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Abstract
Despite the rapid development of deep learning models, for
real-world applications, building large-scale Automatic Speech
Recognition (ASR) systems from scratch is still significantly
challenging, mostly due to the time-consuming and financially-
expensive process of annotating a large amount of audio data
with transcripts. Although several self-supervised pre-training
models have been proposed to learn speech representations, ap-
plying such models directly might be sub-optimal if more la-
beled, training data could be obtained without a large cost.

In this paper, we present VideoASR, a weakly supervised
framework for constructing ASR systems from massive video
data. As user-generated videos often contain human-speech au-
dio roughly aligned with subtitles, we consider videos as an im-
portant knowledge source, and propose an effective approach to
extract high-quality audio aligned with transcripts from videos
based on text detection and Optical Character Recognition. The
underlying ASR models can be fine-tuned to fit any domain-
specific target training datasets after weakly supervised pre-
training on automatically generated datasets. Extensive experi-
ments show that VideoASR can easily produce state-of-the-art
results on six public datasets for Mandarin speech recognition.
In addition, the VideoASR framework has been deployed on the
cloud to support various industrial-scale applications.
Index Terms: automatic speech recognition, weakly supervised
learning, optical character recognition, massive video data

1. Introduction
Automatic Speech Recognition (ASR) is one of the core tasks
in speech processing. The task aims to generate transcripts from
speech utterances. Recently, end-to-end neural ASR models
have been extensively studied, as these models do not require
the explicit learning of acoustic and language models [1, 2].

Despite the success, a potential drawback is that these
models require large amounts of transcribed data to produce
satisfactory results [3]. Unfortunately, transcribing audio by
human annotators is both time-consuming and financially-
expensive [4]. Recently, self-supervised pre-training has been
applied to ASR [5, 6], using unlabeled audio to pre-train ASR
models. However, there exists a learning gap between pre-
training objectives (such as minimizing the contrast loss [6])
and ASR training objectives. We assume that better results
could be obtained if the models could optimize similar goals
during pre-training and fine-tuning. Some methods generate
synthetic speeches aligned with texts for training [7, 8], but the
generated speeches may still be different from real ones.

In order to support real-world applications, a natural ques-
tion arises: is it possible to build accurate end-to-end ASR
systems without much manually labeled data? In this work,
we present a weakly supervised framework to construct ASR
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Figure 1: High-level architecture of the VideoASR framework.

systems from massive video data, named VideoASR. 1 The
framework is shown in Figure 1, which consists of two ma-
jor stages: Weakly Supervised Pre-training (WSP) and Domain-
specific Fine-tuning (DF). During WSP, based on text detec-
tion [9] and Optical Character Recognition (OCR) [10], we
extract human-speech audio aligned with subtitles from user-
generated videos as knowledge sources to pre-train ASR mod-
els. Here, we pre-train our models over massive videos of var-
ied topics so that the models can capture transferable, general
knowledge across domains. The underlying ASR models can be
fine-tuned to fit training data (usually smaller in size) in any do-
mains. We evaluate VideoASR over popular ASR models and
six public datasets. Results show that it produces state-of-the-
art results for Mandarin speech recognition. VideoASR has also
been deployed in an industrial-scale distributed machine learn-
ing platform to support various applications on the cloud.

2. Related Work
End-to-end ASR Models. While hybrid ASR techniques are
continuously developing (such as classical DNN-HMM-style
models [11]), due to the simple model pipelines, end-to-end
ASR models have gained much attention. Recurrent-style net-
works are naturally suitable for end-to-end ASR as they model
the sequences of audio and languages [12, 1, 13]; however,
they may be slow during training and inference. This reduces
the application scopes of such models in industry. CNN-based
approaches [14, 15] are faster in speed, but they have lim-
ited capacity for modeling long sequences. Transformer-based
methods [16, 17, 18, 19] have better performance because have
strong abilities to capture long-term dependencies. They also
converge faster and produce more accurate results when the
CTC (Connectionist Temporal Classification) loss is added as
an auxiliary loss [20]. Because the architecture design is not
our major focus, we do not further elaborate.
Pre-training ASR Models. Two streams of works have been
proposed to reduce the requirements of manually labeled data
for end-to-end ASR. One stream applies unsupervised/self-

1We categorize our framework to be weakly supervised because we
use additional labeled data that are not processed by human annotators.
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Figure 2: Pipeline of Weakly Supervised Pre-training (WSP).

supervised/semi-supervised methods to tackle the problem. For
example, Long et al. [21] propose semi-supervised training of
DNN and RNN based acoustic models. Chung et al. [22] intro-
duce the Auto-regressive Predictive Coding for learning speech
representations. The wav2vec framework [5, 6] introduces self-
supervised pre-training for transformer-based ASR. Inspired by
BERT [23], Baevski et al. [6] propose masked predictive cod-
ing for unsupervised pre-training of transformer encoders. Sim-
ilar works include [24, 25]. Besides, a few methods aim to
generate pseudo labels of unlabeled speeches for ASR train-
ing [26, 27, 28]. The other stream extracts aligned text-speech
segments using existing ASR models. Lanchantin et al. [29]
align paragraphs of transcripts with audio to generate training
data. The works [30, 31] introduce several heuristic rules to
extract useful speech segments with transcripts from Youtube.
Different from previous methods, our work considers vision
techniques to generate high-quality utterance-text pairs.

3. VideoASR: The Proposed Framework
In this section, we introduce technical details of our framework
and the ASR model architectures that we use.

3.1. Weakly Supervised Pre-training

The pipeline of WSP is illustrated in Figure 2.
Video Acquisition. Many user-generated videos have embed-
ded subtitles that are almost synchronous with the audio. We re-
gard such videos as pre-training knowledge sources. The videos
that we use are of various genres provided from Youku 2.
Text and Audio Spotting. Although videos with subtitles are
available to us, subtitles are generally embedded in frame im-
ages in different styles and formats. This prevents us from ex-
tracting subtitles from raw data sources directly. Hence, we first
extract frame images from each video with an interval of 1/3
second. Next, we employ IncepText [9] to detect text positions
from images and the OCR model [10] to recognize texts.

Given a sequence of frame images within a time window
size (denoted as si, si+1, · · · , sj−1, sj), we wish to determine
whether two consecutive frames sk and sk+1 (i ≤ k, k+1 ≤ j)
can be “merged” so that a subset of such frames may correspond
to the same subtitle. Subsequently, the audio within the time
frames is treated as the speech that roughly matches the subtitle.
We present two merging methods: Heuristics-based and Model-
based. For two consecutive frames sk and sk+1, denote the
detected texts as tk and tk+1, respectively. Define the Relative

2Youku (http://www.youku.com) is a popular video hosting
service, a subsidiary of Alibaba Group. It holds the copyrights of these
videos, and permits authors to obtain and process the data as described.
Different from standard movies, the user-generated videos usually do
not have subtitles provided as standalone files.

Edit Distance (RED) between sk and sk+1 as:

RED(sk, sk+1) =
EditDis(tk, tk+1)

max(Len(tk), Len(tk+1))

where EditDis(tk, tk+1) is the edit distance between tk and
tk+1, and Len(tk) is the length of tk. Heuristics-based Merg-
ing combines two frames sk and sk+1 if RED(sk, sk+1) is
smaller than a tuned threshold.

However, Heuristics-based Merging may ignore the corre-
sponding relations between audio and texts. If any existing ASR
model is available, we can use it to refine the merging process 3.
Let ak be the audio segment w.r.t. the frame sk. Model-based
Merging employs an existing model f to predict the transcript
of ak, denoted as f(ak). If sk and sk+1 should not be merged,
the error rate of model f is computed as:

Err1(f, sk, sk+1) = CER(tk, f(ak))+CER(tk+1, f(ak+1))

where CER(tk, f(ak)) is the Character Error Rate (CER) of
model f ’s predictions. If sk and sk+1 should be merged, simi-
larly, we have the combined error rate:

Err2(f, sk, sk+1) = min{CER(tk, f(ak:k+1)),

CER(tk+1, f(ak:k+1))}

where ak:k+1 concatenates ak and ak+1. sk and sk+1 should
be merged if Err1(f, sk, sk+1) > Err2(f, sk, sk+1).
Iterative Pre-training. After extraction and merging, we ob-
tain a large “pseudo-labeled” dataset D = {(ak, tk)}, consist-
ing of audio-transcript segment pairs. We pre-train the ASR
model using the way as normal training over the dataset D. It
should be noted that the extraction process of D unavoidably
injects noise into the dataset due to the lack of human anno-
tation. During pre-training, we apply a self-training strategy to
filter out noisy data. In each epoch, we filter out audio-transcript
segments {(ak, tk)} from D that are most likely to have noisy
transcripts and use the remaining dataset for the next training
epoch. Due to space limitation, we omit the details and refer
interested readers to [32].

3.2. Domain-specific Fine-tuning

Based on the WSP learning objective, our framework could
generate ready-to-use ASR models directly. However, the do-
mains of pre-training data may be significantly different from
downstream ASR tasks. Hence, given a (small) training set
Dm = {(ak, tk)} of domain m, we fine-tune the pre-trained
model over Dm to learn domain-adaptive parameters. One can
also leverage transfer learning using bothD andDm to improve
the fine-tuning performance, which is left as future work.

3.3. Choices of Model Architectures

Following industry practices, we consider two popular ASR
models: wav2letter [14] and Speech Transformer [16], as shown
in Figure 3. Wav2letter uses one dimensional convolution net-
works with large kernels as encoders, and the CTC loss for
training. Its efficient inference speed makes it appealing to
industrial applications. Speech Transformer [16] adopts self-
attention for acoustic modelling and decoding. Following [20],
the CTC loss is added as an auxiliary loss to achieve faster con-
vergence and better performance. In multi-head attention lay-
ers, we set the hidden size as 512, with 8 heads. For fast online
inference, we apply a beam search of size 16 for both models.

3We use a commercial Madarin ASR service to transcribe the au-
dios. See https://ai.aliyun.com/nls/asr.
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Figure 3: The architectures of two models that we choose.

Table 1: Dataset statistics. (SPK: #Speakers. TXT: #Tran-
scripts. UTT: #Utterances. R/S: Reading/spontaneous style.)

Dataset Duration SPK TXT UTT Style
ST CMDS 500h 855 74,770 82,080 R
AISHELL-1 178h 400 113,738 120,099 R
AISHELL-2 1,000h 1,991 603,738 1,009,223 R
AIDATANG 200h 600 133,684 164,905 R
MagicData 760h 1,080 275,778 573,480 R
HKUST 200h 2,100 173,028 173,028 S

4. Experiments
In this section, we conduct extensive experiments to evaluate
the proposed framework in various aspects. We also present the
results of industrial deployment to demonstrate the effective-
ness of the VideoASR framework.

4.1. Datasets and Experimental Settings

For ASR pre-training, we obtain 43,694 video clips of various
topics from Youku. The total duration is around 8,000 hours.
During WSP, the learning rates of wav2letter and Speech Trans-
former are set as 0.05 and 1.0, respectively. During fine-tuning,
we set the learning rates to be 0.01 and 0.5. For both models, we
normalize the utterances to 16kHz and generate the logarithm of
FBank features of 80 dimensions, with a window size of 20ms
and the stride of 10ms. SpecAugment [33] is applied for data
augmentation. All algorithms are implemented in Tensorflow
and run on GPU servers.

For evaluation, we follow the work [34] to evaluate the
models on two popular Mandarin ASR datasets: AISHELL-
14 and HKUST5. The baselines models include the classical
TDNN model [13] 6 and the Speech Transformer with and with-
out pre-training over unlabeled human speeches [16]. Specifi-
cally, in [16], over 10,000h unlabeled audios are employed to
pre-train the model. We also consider four other public datasets,

4http://www.aishelltech.com/kysjcp/
5https://catalog.ldc.upenn.edu/LDC2005S15/
6Benchmark results of TDNN are from https://github.

com/kaldi-asr/kaldi/blob/master/egs/aishell/s5/
RESULTS and https://github.com/kaldi-asr/kaldi/
blob/master/egs/hkust/s5/RESULTS.

namely, ST CMDS7, AISHELL-28, AIDATANG9 and Magic-
Data10. The statistics of all six datasets are shown in Table 1.
The datasets are varied in domains and styles and have relatively
short duration compared to our WSP dataset. We keep the train-
ing, development and testing splits of all the datasets as default.
In the experiments, we benchmark the two models (wav2letter
and Speech Transformer) under two settings (with and without
WSP) on all six datasets by ourselves.

4.2. Experimental Results and Model Analysis

General Performance. All the experimental results are sum-
marized in Table 2. We have the following findings: i) Speech
Transformer outperforms wav2letter across all the datasets. ii)
The WSP technique in VideoASR effectively boosts the perfor-
mance of both models on all the datasets. This phenomenon
is more significant on small datasets (i.e., AIDATANG and
HKUST). iii) Speech Transformer with WSP achieves state-of-
the-art performance on all the six public datasets, outperforming
baseline ASR approaches.
Analysis of WSP. We test both merging techniques via a man-
ual check on 2,000 consecutive frame pairs that require proper
merging. It shows model-based merging consistently produces
better results (with a CER of 12.5%, compared to 33.0% for
rule-based merging). This shows, even without human an-
notation, we can generate pre-training datasets with tolerable
error rates. After text and audio spotting, we obtain a total
of 1,825,927 utterances from all videos. The duration ranges
from 15s to 20s. Next, we evaluate the iterative pre-training
technique. We filter out part of the data (quantified by the
drop ratio γ) and take the rest as the pre-training data for
the next iteration. We search for the best value of γ from
0, 0.5%, 1.0%, 2.0% and also compare our method with a clas-
sical data filtering approach [30]. We use the Mandarin ASR
model from https://ai.aliyun.com/nls/asr for the implementa-
tion of [30], instead of their original English ASR model. In
Table 3, we display the CER values produced by pre-trained
wav2letter without fine-tuning, evaluated on the AISHELL-1
development set. It shows that WSP with γ = 1.0% has
the best performance. After iterative pre-training, we obtain
a “cleaner” pre-training ASR dataset. The CER of extracted
speech-transcript pairs after noise filtering is around 6%, close
to those of manually labeled datasets. 11

Convergence analysis. During the DF stage, we investigate
how WSP affects the DF performance. The convergence curves
on HKUST are shown in Figure 5. As seen, wav2letter and
Speech Transformer converge within 10 and 3 training epochs,
respectively. Compared to the same models without WSP, the
speed of convergence is much faster for both models, which
clearly indicates WSP is able to find better parameter initial-
ization for domain-specific ASR tasks, no matter whether there
exist domain differences between the two datasets.
Error analysis and case studies. We analyze the percentages
of different error types occurred in the test sets of AISHELL-1
and HKUST, shown in Table 4. The underlying ASR models
are Speech Transformer w. and w/o. WSP. The majority of the
errors are substitution errors caused by homophones. The WSP

7http://www.openslr.org/38/
8http://www.aishelltech.com/aishell_2/
9http://www.openslr.org/62/

10http://www.openslr.org/68/
11Our figure is computed over 0.2% of the pre-training dataset after

noise filtering. The CERs of human-labeled data in AISHELL-1 and
MagicData are close to 5% and 2%, respectively.
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Table 2: Performance of ASR models on public test datasets in terms of CER (%). ∗ refers to our own implementation.

Model ST CMDS AISHELL-1 AISHELL-2 AIDATANG MagicData HKUST
TDNN [13] - 8.7 - - - 32.7
Transformer (w/o. pre-training) [34] - 9.5 - - - 23.8
Transformer (w. pre-training) [34] - 7.4 - - - 21.0
wav2letter w/o. WSP∗ 4.5 11.7 12.5 12.9 7.4 35.7
wav2letter w. WSP∗ 2.4 7.1 10.0 9.2 6.7 29.3
Transformer w/o. WSP∗ 4.4 6.7 7.4 7.8 3.6 23.5
Transformer w. WSP∗ 2.1 5.9 5.9 4.9 3.3 20.0

Case A Case B

Truth 送上真挚祝福 (Send sincere blessings) 今晚的比赛中朱婷独得27分 (Zhu Ting alone scored 27 points in tonight's game)

Output
(w/o. WSP)

送上真正祝福 (Send real blessings) 
Songshang Zhenzheng Zhufu

今晚的比赛中朱婷夺得7分 (Zhu Ting scored 27 points in tonight's game) 
Jinwan de  Bisaizhong Zhuting Duode Ershiqifen

Output
(w. WSP)

送上真挚祝福 (Send sincere blessings)
Songshang Zhenzhi Zhufu

今晚的比赛中朱婷独得27分 (Zhu Ting alone scored 27 points in tonight's game) 
Jinwan de  Bisaizhong Zhuting Dude Ershiqifen

Figure 4: Cases of model prediction w. and w/o. WSP. Italic texts refer to pronunciation (spelled in Mandarin phonetic symbols).

Table 3: Performance of pre-trained wav2letter with different
data filtering techniques in terms of CER (%).

Method/Iteration 4 8 12
Liao et al. [30] 17.3 16.8 16.5
WSP (γ = 0) 16.1 15.0 14.2
WSP (γ = 0.5%) 15.4 14.4 13.6
WSP (γ = 1.0%) 15.3 14.2 13.3
WSP (γ = 2.0%) 15.6 14.9 14.7

(a) Model: wav2letter (b) Model: Speech Transformer

Figure 5: Convergence curves on HKUST. (X-axis: number of
epochs; Y-axis: CER on the development set.)

technique helps to reduce such errors, as pronunciations and
language contexts in the pre-training dataset are more diverse,
leading to the better generalization ability of ASR models. Two
typical cases are in Figure 4, with Chinese pronunciation and
English translation provided. It shows WSP’s ability to distin-
guish words with similar pronunciation.

4.3. Industrial Deployment

As our VideoASR framework is mostly designed for industrial-
scale applications, we describe how the framework can be de-
ployed on the cloud and further present the ASR results on our
in-house dataset in real-world applications.
Platform deployment. The VideoASR framework has been

Table 4: Error analysis in terms of CER (%).

Dataset WSP? Insertion Deletion Substitution
AISHELL-1 No 0.1 0.2 6.4
AISHELL-1 Yes 0.1 0.2 5.7
HKUST No 2.6 3.6 17.3
HKUST Yes 2.7 2.6 14.7

Table 5: Performance of ASR models on our in-house dataset in
terms of CER (%) and batch inference time.

Model CER Inference Time
wav2letter w/o. WSP 25.3 2.68s
wav2letter w. WSP 10.8 2.66s
Speech Transformer w/o. WSP 16.8 15.57s
Speech Transformer w. WSP 8.4 15.68s

deployed on the EasyASR distributed machine learning plat-
form [35], which supports efficient training and serving large-
scale ASR models across multiple workers and GPUs. Users
also have the options to customize the end-to-end ASR model
structures easily. Hence, our solution is highly applicable for
industrial-scale scenarios.
Evaluation on the in-house, e-commerce dataset. To further
demonstrate the practical values of our work, we present the
evaluation results on our in-house corpus. Our dataset is used
in the e-commerce live-streaming domain, consisting of 350h
human-speech audios with manually labeled transcripts. We
hold out 2,761 audio clips (each around 15s) for evaluating the
performance of wav2letter and Speech Transformer. Parame-
ter settings are the same as in previous experiments. In the
experiments, we report the performance on both model accu-
racy and batch inference time. Specifically, the inference time
is measured using one Tesla V100 GPU (16GB), with the batch
size set to be 32. The experimental results are summarized
in Table 5. We can see that our pre-training technique signif-
icantly improves the model accuracy in both cases. In addition,
although wav2letter is relatively inaccurate, its fast inference
speed makes it appealing to real-time applications.

5. Conclusion and Future Work
In this paper, we present VideoASR and construct accurate ASR
systems based on the weak supervision of massive video data.
With WSP and the Speech Transformer model with our modi-
fications, we achieve the state-of-the-art results on several pub-
lic datasets. We also deploy our framework in the distributed
machine learning platform and achieve desirable performance
on our in-house datasets. Future work includes i) applying our
approach to other languages and ASR models; ii) combining
unsupervised and weakly supervised pre-training for ASR; and
iii) leveraging transfer learning to improve model fine-tuning.
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