardware memory. For
experiments in this paper, we set the block number to 8 as
it provides a relatively good tradeoff between computation
efficiency and memory consumption.

4.4 The effects of hyperbolic embeddings

As shown in Table 6, HyperHill without hyperbolic
embeddings requires a higher proportion of the codebook
entries (i.e., 4.85%, 9.69%, and 10.5%) to obtain similar
metrics compared to the full HyperHill implementation.
It proves that the hyperbolic embeddings are effective for
capturing the co-occurrence information and the logical

(14)32bit × 256 × 16, 384 × 128 = 2GB

Table 6 Ablation study on
CelebAHQ, COCO and
DIV2K. “w/o. HE” refers to our
approach without hyperbolic
embeddings

Dataset Approach Used
Codebook
(%)↓

R-FID↓ LPIPS↓

CelebAHQ HyperHill 60.36 16.6482 0.1917
w/o. HE 65.21 16.6564 0.1914

COCO HyperHill 60.03 19.0479 0.3301
w/o. HE 69.72 19.0490 0.3301

DIV2K HyperHill 52.00 88.9347 0.3223
w/o. HE 62.50 88.6303 0.3222

Fig. 7 two-dimensional
Poincaré embeddings of Fig. 2.
Patches are converted to VQ
indices. Indices that are prob-
able to co-occur in a batch
get closer to each other in the
Euclidean space. However, only
204 out of 256 image tokens
have appeared in the training
split of the DIV2K dataset, so
they own two-dimensional Poin-
caré embeddings

(15,2)

(5,10)

(1,6) (7,7)

3 https:// openi. pcl. ac. cn/ BAAI/ WuDao- Model/ src/ branch/ master/
CogVi ew.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1510 L. Li et al.

1 3

similarity between image patches. It should be further
noted that unseen image tokens that do not own their
hyperbolic embeddings are represented by the uniform

distribution in the interval (−1, 1) . The presence of unseen
image tokens may hurt the performance of hyperbolic
embeddings.

Table 7 Overall results of
HyperHill-EXT codebook
interpolation. Bold numbers are
best values for corresponding
metrics

Dataset Approach Codebook size R-FID↓ LPIPS↓ PSNR↑ SSIM↑

Original 1024 16.6711 0.1912 24.4743 0.6876
CelebAHQ k = 2 2047 16.9779 0.1891 24.5716 0.6902
1024 k = 4 4093 17.1357 0.1877 24.6257 0.6916

k = 8 8185 17.1684 0.1872 24.6441 0.6921
k = 16 16369 17.1659 0.1871 24.6493 0.6923
Original 8192 19.0465 0.3301 17.4712 0.3989

COCO k = 2 16383 18.7634 0.3256 17.5901 0.4062
8192 k = 4 32765 18.6959 0.3234 17.6498 0.4098

k=8 65529 18.6983 0.3226 17.6726 0.4113
k = 16 131057 18.7043 0.3224 17.6809 0.4119
Original 16384 88.4467 0.3222 17.3721 0.4009

DIV2K k = 2 32767 87.3981 0.3180 17.3769 0.4046
16384 k = 4 65533 90.7893 0.3168 17.3626 0.4065

k = 8 131065 89.6003 0.3164 17.3583 0.4073
k = 16 262129 89.2086 0.3162 17.3568 0.4076

Fig. 8 Comparison of recon-
struct quality of VQGAN and
HyperHill-EXT with k = 16 .
The first column is from the
DIV2K dataset. The second
column is from the CelebAHQ
dataset. The third column is
from the COCO dataset

Original Image Original Image Original Image

VQGANVQGAN VQGAN

HyperHill-EXT k=16 HyperHill-EXT k=16 HyperHill-EXT k=16

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1511Resizing codebook of vector quantization without retraining

1 3

4.5 Case study

As shown in Fig. 7, we present the two-dimensional Poin-
caré embeddings of Fig. 2. The original image in Fig. 2 is
resized to 256 × 256 and is mapped to latent embeddings of
the size 16 × 16=256 after four downsampling steps. After
VQ, we obtain 256 discrete image tokens (codebook indi-
ces), together with their two-dimensional Poincaré embed-
dings. We can observe the clustering of image tokens, and
74% of the image tokens lie in the first quadrant. We also
present positions of four patches labeled as (row, col). These
cases empirically prove that Poincaré embeddings can make
frequently co-occurred image tokens get closer in the Euclid-
ean space.

4.6 Interpolation results for HyperHill‑EXT

In Table 7, we present the overall results of HyperHill-EXT
codebook interpolation. Italic values represent that we use
original codebooksize. Bold values indicate the best metrics.
The parameter k means taht we uniformly insert k − 1 new
embeddings between codebook entries ei and ei+1 , as afore-
mentioned in Formula (13). We have following observations:

• We can obtain better R-FID and PSNR by changing the
codebook size.

• The largest codebook size produces best LPIPS and
SSIM.

• HyperHill-EXT needs no retraining, but it is compatible
with retraining. Based on HyperHill-EXT, users can find
the best codebook size for their own datasets. Then they
can retrain(fine-tune) VQGAN using the best codebook
size.

Furthermore, as shown in Fig. 8,we provide a comparison
of reconstruct quality of VQGAN and HyperHill-EXT with
k = 16 . We can roughly observe that HyperHill-EXT with
k = 16 offer better reconstruction quality, such as “hats” in
the first column, “eyelashes” in the second column, and “car-
pets” in the third column. Figure 8 supports conclusions that
we drawn from Table 7.

5 Conclusion and future work

To our best knowledge, HyperHill is a novel approach to
resize codebook of vector quantization without retrain-
ing. We firstly employ hyperbolic embeddings to enhance
codebook entries with logical similarities. Then, we can
utilize the Hilbert curve to produce reasonable and stable

codebook splits than baselines, e.g., Faiss and LSH. For
users preferring a smaller codebook and lower computa-
tion load, HyperHill can use a smaller subset of the code-
book to achieve similar metrics compared to the original
VQ. For users who require better reconstruction quality,
HyperHill-EXT can improve R-FID, LPIPS, PSNR, and
SSIM by interpolations between codebook entries. Experi-
mental results show the effectiveness of HyperHill against
competitive baselines. In the future, we will provide efficient
CUDA implementations of HyperHill and integrate more
indexing and partitioning strategies from vector databases,
e.g., Milvus and Faiss.

Acknowledgements This work has been supported by the National
Natural Science Foundation of China under Grant No. U1911203,
61877018, 61977025, 62202170, and Alibaba Group through the Ali-
baba Innovation Research Program.

Author Contributions LL and TL proposed main ideas of this paper
and conducted all experiments. LL, TL, CW, and MQ wrote the main
manuscript text. CC, MG, and AZ provided computing resource for
experiments and reviewed the manuscript

Funding National Natural Science Foundation of China under Grant
No. U1911203 National Natural Science Foundation of China under
Grant No. 61877018 National Natural Science Foundation of China
under Grant No. 61977025 National Natural Science Foundation
of China under Grant No. 62202170 Alibaba Innovation Research
Program

Availability of supporting data All datasets and model weights used
in our experiments are publicly available with references or URLs.
Our proposed approaches are in detail described with pseudo codes or
figures. In addition, we will release all codes as a open-source project
upon acceptance of this paper.

Declarations

Conflict of interest All authors declare that the authors have no com-
peting interests as definedby Springer, or other interests that might be
perceived to influence the resultsand/or discussion reported in this pa-
per.

Ethical approval and consent to participate Not applicable.

Consent for publication We would like to declare that this manuscript
has not been published previously and is not under consideration for
any other conferences or journals. All the authors have approved the
manuscript for publication.

Human and animal ethics Not applicable.

References

 1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single
image super-resolution: dataset and study. In: Proceedings of the
IEEEconference on computer vision and pattern recognition work-
shops, pp. 1122–1131 (2017)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1512 L. Li et al.

1 3

 2. Ai, L., Yu, J., Wu, Z., et al.: Optimized residual vector quantiza-
tion for efficient approximate nearest neighbor search. Multimed.
Syst. 23(2), 169–181 (2017)

 3. Bai, Y., Ying, Z., Ren, H., et al.: Modeling heterogeneous hier-
archies with relation-specific hyperbolic cones. IIn: Advances in
NeuralInformation Processing Systems, pp. 12316–12327 (2021)

 4. Chen, H., Chang, Y.: All-nearest-neighbors finding based on the
Hilbert curve. Expert Syst. Appl. 38(6), 7462–7475 (2011)

 5. Devlin, J., Chang, M., et al.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. In: arXiv pre-
printarXiv: https:// arxiv. org/ 1810. 04805 (2019

 6. Ding, M., Kong, K., Li, J., et al.: Vq-gnn: a universal framework to
scale up graph neural networks using vector quantization. arXiv:
https:// arxiv. org/ 2110. 14363 (2021)

 7. Ding, M., Yang, Z., et al.: Cogview: mastering text-to-image gen-
eration via transformers. CoRR arXiv: https:// arxiv. org/ abs/ 2105.
13290 (2021)

 8. Esser, P., Rombach, R., et al.: Taming transformers for high-reso-
lution image synthesis. In: Proceedings of the IEEE/CVF confer-
ence oncomputer vision and pattern recognition, pp. 12873–12883
(2021)

 9. Fei, N., Lu, Z., et al.: Wenlan 2.0: make AI imagine via a multi-
modal foundation model. CoRR arXiv: https:// arxiv. org/ abs/ 2110.
14378 (2021)

 10. Fu, C., Xiang, C., Wang, C., et al.: Fast approximate nearest neigh-
bor search with the navigating spreading-out graph. Proc. VLDB
Endow. 12(5), 461–474 (2019)

 11. Ge, T., He, K., Ke, Q., et al.: Optimized product quantization
for approximate nearest neighbor search. In: Proceedings of the
IEEEConference on Computer Vision and Pattern Recognition,
pp. 2946–2953 (2013)

 12. Guo, R., Sun, P., Lindgren, E., et al.: Accelerating large-scale
inference with anisotropic vector quantization.In: International-
Conference on Machine Learning, vol 119. PMLR, pp. 3887–3896
(2020)

 13. He, K., Wen, F., Sun, J.: K-means hashing: an affinity-preserv-
ing quantization method for learning binary compact codes.
In:Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2938–2945 (2013)

 14. Heusel, M., Ramsauer, H., Unterthiner, T., et al.: Gans trained
by a two time-scale update rule converge to a local nash equilib-
rium.In:Advances in neural information processing systems, pp.
6626–6637 (2017)

 15. Ignatov, A., Timofte, R., et al.: PIRM challenge on perceptual
image enhancement on smartphones: report. In: Proceedings of
theEuropean Conference on Computer Vision (ECCV) Work-
shops, pp. 315–333 (2018)

 16. Kalantidis, Y., Avrithis, Y.: Locally optimized product quantiza-
tion for approximate nearest neighbor search. In: Proceedings of
theIEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 2329–2336 (2014)

 17. Karras, T., Aila, T., et al.: Progressive growing of gans for
improved quality, stability, and variation. In: ICLR (2018)

 18. Khrulkov, V., Mirvakhabova, L., et al.: Hyperbolic image embed-
dings. n: Proceedings of the IEEE/CVF Conference on Computer-
Vision and Pattern Recognition, pp. 6417–6427 (2020)

 19. Kitaev, N., Kaiser, L., et al.: Reformer: the efficient transformer.
In: ICLR (2020)

 20. Lin, J., Men, R., et al.: M6: A chinese multimodal pretrainer.
CoRR arXiv: https:// arxiv. org/ abs/ 2103. 00823 (2021)

 21. Lin, T., Maire, M., et al.: Microsoft COCO: common objects in
context.In: Proceedings of 13th European Conference of Compu-
terVision (ECCV), pp. 740–755 (2014)

 22. Liu, Z., Luo, P., et al.: Deep learning face attributes in the wild.
In: Proceedings of the IEEE international conference on computer
vision, pp. 3730–3738 (2015)

 23. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world
graphs. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 824–836
(2020)

 24. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchi-
cal representations. In: Advances in neural information process-
ingsystems, pp. 6338–6347 (2017)

 25. van den Oord, A., Vinyals, O., et al.: Neural discrete represen-
tation learning. In: Advances in neural information processing
systems, pp. 6306–6315 (2017)

 26. Peng, W., Varanka, T., et al.: Hyperbolic deep neural networks: a
survey. CoRR arXiv: https:// arxiv. org/ abs/ 2101. 04562 (2021)

 27. Radford, A., Wu, J., Child, R., et al.: Language models are unsu-
pervised multitask learners. CoRR (2019)

 28. Razavi, A., van den Oord, A., et al.: Generating diverse high-
fidelity images with VQ-VAE-2. In: Advances in neural informa-
tionprocessing systems, pp. 14837–14847 (2019)

 29. Roy, A., Grangier, D.: Unsupervised paraphrasing without transla-
tion. In: arXiv preprint arXiv: https:// arxiv. org/ 1905. 12752 (2019)

 30. Setiadi, D.R.I.M.: PSNR vs SSIM: imperceptibility quality assess-
ment for image steganography. Multimed. Tools Appl. 80(6),
8423–8444 (2021)

 31. Skilling, J.: Programming the Hilbert curve. In: Bayesian Infer-
ence and Maximum Entropy Methods in Science and Engineering,
pp. 381–387 (2004). https:// aip. scita tion. org/ doi/ abs/ 10. 1063/1.
17513 81. https:// aip. scita tion. org/ toc/ apc/ 707/1. https:// www. aip.
org/ aip/ histo ry/ locat ions

 32. Tsinganos, P., Cornelis, B., et al.: A Hilbert curve based repre-
sentation of semg signals for gesture recognition. In: International
Conference on Systems, Signals and Image Processing (IWSSIP),
pp. 201–206 (2019)

 33. Wang, L., Hu, F., Wu, S., et al.: Fully hyperbolic graph convolu-
tion network for recommendation. In: Proceedings of the 30th
ACM10.1007/s00530-023-01065-2International Conference on
Information & Knowledge Management, pp. 3483–3487 (2021)

 34. Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: Image quality assess-
ment: from error visibility to structural similarity. IEEE Trans.
Image Process. 13(4), 600–612 (2004)

 35. Wu, C., Liang, J., et al.: Nüwa: visual synthesis pre-training for
neural visual world creation.CoRR arXiv: https:// arxiv. org/ abs/
2111. 12417 (2021)

 36. Wu, X., Guo, R., Suresh, A.T., et al.: Multiscale quantization for
fast similarity search. In: Advances in neural information process-
ingsystems, 30 pp. 5745–5755 (2017)

 37. Wu, Y., Cao, X., An, Z.: A spatiotemporal trajectory data index
based on the Hilbert curve code. In: IOP Conference Series: Earth
andEnvironmental Science, Vol. 502, No. 1, pp. 012005 (2020)

 38. Yang, M., Zhou, M., Liu, J., et al.: HRCF: enhancing collaborative
filtering via hyperbolic geometric regularization.In: Proceedings
ofthe ACM Web Conference, pp. 2462–2471 (2022)

 39. Zhang, H., Yin, W., et al.: Ernie-vilg: Unified generative pre-train-
ing for bidirectional vision-language generation. CoRR arXiv:
https:// arxiv. org/ abs/ 2112. 15283 (2021)

 40. Zhang, R., Isola, P., Efros, A.A., et al.: The unreasonable effective-
ness of deep features as a perceptual metric. In: CVPR. Computer
Vision Foundation/IEEE Computer Society, pp. 586–595 (2018)

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Content courtesy of Springer Nature, terms of use apply. Rights reserved.

1.

2.

3.

4.

5.

6.

Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”).
Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-
scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By
accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these
purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial.
These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
(to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will
apply.
We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within
ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not
otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as
detailed in the Privacy Policy.
While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may
not:

use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access

control;

use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is

otherwise unlawful;

falsely or misleadingly imply or suggest endorsement, approval , sponsorship, or association unless explicitly agreed to by Springer Nature in

writing;

use bots or other automated methods to access the content or redirect messages

override any security feature or exclusionary protocol; or

share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal

content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue,
royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal
content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any
other, institutional repository.
These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or
content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature
may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.
To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose.
Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed
from third parties.
If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not
expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com

mailto:onlineservice@springernature.com

