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ABSTRACT
User intent detection is vital for understanding their demands in
dialogue systems. Although the User Intent Classification (UIC)
task has been widely studied, for large-scale industrial applications,
the task is still challenging. This is because user inputs in distinct
domains may have different text distributions and target intent sets.
When the underlying application evolves, new UIC tasks contin-
uously emerge in a large quantity. Hence, it is crucial to develop
a framework for large-scale extensible UIC that continuously fits
new tasks and avoids catastrophic forgetting with an acceptable pa-
rameter growth rate. In this paper, we introduce the Meta Lifelong
Learning (MeLL) framework to address this task. In MeLL, a BERT-
based text encoder is employed to learn robust text representations
across tasks, which is slowly updated for lifelong learning. We de-
sign global and local memory networks to capture the cross-task
prototype representations of different classes, treated as the meta-
learner quickly adapted to different tasks. Additionally, the Least
Recently Used replacement policy is applied to manage the global
memory such that the model size does not explode through time. Fi-
nally, each UIC task has its own task-specific output layer, with the
attentive summarization of various features. We have conducted ex-
tensive experiments on both open-source and real industry datasets.
Results show that MeLL improves the performance compared with
strong baselines and also reduces the number of total parameters.
We have also deployed MeLL on a real-world e-commerce dialogue
system AliMe and observed significant improvements in terms of
both F1 and the resources usage.

CCS CONCEPTS
• Information systems→Query intent; •Computingmethod-
ologies → Lifelong machine learning.
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1 INTRODUCTION
Dialogue systems are human-machine interaction systems that give
responses to users’ queries or execute commands based on the nat-
ural language conversations between the two parties. Due to their
usefulness, they are often integrated into a variety of industrial-
scale applications, such as customer service in e-commerce [50],
restaurant booking applications [15], and conversational informa-
tion seeking [9]. To fulfill users’ needs, it is highly essential to un-
derstand users’ intents based on the input queries issued by users
or users’ responses to actions previously taken by the systems.

In the literature, the task of User Intent Classification (UIC) has
been extensively studied, mostly addressed by learning text-to-
label classifiers [13, 29, 42]. Recently, the emergence of pre-trained
languagemodels [11, 38, 48]makes it natural to fine-tune thesemod-
els to obtain such classifiers. For real-world applications, however,
solving the UIC task is non-trivial as UIC is highly domain-specific
where each domain may have different input text distributions
and class label sets (i.e., all the possible intents). For example, the
e-commerce hotline service in Alime 1 has over two hundred ser-
vice domains such as retail, trip agents and express delivery. For
each domain, the customized hotline agent is required to perform a
number of UIC tasks that automatically classify users’ responses
into a pre-defined set of intents on different questions. The total
number of UIC tasks would easily exceed one thousand. Addition-
ally, the task number is continuously growing through time as new
domains gradually appear. Hence, it is crucial to develop a large-
scale Extensible User Intent Classification (EUIC) framework used
in dialogue systems.

To address the problem, a naive approach is to train task-wise
UIC models. This type of methods is unsuitable for industrial-scale
applications with three reasons. i) The total number of model param-
eters is continuously growing, linearly proportional to the number

1https://www.alixiaomi.com/
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Figure 1: The high-level frameworkMeLL for large-scale EUIC tasks in dialogue systems. “LM (T𝑛)” refers to the local memory
network for the 𝑛-th UIC task. (Best viewed in color.)

of tasks. Given the fact that current pre-trained language models
have billions of parameters [11, 38], training such models for UIC
would easily involve trillions of parameters, leading to the parame-
ter explosion problem. ii) As UIC tasks across domains share some
similarities, the single-task approach is unable to learn transferable
knowledge from other tasks, which is crucial to improve the UIC
performance [35]. iii) The methods unavoidably bring engineering
burdens when an increasing number of models need to be main-
tained. Yet another popular approach is multi-task training across
tasks, where a shared encoder is utilized to capture the common
knowledge and each task has its own prediction head [27, 44].When
a novel UIC task emerges, we may need to re-train the model for
previous tasks, which is computationally expensive and difficult to
keep the performance stable for existing UIC tasks.

Recently, lifelong learning has been attracted attention from the
research community. It is a learning paradigm that continuously
accumulates knowledge learned in the past and uses it to help future
task learning [2, 33]. When lifelong learning is applied to large-
scale EUIC, we only need to maintain a relatively small number of
model parameters when new tasks continuously arrive, alleviating
the parameter explosion effect. In lifelong learning, it is challenging
to address the catastrophic forgetting problem [46] where the model
“forgets” how to solve existing tasks when it learns new tasks. This
is particularly undesirable as we wish to keep the performance
of existing tasks stable when we learn new UIC tasks. Another
similar paradigm is meta-learning [17], aiming to obtain a meta-
learner across tasks such that it can quickly fit new tasks with
few data samples. By obtaining a meta-learner, the transferable
knowledge across different UIC tasks can be acquired and passed to
new tasks. The major drawback is that the meta-learner (the BERT
model [11] in our case) should adapt to each task separately, unable
to avoid parameter explosion. Hence, a natural question arises: is it
possible to design a continual learning framework for large-scale EUIC
that can both i) maintain the performance of existing UIC tasks when
the model fits new UIC tasks and ii) have an acceptable parameter
growth rate when the number of new UIC tasks increases?

In this work, we introduce the Meta Lifelong Learning (MeLL)
framework for large-scale EUIC, with the high-level framework
illustrated in Figure 1. It has a shared network architecture for
learning a continuously growing number of UIC tasks, consisting
of three parts: the text encoder, the global memory network and lo-
cal memory networks. The text encoder is built based on BERT [11]
to generate robust text representations (either for users’ queries
or responses). The parameters are slowly updated for lifelong rep-
resentation learning, which ensures that the update operations

invoked by new tasks do not have significantly negative effects
on existing tasks. Inspired by prototype-based meta-learning [43],
the global network stores the cross-task prototype representations
of different classes. The memory units are fast updated, capturing
the transferable knowledge across tasks and making our model
fit new tasks easily. As the number of distinct classes of all tasks
is continuously growing, we use the LRU (Least Recently Used)
replacement policy to manage the global memory such that the
size does not explode through time. We fuse the features gener-
ated by the text encoder and the global memory network by the
attention mechanism, and use them to learn the final task-specific
UIC classifiers. After the learning process is finished, we copy the
task-related prototype representations into the task’s own local
memory network, with parameters frozen. During the inference
time, we use the text encoder and the task’s own local memory
network for feature generation.

From the architecture design, we can see that MeLL successfully
accomplishes the goal of large-scale EUIC. The encoder is regarded
as the slow learner that continuously digests the transferable repre-
sentation learning knowledge and passes it to specific tasks. The
global memory network is the fast learner, capable of encoding
specific knowledge of the given task quickly. The LRU replacement
policy and the copy mechanism from the global memory network
to local ones alleviate catastrophic forgetting, without adding too
many parameters to the model. 2

In summary, we make the following major contributions:
• We introduce the task of large-scale EUIC, which is vital
for understanding users’ intents in dialogue systems with a
large, increasing number of UIC tasks involved.

• We propose theMeta Lifelong Learning (MeLL) framework to
address this task. It employs a slowly updated text encoder
to learn representations across tasks and global/local mem-
ory networks to learn task semantics. It enables effective
knowledge transfer through time and alleviates catastrophic
forgetting and parameter explosion at the same time.

• We conduct extensive experiments on public and real-world
industry datasets. The results show that MeLL consistently
outperforms strong baselines.

• We deploy MeLL on a real-world dialogue system AliMe and
observe significant improvements in an online A/B test.

The rest of this paper is summarized as follows. Section 2 summa-
rizes the related work. Section 3 introduces the MeLL framework
in detail. In Section 4, we evaluate the performance of MeLL in
2Although we focus on UIC tasks in this paper, the MeLL framework is general and
can be applied to other tasks, which is beyond the scope of this paper.
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various aspects, specifically focusing on the industrial deployment.
Finally, we summarize our paper in Section 5.

2 RELATEDWORK
User Intent Classification. The techniques of UIC are originally
applied to information seeking in search engines, which help the
search engines to understand the search queries sent by users [1, 21].
As dialogue systems usually provide better user experience by the
interaction between the systems and users, UIC for dialogue sys-
tems gains more popularity. For example, Qu et al. [37] present the
MSDialog dataset, which is annotated with user query intents in
question answering systems. Different from classification-based ap-
proaches, Zhang et al. [49] characterize users’ intents by generating
textual descriptions. UIC can be also formulated as a ranking prob-
lem. In [47], the Intent-Aware Ranking with Transformers (IART)
model is proposed to select suitable answers considering query
intents based on attention mechanisms. MeLL differentiates itself
from these approaches in that it considers solving a large number
of UIC tasks in the lifelong learning setting, which is crucial for
industrial applications.
Lifelong Learning. Lifelong learning, or continual learning is a
machine learning paradigm which focuses on solving an unlimited
sequence of tasks with the help of previously learned tasks [2, 33].
A key challenge of developing lifelong learning algorithms is to
improve the performance of future tasks while avoiding the cata-
strophic forgetting of existing tasks [18, 46]. Typical methods in-
clude experience replay [16, 20, 40], knowledge distillation [6, 26],
transfer learning [5, 19, 39], etc. In real-world, industrial applica-
tions, it is costly to apply experience replay to a large number of
history tasks or store these trained models for knowledge distilla-
tion. In MeLL, we employ both slow and fast learner (i.e., the text
encoder and the global memory network) to transfer knowledge
from existing tasks to new tasks.
Meta-learning. The goal of meta-learning is to train meta-learners
that can adapt to a variety of tasks with little training data avail-
able [17]. Meta-learning is extensively employed in computer vi-
sion, formulated as a K-way N-shot few-shot learning problem.
Typical applications include few-shot image classification [25], ob-
jection detection [12] and many others. The applications of meta-
learning in NLP have not been frequently studied, with works such
as [31, 32, 34]. Compared to previous works, the MeLL framework
is not a typical K-way N-shot algorithm, but leverages the idea of
meta-learning to learn the text encoder that captures the transfer-
able knowledge across tasks. The fast update mechanism and the
prototype representations used in the global memory are similar to
several meta-learning neural networks [30, 43].
Pre-trained Language Models. Recently, the rapid emergence of
large-scale pre-trained language models has brought the research
frontiers of NLP to a new era [36]. Among these models, BERT [11]
is probably the most influential and popular model, which learns
contextual token representations by a stack of transformer encoders,
using two self-supervised learning objectives: masked language
modeling and next sentence prediction. ALBERT [23] is a similar
pre-trained language model that reduces the sizes of BERT-style
models by using parameter sharing and factorization strategies.
These models deal with languages with fixed-length contexts. To

break the barrier limited by vanilla transformers, Transformer-
XL [10] learns long-term contextual dependencies beyond a fixed
length by recurrence and relative positional encoding. XLNet [48]
further improves the performance of Transformer-XL, using the
auto-regressive learning objective.

Besides the transformer encoder architecture, the encoder-decoder
architecture has also been applied, such as T5 [38] and GPT-3 [3],
which contain 11 billion and 175 billion model parameters, respec-
tively. Despite their effectiveness, the large size of modern language
models brings significant challenges for deployment in industrial
applications where a lot of tasks need to be solved. In MeLL, we
address this issue by using slowly and fast updated meta-learners,
capable of handling an increasing number of tasks without intro-
ducing too many new parameters into the model.

3 MELL: THE PROPOSED FRAMEWORK
3.1 Overview
We start with some basic notations. Let T𝑛 represent the 𝑛-th UIC
task. D𝑛 = {(𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 )} is the training set of T𝑛 where 𝑥𝑛,𝑖 is the
𝑖-th input sample in D𝑛 (i.e., the input text, which is a user query
or response depending on the application scenario) and 𝑦𝑛,𝑖 is the
corresponding intent label of 𝑥𝑛,𝑖 . The goal of UIC T𝑛 in the single-
task setting is to learn a classifier 𝑓𝑛 that correctly predicts the intent
label 𝑦𝑛,𝑖 ∈ Y𝑛 of the input 𝑥𝑛,𝑖 , whereY𝑛 is the classification label
set of the task T𝑛 .

In the large-scale EUIC setting, we consider the situation where
we are faced with an unlimited sequence of UIC tasks T1,T2, · · · .
In real-world applications, very often we have a small number
of UIC tasks available to begin with. Hence, let T1,T2, · · · ,T𝑁 be
𝑁 existing base UIC tasks, T𝑁+1,T𝑁+2, · · · be the unlimited se-
quence of new UIC tasks. Our goal is to build a learning system
F = {𝑓1, 𝑓2, · · · , 𝑓𝑁 , 𝑓𝑁+1, 𝑓𝑁+2, · · · } that continuously support ob-
taining classifiers for new UIC tasks (𝑓𝑁+1, 𝑓𝑁+2, · · · ) while main-
taining the performance of existing classifiers (𝑓1, 𝑓2, · · · , 𝑓𝑁 ). To
be more specific, in the initial stage, we are given 𝑁 training sets
D1,D2, · · · D𝑁 to train a multi-task UICmodel for the𝑁 base tasks.
After that, our model can be automatically extended to an unlim-
ited number of new tasks T𝑁+1,T𝑁+2, · · · where new tasks arrive
sequentially. To alleviating the problems of catastrophic forgetting
and parameter explosion, we design the model structure of MeLL,
presented in Figure 2. It has different computation graphs during
training and inference. Overall, it has four major components:
Text Encoder: We employ BERT [11] as our model backbone to
learn the universal, deep representations of input texts across tasks.
Here, we denote the representations of 𝑥𝑛,𝑖 to be 𝑄 (𝑥𝑛,𝑖 ). As new
UIC tasks continuously arrive, the BERT parameters are slowly
updated to digest transferable knowledge across multiple tasks.
Global Memory Network: The global memory network is only
applied during the training time, which contains a certain number
of “slots” (denoted as𝐺) to store class representations. For each task
T𝑛 , we use the class label set Y𝑛 as the task meta-information to
retrieve class representations for feature computation afterwards.
The memory units here are fast updated to acquire knowledge from
new tasks. In our setting, as the sum of the numbers of distinct
classes is increasing, we use the LRU replacement policy such that
there are only a fix number of “slots” (denoted as 𝐾 ) in the memory.
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Figure 2: Model structure of MeLL for large-scale EUIC. During training, the features used for UIC are attentively generated by
the slowly-updated text encoder and the fast-updated globalmemory network. After the training process of a specific task, the
respective class representations are copied from the globalmemory to a task-specific localmemory network. During inference,
we use the text encoder and the task-specific local memory to generate features for prediction. (Best viewed in color.)

Local Memory Networks: The fast update of the global memory
may significantly affect the final features used for prediction. To
guarantee the performance of previous tasks is not affected, for
each task 𝑇𝑛 , we have a separate local memory L𝑛 that copies
the respective class representations from the global network with
parameters frozen. During the inference time, we directly use the
task-specific local memory L𝑛 for feature computation.
Task-specific Networks: Finally, we use class representations and
text representations 𝑄 (𝑥𝑛,𝑖 ) to generate attentive features for user
intent prediction, denoted as 𝐴𝑡𝑡 (𝑥𝑛,𝑖 ). Each task has its own pre-
diction head, treated as the prediction function 𝑓𝑛 .

The training and inference procedures are summarized in Algo-
rithm 1 and Algorithm 2. Specifically, we only show the inference
procedure w.r.t. a specific task T𝑛 (which is the same in either initial
or lifelong learning stages). Details will be presented below.

3.2 Text Encoder
The text encoder is employed to learn deep contextual represen-
tations of input 𝑥𝑛,𝑖 . In MeLL, we follow common practice to take
BERT [11] as default to generate the pooled output embeddings as
𝑄 (𝑥𝑛,𝑖 ). Similar encoder-based pre-trained language models can
also be applied, such as ALBERT [23]. Note that in the lifelong learn-
ing stage, the learning rate of the encoder parameters should be
set to a smaller value to avoid catastrophic forgetting of previously
learned tasks.

3.3 Global and Local Memory Networks
The global memory network stores𝐾 “slots” of class representations.
Let Y𝑁 be the collection of distant classes across the 𝑁 tasks, i.e.,
Y𝑁 =

⋃𝑁
𝑛=1Y𝑛 . We set 𝐾 ≥ |Y𝑁 |. In the initial learning stage, we

set the global memory 𝐺 as follows.
For a class label 𝑦 (𝑚) ∈ Y𝑁 , let T (𝑚) be the collection of

tasks that involve 𝑦 (𝑚) , i.e.,T (𝑚) = {T𝑛 |𝑛 ∈ {1, · · · , 𝑁 }, 𝑦 (𝑚) ∈
Y𝑛}. D (𝑚)

𝑛 is the subset of D𝑛 such that D (𝑚)
𝑛 = {(𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 ) ∈

D𝑛 |𝑦𝑛,𝑖 = 𝑦 (𝑚) }. We have the prototype representation vector

Algorithm 1 MeLL Training Procedure
1: // Initial Learning Stage
2: Initialize global memory 𝐺 based on D1,D2, · · · D𝑁 .
3: while not converge do
4: Sample a task T𝑛 from T1,T2, · · · T𝑁 .
5: Read a batch {(𝑥𝑛,𝑖 , 𝑦𝑛𝑖 )} from D𝑛 .
6: Run through BERT to obtain representations {𝑄 (𝑥𝑛,𝑖 )}.
7: Read global memory 𝐺 with the task meta-info. Y𝑛 and text

representations {𝑄 (𝑥𝑛,𝑖 )} to generate features {𝐴𝑡𝑡 (𝑥𝑛,𝑖 )}
and pass them to the output layer 𝑓𝑛 .

8: Update parameters of 𝑓𝑛 , 𝐺 and the text encoder by back
propagation.

9: end while
10: Create local memories 𝐿1, 𝐿2, · · · , 𝐿𝑁 for T1,T2, · · · T𝑁 , with all

parameters frozen.
11: // Lifelong Learning Stage (Assume task T𝑗 arrives, 𝑗 > 𝑁 .)
12: Update global memory 𝐺 based on D𝑗 w. LRU replacement.
13: Train the model with a new task-specific output layer 𝑓𝑗 and a

smaller learning rate on BERT. Parameters of 𝑓𝑛 , 𝐺 and BERT
are updated.

14: Create local memory 𝐿𝑗 for T𝑗 with all parameters frozen.

Algorithm 2 MeLL Inference Procedure
1: Read a batch {(𝑥𝑛,𝑖 )} from an unlabeled dataset of task T𝑛 .
2: Run through BERT to obtain representations {𝑄 (𝑥𝑛,𝑖 )}.
3: Read local memory 𝐿𝑛 with the task meta-info. Y𝑛 and text

representations {𝑄 (𝑥𝑛,𝑖 )} to generate features {𝐴𝑡𝑡 (𝑥𝑛,𝑖 )} and
pass them to the task-specific output layer 𝑓𝑛 .

4: Make predictions {𝑦𝑛,𝑖 } based on 𝑓𝑛 (𝐴𝑡𝑡 (𝑥𝑛,𝑖 )).

𝐺
(𝑚)
𝑁

of the class label 𝑦 (𝑚) as:

𝐺
(𝑚)
𝑁

=
1

|T (𝑚) |

∑
T𝑛 ∈T (𝑚)

1
|D (𝑚)

𝑛 |

∑
(𝑥𝑛,𝑖 ,𝑦𝑛,𝑖 ) ∈D (𝑚)

𝑛

𝑄 (𝑥𝑛,𝑖 ) (1)

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3652



𝑦(")(from 𝐷" & 𝐷$ )

Task Class Labels
𝑇! 𝑦(!), 𝑦($)

𝑇$ 𝑦(!), 𝑦(%), 𝑦(&)

𝑇% 𝑦($), 𝑦(%)

𝑇& 𝑦(!), 𝑦(%), 𝑦(')

a) Example Tasks & 
Class Labels

Hyper-parameter Settings: 𝑁 = 2,  𝐾 = 4

b1) Global Memory 
(Initial)

𝑦($)(from 𝐷")

𝑦(%)(from 𝐷$)

𝑦(&)(from 𝐷$)

c1) Local 
Memories (Initial)

𝐿"

𝐿$

𝑦(")(from 𝐷" & 𝐷$ )

b2) Global 
Memory (𝑇%)

𝑦($) (from 𝐷" & 𝐷%)

𝑦(%)(from 𝐷$ & 𝐷%)

𝑦(&) (from 𝐷$)

c2) New Local 
Memory (𝑇%)

𝐿%

A new task 𝑇% arrives. A new task 𝑇& arrives.

𝑦(")(from 𝐷" & 𝐷$ & 𝐷&)

b3) Global 
Memory (𝑇&)

𝑦($)(from 𝐷" & 𝐷%)

𝑦(%)(from 𝐷$ & 𝐷% & 𝐷&)

𝑦(')(from 𝐷&)

c3) New Local 
Memory (𝑇&)

𝐿&
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We can see that,𝐺 (𝑚)
𝑁

is the averaged pooled result of the prototype
vectors of all the tasks T (𝑚) . By aggregating all the |Y𝑁 | class
representations𝐺 (𝑚)

𝑁
, we finish the initial computation of𝐺 , treated

as the high-level representations of all the 𝑁 tasks.
We further consider the lifelong learning case. For generality,

we assume the model has already been trained over 𝑗 − 1 tasks
T1, · · · ,T𝑗−1 (with 𝑗 > 𝑁 ), and a new task T𝑗 arrives. For a class
𝑦 (𝑚) ∈ Y𝑗 , if the corresponding class representation𝐺 (𝑚)

𝑗−1 is present
in 𝐺 . The update rule is as follows:

𝐺
(𝑚)
𝑗

= (1 − 𝛾)𝐺 (𝑚)
𝑗−1 + 𝛾

|D (𝑚)
𝑗

|

∑
(𝑥𝑛,𝑖 ,𝑦𝑛,𝑖 ) ∈D (𝑚)

𝑗

𝑄 (𝑥𝑛,𝑖 ) (2)

where 𝛾 ∈ (0, 1) is a pre-defined hyper-parameter, balancing the
relative importance of existing tasks and the new task. Readers may
notice that the “size” of the global memory has a limit of 𝐾 . When it
is already full, we remove one item in𝐺 that has been least recently
visited. The new class representation is inserted into 𝐺 , computed
as: 𝐺 (𝑚)

𝑗
= 1

|D (𝑚)
𝑗

|
∑

(𝑥𝑛,𝑖 ,𝑦𝑛,𝑖 ) ∈D (𝑚)
𝑗

𝑄 (𝑥𝑛,𝑖 ). We employ the LRU

replacement policy because we obverse that the topic trend of tasks
may drift over time. The recently updated class representations
have a large probability to be used again in near future. A toy
sample is shown in Figure 3.

At the end of the task-wise learning process, for a current task T𝑛 ,
we copy the class representations in 𝐺 w.r.t. classes Y𝑛 to its own
local memory L𝑛 for the inference purpose, with all parameters
frozen. Hence, when the global memory network is fast updated,
the changes to 𝐺 will not affect the inference for existing tasks.

3.4 Feature Fusion and Model Output
After we have introduced the generation of 𝑄 (𝑥𝑛,𝑖 ) and𝐺 , we now
discuss the forward pass in MeLL. Assume we are learning the
task T𝑛 , with the current training instance as (𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 ) ∈ D𝑛 . We
use the class label set Y𝑛 to query 𝐺 , to generate the current class
representation𝐺 (𝑚)

𝑛 for each class𝑦 (𝑚) ∈ Y𝑛 . 3 The attentive score
𝛼 (𝑚) (𝑥𝑛,𝑖 ) is computed as:

𝛼 (𝑚) (𝑥𝑛,𝑖 ) = softmax(𝑄 (𝑥𝑛,𝑖 )𝑇 ·𝐺 (𝑚)
𝑛 ) (3)

Note that the computation of the attentive score is slightly different
from standard practice. The final attentive feature set sent to the
3The methods for feature fusion and model output are the same in both initial and
lifelong learning stages. If we are dealing with tasks in the initial stage (𝑛 ≤ 𝑁 ), we
use the memory𝐺 (𝑚)

𝑁
instead of𝐺 (𝑚)

𝑛 to compute the attentive score.

task-specific output layer 𝐴𝑡𝑡 (𝑥𝑛,𝑖 ) is computed as follows:

𝐴𝑡𝑡 (𝑥𝑛,𝑖 ) = 𝑄 (𝑥𝑛,𝑖 ) +
∑

𝑦 (𝑚) ∈Y𝑛

𝛼 (𝑚) (𝑥𝑛,𝑖 ) ·𝐺 (𝑚)
𝑛 (4)

where𝑄 (𝑥𝑛,𝑖 ) is regarded as the residual here. The prediction result
𝑦𝑛,𝑖 is given by: 𝑦𝑛,𝑖 = 𝑓𝑛 (𝐴𝑡𝑡 (𝑥𝑛,𝑖 )).

As the gradients of the parameters in the output layer, the text
encoder and the global memory are fully differential, we update
these parameters by back propagation. The parameters in local
memory networks are not updated during back propagation.

3.5 Algorithmic Analysis
We further give a deeper analysis on MeLL, focusing on how life-
long learning affects the computational complexity. Assume we
are learning a new task T𝑗 ( 𝑗 > 𝑁 ). Let M be the total number
of parameters in the BERT encoder, and 𝑑 be the dimension of
token embeddings. It is trivial to derive that the global memory,
the local memory for T𝑗 , the attentive fusion layer and the output
layer for T𝑗 have 𝐾 ·𝑑 , |Y𝑗 | ·𝑑 , 0 and (𝑑 + 1) |Y𝑗 | parameters, respec-
tively. The total number of parameters w.r.t. all the first 𝑗 tasks is
M +𝐾 · 𝑑 + (2𝑑 + 1) · |⋃𝑗

𝑛=1Y𝑗 |, of whichM + (𝑑 + 1) · |⋃𝑗

𝑛=1Y𝑗 |
parameters are trainable during back propagation. As the BERT
encoder has the most parameters, the increasing number of tasks
brings minimal effect on model size. Therefore, the parameter ex-
plosion issue is successfully addressed by MeLL.

Additionally, different from lifelong learning algorithms with
replay strategies [20, 40], our approach does not require any replay
operations. Instead, we employ the copy mechanism and the slow
update of the text encoder to avoid catastrophic forgetting. Refer to
the experiments for detailed results.

4 EXPERIMENTS
4.1 Datasets
To evaluate the effectiveness of MeLL, we construct two datasets,
including a fused dataset for query intent classification in task-
oriented dialogues (TaskDialog-EUIC) and a real-world e-commerce
dataset for response intent classification in hotline agents (Hotline-
EUIC). TaskDialog-EUIC is built from three public datasets: Snips [7],
TOP semantic parsing [14] and Facebook Multilingual Task Ori-
ented Dataset [41]. We fuse samples from those datasets and split
them into multiple tasks with overlapped label sets. Overall, we
obtain 90 tasks, containing more than ten thousands samples in
total. Hotline-EUIC is collected and annotated from the hotline

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3653



data produced from an e-commerce dialogue system AliMe [24].
We first use an industrial Automatic Speech Recognition (ASR)
system with high accuracy to convert hotline audios to texts, and
hire annotators to filter out texts with ASR errors and annotate the
intentions of the remaining texts. This dataset also has 90 tasks
from various fields, including retail, trip agents and express delivery
with a variety of user intent sets in each field. We randomly select
30% of all the tasks for each dataset as “base tasks” that are used
for initial model training, and take the rest as new tasks used in
the lifelong learning stage. We randomly split the data in each task
into training/development/testing sets. More details about dataset
construction and statistics can be found in Appendix A.1.

4.2 Baselines and Evaluation Metrics
We compare MeLL against the following strong baselines:
MTL: uses the multi-task fine-tuning approach [45] on all the tasks.
In this setting, we assume that the datasets of all the tasks are
available for us and do not apply the lifelong learning setting. This
model can produce the upper-bound model performance in our work.
Single: trains one BERT classifier [11] for each task. It unavoidably
suffers from the parameter explosion problem when the number of
tasks is large.
Lifelong-freeze: first uses themulti-task fine-tuning approach [45]
on the 𝑁 base tasks. Next, it freezes the BERT encoder and only
tunes the task-specific output layer for each new task.
Lifelong-seq: is similar to “Lifelong-freeze” except that the BERT
encoder will also be tuned in a sequential manner when a new
task arrives. Hence, it can suffer from the catastrophic forgetting
problem.
Lifelong-replay: is an extension of “Lifelong-seq” that employs
randomly-sampled data from previous tasks as experience replay
to re-train models for previous tasks [4].

For evaluation, we average all the accuracy and macro-F1 scores
across all tasks to compare different methods.

4.3 Implementation Details
We use bert-base-uncased (L=12, H=768, A=12, Total Parame-
ters=110M) 4 as the initialization of the BERT encoder of all of the
methods on TaskDialog-EUIC, and use roberta-tiny-chinese5
(L=2, H=768, A=12, Total Parameters=31M) on Hotline-EUIC. For
MeLL on both datasets, we use {EN=10, BS=64, SL=64, LR=1e-4}
as the hyper-parameters for multi-task learning on the base tasks,
where EN is the number of epochs, BS is the batch size, SL is the
sequence length and LR is the learning rate. We set the learning
rate to be 1e-6 for tuning the BERT encoder and 1e-3 for tuning the
task-specific classification heads. For the LRU replacement policy,
we set the maximum memory size as the distinct number of the la-
bels in base tasks. All of the algorithms are implemented in PyTorch
and run on 4 Tsela V100 GPUs. One can find more implementation
details of baseline models in Appendix A.2.2.

4https://github.com/google-research/bert
5We choose a small pre-trained language model since it is more suitable for online de-
ployment in our application. The pre-training details of this model and the comparison
between different Chinese pre-trained models can be found in Appendix A.2.1.

4.4 Experimental Results and Analysis
4.4.1 Comparing with baselines. Table 1 shows the general testing
performance over TaskDialog-EUIC and Hotline-EUIC. From the
results, we have the following findings:

• MeLL consistently improves the performance, especially on
new tasks. Specifically, MeLL achieves 1.65% accuracy and
1.48% F1 improvements compared with the best baseline
model on TaskDialog-EUIC, and 2.72% accuracy and 5.43%
F1 improvements on Hotline-EUIC. The improvement rates
on new tasks are also significant. MeLL has 2.36% F1 im-
provements compared with the best baseline on new tasks of
the TaskDialog-EUIC dataset and 5.05% on the Hotline-EUIC
dataset.

• Compared with the Single baseline, Lifelong-freeze has bet-
ter overall performance but worse performance in new tasks
on the Hotline-EUIC dataset, which suggests that freezing
the BERT encoder is not a good solution for the EUIC task. A
common practice of lifelong learning (i.e., Lifelong-unfreeze)
does not work well in the EUIC problem, either. We have
observed that the performance drops dramatically (espe-
cially on base tasks) when the BERT encoder is fine-tuned
sequentially because of the catastrophic forgetting problem.
Adding the replay mechanism can ease that problem but the
performance is still not satisfactory.

• Compared with the Single baseline, MeLL has a much smaller
model size but a significant performance gain. Compared
with Lifelong-replay, the training data and training steps of
MeLL are much smaller. MeLL also has improvements on the
performance, especially on the new tasks. Compared with
MTL, MeLL has a performance gap but is close, since new
tasks for MeLL arrives sequentially. The gap is smaller than
other baselines, which proves the effectiveness of the global
memory of the meta-knowledge.

4.4.2 The influence of model components on the Hotline-EUIC
dataset. In this experiment, we explore how the three components
influence the final performance of MeLL: i) Meta knowledge, ii)
Slow learner iii) LRU replacement policy. The results can be found
in Table 2. We can see that the meta knowledge that we introduce
plays an important role in the overall model performance. After
the transferable knowledge is passed from existing tasks to new
tasks, the model can achieve a better performance. When the BERT
encoder is not tuned, the performance also drops, which proves
the necessity to use BERT as a slow learner in MeLL. We can also
find that introducing the LRU replacement policy only has 0.39%
performance drop, which proves the effectiveness of this policy.

4.4.3 The influence of the learning rate. We explore how the learn-
ing rates of the slow and fast learners on lifelong learning phase
affect the final performance, shown in Figure 4.

For the slow learner, we find that i) 1e-5 is too large to tune
the BERT encoder and the performance drops dramatically (about
8% drops on accuracy and 10% drops on F1); ii) the performance
through smaller learning rates (1e-7, 5e-7, 1e-6) is steady and 1e-6
is the best hyper-parameter setting of the learning rate of the slow
learner; iii) the learning rate of the slow learner affects base tasks

ADS Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

3654



Table 1: Comparison of different models over two datasets. * denotes that it can be unfair to directly compare MeLL with these
models. Compared with MTL (upper-bound), MeLL has no global view of the all tasks. Compared with Single, MeLL needs
only one global model instead of one model for each task. Compared with Lifelong-replay, MeLL does not need to store data
from previous tasks nor perform experience replay.

Task TaskDialog-EUIC Hotline-EUIC

Results All tasks New tasks All tasks New tasks
Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

MTL (Upper-bound)* 0.9597 0.9590 0.9568 0.9562 0.9788 0.9480 0.9832 0.9523
Single* 0.9006 0.8974 0.9005 0.8969 0.9196 0.8685 0.9239 0.8814
Lifelong-freeze 0.9214 0.9194 0.9015 0.8988 0.9401 0.8798 0.9259 0.8501
Lifelong-seq 0.3140 0.2043 0.3447 0.2455 0.4517 0.3485 0.5272 0.4238
Lifelong-replay* 0.6225 0.5481 0.5485 0.4573 0.8215 0.8260 0.9420 0.8553
MeLL 0.9379 0.9342 0.9271 0.9224 0.9673 0.9341 0.9675 0.9319

Table 2: Ablation study on the Hotline-EUIC dataset.

Ablation F1 Improv. Rate
MeLL 0.9341 N/A

w/o Meta knowledge 0.9178 -1.63%
w/o Slow learner 0.9269 -0.72%
w/o LRU replacement policy 0.9380 +0.39%

more than new tasks since the classification heads for base tasks
have no chance to adjust once the BERT encoder has changed.

For the fast learner, we find that i) a large learning rate is required.
The overall performance quickly improves when the learning rate
is increased from 5e-5 to 5e-4 and slowly improves from 5e-4 to
1e-3; ii) On the aspect of the accuracy score, the new tasks are more
sensitive to a large learning rate, since we need to tune the head
classifier from scratch for the new tasks. iii) The learning rate of
the fast learner also influences the base tasks even though only the
BERT encoder is slowly updated. That is because the optimization
of the head classifier also influences the optimization of the BERT
encoder through back propagation.

4.4.4 The influence of pre-trained languagemodels. We then use dif-
ferent pre-trained language models as our text encoder on Hotline-
EUIC. The results show that MeLL consistently improves the EUIC
results. The pre-trained language model that we use are BERT-base,
ALBERT-base trained on CLUECorpus2020 6 and RoBerta-base re-
leased in [8]. We also pre-train our two-layer RoBerta-tiny on our
own datasets. The result shown in Table 3 confirms that MeLL
achieves the best performance with any type of pre-trained lan-
guage models.

4.4.5 The influence between base tasks and new tasks. In this ex-
periment, we analyse two sides of knowledge transferring on the
Hotline-EUIC dataset:
How base tasks influence new tasks.We show how the number
of base tasks influences the performance on new tasks in Figure 5a.

6https://github.com/CLUEbenchmark/CLUEPretrainedModels

(a) Accuracyw.r.t the learning
rate of the slow leaner.

(b) F1w.r.t the learning rate of
the slow leaner.

(c) Accuracy w.r.t the learning
rate of the fast leaner.

(d) F1w.r.t the learning rate of
the fast leaner.

Figure 4: The performance comparison between different
learning rates of the slow learner and the fast learner. The
learning rate of the fast learner is 1e-3 for sub-figure (a) and
(b), and the learning rate of the slow learner is 1e-6 for sub-
figure (c) and (d).

We find that for both of MeLL and the Single model, the perfor-
mance improves when the number of base tasks increases, which
confirms that the transferable knowledge can be passed from exist-
ing tasks to new tasks. The improvement rate of MeLL increases
faster than Single, proving the effectiveness of incorporating the
meta knowledge in MeLL.
How new tasks influence base tasks. We then explore how
model fine-tuning on new tasks influences the performance on
base tasks. In Figure 5b, we find that most of the base tasks obtain
performance gain from new tasks, and the performances on some
tasks are even improved by more than 5% in terms of F1. These ob-
servations confirm that previous tasks can be positively influenced
by new tasks on the MeLL model.
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(a) Performance (F1) on new
tasks w.r.t the number of base
tasks.

(b) Performance (F1) improve-
ment rate on base tasks after
fine-tuning on new tasks.

Figure 5: The exploration of the influence between base
tasks and new tasks of the MeLL model.

Table 3: Comparison of different pre-trained models on the
Hotline-EUIC dataset.

Model BERT- ALBERT- RoBerta- RoBerta-
base base base tiny (ours)

Single 0.8699 0.7895 0.8793 0.8685
Lifelong-freeze 0.8704 0.8288 0.9115 0.8798
MeLL 0.9046 0.8854 0.9419 0.9341

4.5 Online Deployment
We have also collected and annotated hotline data from AliMe
and built a large-scale dataset named Hotline-EUIC-Large to train
models for real-world industry deployment. This dataset contains
1,004 UIC tasks from varies domains, including 1,327,441 training
samples, 161,098 development samples and 103,868 test samples
in total. There are 489 distinct labels and the maximum number
of the labels of one task is 24. We train our MeLL model in the
order of when the task is created. The first 100 tasks are treated
as our base tasks. The LRU memory size is set as 100. One can
find more details of the dataset and the offline experimental results
in the appendix. We then deploy our model in the Alime hotline
agent. After deployment, we collect back annotated data of 600 tasks
from the online system, compare the performance of our model
with the previous single-model system, and report the F1 score in
Table 4. The previous online system includes thousands of single
models. Each model is a TextCNN model [22] distilled from an
fine-tuned ALBERT-base model [23]. Overall, our model improves
the overall F1 in 8.61%. More offline results and deployment details
are presented in Appendix A.3.

4.6 Scalability Analysis
In this section, we explore how MeLL reduces the overall complex-
ity of the deployed models and how LRU helps reduce memory
explosion. We simulate the situation where there are 1,024 tasks
at most. We compute the numbers of the parameters of Single and
MeLL. The overall parameter reduction results can be found in Fig-
ure 6a, We can find that the numbers of model parameters in Single
and MeLL are linearly increasing but the growth rate of MeLL is in
a much slower speed. When the number of the tasks is 1,000, the
overall number of parameters of the 1,000 single-task models are

(a) Overall #Param w.r.t Task
ID comparison between Single
and MeLL.

(b) Memory #Paramw.r.t Task
ID comparison betweenMeLL
and MeLL (w/o. LRU).

Figure 6: The parameter scale comparison between Single
and MeLL. Here “#Param” means the number of the param-
eters. Note that the x-axis is in an exponential scale.

Table 4: The online performance comparison betweenMeLL
and the online system.

Method F1 Relative Improv.
Online system (Single) 0.8359 N.A.
MeLL (w. LRU) 0.9079 8.61%

150x larger than the MeLL model. The memory parameter reduc-
tion results of the LRU replacement policy can be found in Figure
6b. The curve is overlapped when the global memory is not fully
occupied but the number of the parameters of MeLL (w/o. LRU) still
increases quickly after the number of labels exceeds the maximum
memory size. These two findings confirm the superiority of our
MeLL model with the LRU replacement policy.

5 CONCLUSION
In this paper, we formally introduce the task of large-scale EUIC, and
propose the Meta Lifelong Learning (MeLL) framework to address
this task. MeLL employs a slowly updated text encoder to learn text
representations across tasks and the global/local memory networks
to learn task semantics. The MeLL framework enables effective
knowledge transfer through time and alleviates catastrophic forget-
ting and parameter explosion problems at the same time. Extensive
experiments on both English and Chinese EUIC datasets show
the effectiveness of MeLL, which consistently outperforms strong
baselines. We have also deploy MeLL on a real industrial dialogue
system AliMe. The online A/B test results show the superiority of
our method. In the future, we will further explore how MeLL can
be employed to solve other tasks and support other applications.
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A APPENDIX
A.1 Dataset Details
The TaskDialog-EUIC dataset is constructed from three open-source
task-oriented dialogue datasets: Snips [7], TOP semantic parsing [14]
and Facebook Multilingual Task Oriented Dataset [41]. In these
datasets, only samples related to query intent classification are uti-
lized. Even though a few samples of these datasets are related to
other tasks such as semantic parsing and cross-lingual understand-
ing. We first fuse data samples from those datasets and then split
them into multiple tasks with overlapped label sets. To guarantee
the variety and the inner-task scenario association for the gener-
ated tasks, all intent labels from these three datasets are initially
clustered into a certain number of groups according to their aver-
aged word embeddings. During the task generation process, we
ensure that all the intent labels within a task belong to the same
clustering group.

The Hotline-EUIC and Hotline-EUIC-Large datasets are from
the real-world industry product AliMe. In the hotline scenario,
AliMe provides services for over 600 businesses. Each business has
different questions for the users to answer. Based on the users’
responses, the models are required to classify the responses into a
variety of answer types. Overall, we have more than 200 domains,
resulting in over one thousand tasks for the models to solve. Some
domains are semantically different from each other, e.g. map service
and health service, while others are close to each other, e.g. food
takeout service and express delivery service. Thus, some tasks are
close to each other in semantics and share some common user
intents. With the development of AliMe, the numbers of domains
and tasks are continuously growing. A few example tasks are shown
in Table 7.

The statistics of these three datasets are shown in Table 5.

A.2 Implementation Details
A.2.1 Pre-training Details. Here we describe how the pre-trained
model robert-tiny-chinese used for the Chinese datasets is pro-
duced. Following the work [8, 28], we use BERT as the encoder
and the Wikipedia text 7 for pre-training. We only use the Masked
Language Modeling (MLM) loss and the whole word masking [8]
for pre-training. We use the batch size of 256, the sequence length
of 512, the learning rate of 1e-4 and the Adam optimizer to train
this model. We then further pre-train the model of 100K steps on an
unlabeled hotline dataset generated from AliMe, using the learning
rate of 1e-5.

A.2.2 Baseline Details. For all the models on both two datasets,
the number of epochs, the batch size and the sequence length are
set to 10, 64 and 128, respectively. The training strategies and the
learning rates are a little different from the baseline models:

• MTL: Follow the previous work [45], We use data samples
of the same task as training data in one batch and tune the
learning rate from {1e-3, 5e-4, 1e-4 }.

• Single: For each task, we tune the learning rate from {1e-3,
5e-4, 1e-4 }.

• Lifelong-freeze: We first uses the multi-task fine-tuning
approach [45] on the 𝑁 base tasks. The learning rate is 1e-4.

7https://dumps.wikimedia.org/zhwiki/latest/

Table 5: Experimental data statistics.

TaskDialog- Hotline- Hotline-
EUIC EUIC EUIC-Large

#Train. 12,845 90,594 1,327,441
#Dev. 2,569 10,114 161,098
#Test 2,569 11,803 103,868
#Tasks 90 90 1,004
#Base tasks 30 30 100
#Distinct labels 26 71 489

Table 6: Performance of different models on the Hotline-
EQID-Large dataset.

Results All tasks New tasks
Accuracy F1 Accuracy F1

Single 0.9135 0.8511 0.9107 0.8544
Lifelong-freeze 0.8828 0.8030 0.8741 0.7919
MeLL 0.9599 0.9072 0.9567 0.9042

Then, we freeze the BERT encoder and use the learning rate
1e-3 to tune the prediction heads for each new task.

• Lifelong-seq: The muti-task learning process of base tasks
are similar to Lifelong-freeze but we use the learning rate
of 1e-4 to tune both the BERT encoder and the prediction
heads.

• Lifelong-replay:The training process and hyper-parameters
are same as Lifelong-seq, except for each new task, we sample
7% of the data samples from the previous tasks for experience
replay.

A.3 Experimental Details on Large-scale
Dataset

We have tested three models on the Hotline-EUIC-Large dataset.
The the offline experimental results are shown in Table 6. Compared
with the results on Hotline-EUIC in Table 1, we can find the gap
between MeLL with Single is steady but the gap between MeLL and
Lifelong-freeze is larger, which proves the superiority of MeLL on
large-scale EUIC tasks.
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Table 7: Example tasks in the Hotline-EUIC dataset.

Domain Task Description User Response Intents

Map Check whether the shop name is correct {Yes, No, Other}
Check whether the shop is still open {Open, Close, Not sure}

Health Ask about the medication history {1 Year, 1-3 Years, >3 Years}
Ask about the fasting plasma glucose {Normal, Pre-diabetes, Diabetes}

Food takeout
Check if the customer is available { Available, Not available,

to pick up the takeout Deliver as soon as possible }
Satisfaction survey { Satisfied, Slow delivery, Food spilled, Not received }

Express delivery
Check if the customer is available { Available, Not available,

to pick up the delivery Collect the parcels by others }
Satisfaction survey { Satisfied, Slow delivery, Package damaged, Not received }
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