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Abstract
Diffusionmodels and large languagemodels have emerged as leading-edge generativemodels, revolutionizing various aspects
of human life. However, their practical implementation has also exposed inherent risks, bringing to light their potential
downsides and sparking concerns about their trustworthiness. Despite the wealth of literature on this subject, a comprehensive
survey that specifically delves into the intersection of large-scale generative models and their trustworthiness remains largely
absent. To bridge this gap, this paper investigates both long-standing and emerging threats associated with these models across
four fundamental dimensions: 1) privacy, 2) security, 3) fairness, and 4) responsibility. Based on our investigation results, we
develop an extensive survey that outlines the trustworthiness of large generative models. Following that, we provide practical
recommendations and identify promising research directions for generative AI, ultimately promoting the trustworthiness of
these models and benefiting society as a whole.

Keywords Trustworthiness · Diffusion models · Large language models · Privacy · Security · Fairness · Responsibility

1 Introduction

The utilization of diffusion models (DMs) (Ho et al.,
2020; Ramesh et al., 2021) and large language models
(LLMs) (OpenAI, 2023) has surged across various real-
world applications, enabling the generation of content that
rivals human expertise. For instance GPT-4 has become
a ubiquitous productivity tool worldwide, offering invalu-
able assistance across diverse domains-from serving as
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a virtual assistant to generating code segments for engi-
neers (Brown et al., 2020; OpenAI, 2023). Moreover, mul-
timodal models built upon DMs and LLMs have achieved
significant advancements in transforming content from one
modality to another, particularly in bridging language and
vision (Ramesh et al., 2022; Avrahami et al., 2022; Harvey
et al., 2022).

While these models offer substantial social benefits, their
malicious exploitation (Carlini et al., 2021, 2023a) has raised
significant concerns about their trustworthiness. DMs have
been criticized for exacerbating societal divisions, as the
images they generate may revive harmful stereotypes or
manipulate public opinion. For example, in April 2023, an
organization misused DMs to generate misleading infor-
mation for specific agendas. Similarly, LLMs have been
implicated in serious issues, including contributing to sui-
cide cases, fabricating legal cases, and leaking users’ chat
histories. This troubling trend is expected to escalate, with1

an official academic institution suggesting that within a
few years, 90% of online content could be generated by
these models. A report from the World Economic Forum
predicts that such content will completely reshape public

1 https://www.europol.europa.eu/cms/sites/default/files/documents/
Europol_Innovation_Lab_Facing_Reality_Law_Enforcement_And_
The_Challenge_Of_Deepfakes.pdf
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perception in the near future. In response, the trustworthi-
ness landscape of DMs and LLMs is evolving rapidly, with
numerous initiatives underway. However, a significant gap
remains in systematically organizing and critically reviewing
these efforts. To fill this gap, as shown in Fig. 1, we embark
on a systematic trustworthiness investigation by organizing
recent advances around four fundamental dimensions: pri-
vacy, security, fairness, and responsibility:

– Privacy (Section 3). Developing privacy-preserving
models has gained global consensus (Carlini et al.,
2023a). The implications of privacy leakage are far-
reaching, leading to diminished user trust, malicious
outcomes, and potential regulatory violations. DMs and
LLMs are particularly vulnerable to sensitive data leak-
age (Carlini et al., 2023a, 2021), as they can directly
capture the underlying distribution of training data. We
investigate the issue of privacy leakage inDMs andLLMs
throughout the training and inference phases, as well as
membership inference attacks which determine whether
given data points were part of the training set.

– Security (Section 4). Ensuring the robustness of DMs
and LLMs against malicious attacks is critical for their
real-world deployment. Two typical forms of attack are
adversarial attacks (Liang et al., 2023) and backdoor
attacks (Chen et al., 2023a; Fan et al., 2022b).Adversarial
attacks exploit a model’s inherent vulnerabilities through
minor input modifications. Backdoor attacks insert a hid-
den backdoor into the model, which, when activated
during inference, causes the model to behave unpre-
dictably. Both attack types can manipulate the model or
significantly deteriorate its performance.

– Fairness (Section 5). As DMs and LLMs increasingly
influence our daily lives, maintaining the principle of
fairness to ensure equitable treatment across all social
segments is crucial. These models should operate within
ethical andmoral frameworks to avoid the perpetuation of
prejudice and societal division. However, AI-generated
content often exhibits biases (Wallace et al., 2019; Lee,
2016), resulting in unfair outcomes and discrimination
against specific social groups.We review recent advance-
ments in improving fairness in DMs and LLMs through
three lenses: stereotype, social norm, and preference.

– Responsibility (Section 6). The responsibility of DMs
and LLMs encompasses the duty to proactively pre-
vent misuse and mitigate potential disruptions to societal
norms. We categorize responsibility into three progres-
sively refined tiers for review: identifiability, traceabil-
ity, and verifiability, each presenting increasing levels
of implementation complexity. Identifiability pertains
to the ability to distinguish between human-created
and AI-generated content. Achieving this can signifi-
cantly reduce the likelihood of social rumors and sim-

ilar incidents. Traceability requires models to explicitly
embedwatermarks in their generated content, facilitating
accountability by tracing content back to the respec-
tive AI model. Verifiability involves the authentication
of AI-generated content, thereby enhancing users’ trust
in model decisions.

The four dimensions are intricately connected and interde-
pendent, each addressing unique facets while reinforcing
one another. Security evaluates a model’s resilience under
extreme conditions by leveraging adversarial and backdoor
attacks. These attacks can serve as stress tests in the contexts
of fairness and responsibility, exposing whether the model
operates impartially, ethically, and accountably. Responsibil-
ity underpins both fairness and privacy by ensuring oversight
and accountability, so as to drive the commitment to ethical
practices in model deployment.

Distinct features of this survey. Cao et al. (2024)
reviewed the trustworthiness ofDMs,while Liu et al. (2023d)
evaluated LLM alignment with human behavior. Huang et
al. (2023b) scrutinized existing research from a benchmark-
ing perspective. In contrast, our survey extends beyond
the scope of these papers in two significant ways. First, it
expands the horizon of current surveys by amalgamating
insights on both DMs and LLMs, aligning with the pre-
vailing trend of integrating these as multimodal models.
By comparing the trustworthiness of LLMs and DMs, we
aim to deepen the understanding of the distinct character-
istics inherent in each modality, fostering interdisciplinary
dialogue and encouraging the exchange of methodologies
and theoretical insights. Second, this survey goes beyond
engineering-focused metrics and standardized benchmarks
to provide a comprehensive understanding of the develop-
ment and evolution of trustworthiness in DMs and LLMs,
advocating for flexible evaluation procedures that account
for regional and temporal variations. In summary, this sur-
vey yields four key benefits:

– A Panoramic Overview: This survey provides a com-
prehensive view of trustworthiness in the context of DMs
and LLMs, offering a holistic perspective.

– New Taxonomy: A novel classification framework is
introduced, aimed at structuring the existing body of
research on fairness and responsibility.2 Our taxon-
omy groups fairness into three areas: stereotypes, social
norms, and preferences, while responsibility is structured
into three tiers: identifiability, traceability, and verifiabil-
ity.

– Industry Risk Awareness: The survey highlights poten-
tial risks associated with deploying these models in

2 Security and privacy have been extensively studied; for these aspects,
we adopt a widely recognized framework.
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real-world settings and offers valuable insights for indus-
try practitioners, including potential strategies.

– Future Directions: The survey identifies promising
areas and untapped opportunities that are ripe for further
exploration, aiming to catalyze future research efforts.

Roadmap. Sect. 2 offers an overview of DMs and LLMs,
laying the groundwork for the subsequent sections. Sec-
tions3, 4, 5, and 6 delve into the four dimensions in detail,
beginning with motivating examples and followed by a
review of advancements in each area. This is complemented
by a benchmark tool subsection and a discussion subsec-
tion, which review existing evaluation metrics and datasets
and summarize key insights and opportunities for further
research, respectively. Section7 wraps up the paper.

2 A Glimpse of State-of-the-art Generative
Models

DMs.At the heart of DMs lies the diffusion process, inspired
by non-equilibrium thermodynamics (Sohl-Dickstein et al.,
2015; Song et al., 2021b), which gradually converts a simple
distribution, typically Gaussian noise, into a complex one.
Formally, given a natural sample x0, the transition between
two consecutive diffusion steps is defined as:

q(xt |xt−1) = N (xt ;√
αt xt−1, (1 − αt )I), t = 1, · · · , T ,

(1)

where αt ∈ (0, 1) is a noise schedule parameter to control
the amount of noise added at each step. Equation1 can be
simplified using the reparameterization trick xt = √

αt x0 +√
1 − αtε0 where

√
αt = ∏t

i=1 αi and ε0 ∼ N (0, I). DMs,
denoted as εθ , are trained to predict the original image x0
from its noisy version by minimizing the difference between
the actual noise added and the noise predicted by the model,
i.e., Ex0,ε0 ||ε0 − εθ (xt , t)||22. Intuitively, DMs predict what
noise can enhance the natural appearance of a given noisy
image. Once trained, DMs can perform a T -step denoising
process on a Gaussian noise ε to generate realistic images:

xt−1 = 1√
αt

(

xt − 1 − αt√
1 − αt

εθ (xt , t)

)

+ (1 − αt )(1 − αt−1)

1 − αt
ε. (2)

This iterative adjustment simplifies the learning process com-
pared to generating an image in a single step, allowing for
richer textures and more intricate details in the final out-
puts (Saharia et al., 2022c). The above formulation is known
as denoising diffusion probabilistic models (DDPM). How-
ever, the denoising process is time-consumingdue to the large

Fig. 1 The trustworthiness landscape of DMs and LLMs

number of steps required. To improve efficiency, a variation
called denoising diffusion implicit models (DDIM) (Song et
al., 2021a) adopts a non-Markovian approach, enabling the
model to skip certain steps. Other recent advances include
consistency model (Song et al., 2023) and rectified flow (Liu
et al., 2023c). The former learns to predict the clean data
from noisy samples directly at each diffusion step, while the
latter regularizes the denoising trajectory to make it simpler
and more sampling-efficient. Some research proposed per-
forming the diffusion and denoising processes in latent space
instead of pixel space (Rombach et al., 2022).

Moreover, while vanilla DMs are designed for uncondi-
tional image generation (Sohl-Dickstein et al., 2015), they
can be extended to conditional tasks (Ramesh et al., 2021)
with additional supervision signals y to enhance their adapt-
ability and versatility (Harvey et al., 2022; Saharia et al.,
2022a). This requires an encoder τw to map y to a latent
vector, which is incorporated into the diffusion and denois-
ing processes, i.e., modifying εθ (xt , t) to εθ (xt , τw(y), t).
Among these supervision signals, labels and textual descrip-
tions (Ramesh et al., 2021) are particularly significant,
enabling DMs to generate images that align with the pro-
vided descriptions. For tasks like image coloring, supervision
may also come in the form of images, where the model
transforms a gray-scale source image into its colored coun-
terpart (Saharia et al., 2022a).

LLMs. LLMs (Radford et al., 2018, 2019) predict the
next word for a given prefix or fill in masked portions of
text within a specific context. Their foundation lies in the
Transformer architecture (Vaswani et al., 2017), a significant
milestone in natural language processing. Building upon this
architecture, subsequent LLMs (Brown et al., 2020; Ope-
nAI, 2023; Thoppilan et al., 2022; Zhang et al., 2022a) have
incorporated recent advancements, such as prompt learn-
ing (Liu et al., 2023b), to further enhance their capabilities.
Prompt learning (Schick & Schütze, 2021; Gao et al., 2021)
involves inserting a prompt before the original input, acti-
vating specific latent patterns within LLMs and enabling
them to concentrate on task-specific skills. Other related con-
cepts, such as adapters (Houlsby et al., 2019), instruction
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learning (Wei et al., 2022a), in-context learning (Min et al.,
2022), and human alignment approaches (OpenAI, 2023)
also contribute significantly to the effectiveness of LLMs.
Intuitively, LLMs can learn general knowledge from vast text
corpora; prompts, adapters, and similar ones can be viewed as
external parameters to store task-specific knowledge. These
techniques are parameter-efficient, reducing both training
costs and the risk of catastrophic forgetting and overfit-
ting. A recent development, retrieval-augmented generation
(RAG) (Khandelwal et al., 2020), introduces a retriever
to extract relevant information from a pre-built knowledge
base according to user queries, aiding LLMs in generating
responses. RAG allows knowledge to be stored externally
rather than within model parameters, enhancing inference
efficiency and reducing the risk of sensitive information
leakage, while also enabling updates to the knowledge base
for reliable, up-to-date information. Advanced RAG tech-
niques (Fan et al., 2024b) involve multi-granularity retrieval,
retrieval refinements, as well as multi-round and sequen-
tial retrievals for complex queries. These advancements have
propelled LLMs to performance levels comparable to human
experts in numerous tasks (OpenAI, 2023).

DMs vs. LLMs. DMs and LLMs share some similarities,
yet they encounter distinct challenges regarding trustwor-
thiness due to differences in data modalities (images vs.
text) and their learning and inference processes (diffusion
vs. token prediction). Firstly, images are continuous data
and are less affected by minor perturbations that do not
change their semantic meaning. In contrast, small alterations
in text, such as substituting a single word, can fundamentally
alter the entire sentence’s meaning. Even when text is repre-
sented in continuous space through embeddings, converting
these embeddings back into words can lead to grammat-
ical and approximation errors. Furthermore, text, being a
condensed form of human expression, inherently conveys
emotions more directly than images, which tend to contain
more redundant information. Secondly, both DMs and LLMs
process data iteratively, but they differ in how they approach
each iteration. DMs update all pixels of an image simulta-
neously, with each pixel’s update depending on the others.
Conversely, LLMs predict only one token at a time, relying
on the surrounding context while leaving the rest of the input
unchanged. This means that LLMs may face sharp breaks in
logic or flow when a token prediction goes wrong. Addition-
ally, LLMs have variable output dimensions, whereas DMs
produce outputs of fixed dimensions. Many trustworthiness-
related issues can be framed as optimization tasks, such as
data reconstruction. These differences necessitate tailored
optimization strategies for each model.

3 Privacy

Motivating Example 1 (Case for Privacy Leakage in
Real-life and Its Impact) Stable Diffusion, an open-
source AI art generator developed by Stability AI, has
become embroiled in a legal dispute. In 2023, Getty
Images initiated legal proceedings against Stability AI,
Inc. by filing a complaint in the United States Dis-
trict Court in Delaware. This action was taken after
Getty Images alleged that Stable Diffusion inadver-
tently leaked its training data during the inference
stage, which included watermarked images from Getty
Images’ collection. It is suspected that the number of
images resembling those inGetty Images’ databasemay
exceed a staggering 12 million. [Link]

The extensive number of parameters in DMs and LLMs
enables them to learn from vast training data. However, this
over-parameterization can unintentionally create shortcuts
that allow models to achieve high performance by merely
memorizing training samples, leading to privacy leakage.
Example 1 illustrates a real-world incident of privacy leak-
age involving a DM, inciting significant criticism fromGetty
Images, the owner of some of the implicated training data.
This underscores the urgent need to address privacy issues
when deploying models. We review recent developments
concerning the privacy issues of DMs and LLMs.

3.1 Overview

A model is considered privacy-preserving if it safeguards
information about its training data throughout its entire life-
cycle, in a way that no feasible methods exist to derive
such information.3 Owing to the distinct differences between
training and inference stages, we examine data leakage con-
cerns separately for each phase. During the training stage,
we focus on federated learning and split learning, while
in Sect. 3.4, we specifically address membership inference
attacks targeting DMs and LLMs, which seek to determine
the membership status of particular data.

3.2 Data Leakage during Training Stage

Two paradigms exist for training deep neural networks: cen-
tralized training and distributed training with multi-party
participation (Li et al., 2020a). Centralized training provides
better data protection, particularlywith strong access control.
Conversely, the latter can heighten the risk of privacy leakage
due to the involvement of untrusted parties. Federated learn-
ing and split learning are two key collaborative frameworks.
Unless specified, we do not distinguish between DMs and

3 https://www.dlapiperdataprotection.com/
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LLMs in this context, as both frameworks can be applied to
either model type.

3.2.1 Federated Learning

In federated learning, a server distributes a globally shared
model to clients, who perform local computations on their
data to generate gradients. These gradients are sent back to
be aggregated to update the global model. While federated
learning avoids sharing raw data, gradient leakage attacks
can still reconstruct clients’ data from shared gradients.

GradientLeakageAttacks.Gradient leakage attacks (Zhu
et al., 2019; Zhao et al., 2020) exploit gradient matching
techniques to recover clients’ data by aligning uploaded gra-
dients with those from dummy data, enabling high-fidelity
reconstruction. Subsequent research (Geiping et al., 2020;
Yin et al., 2021; Wei et al., 2020) has improved the efficacy
of these attacks by utilizing cosine similarity loss functions,
adding regularization terms, and refining initialization meth-
ods, among others. Interestingly, optimized dummy images
often resemble random noise, which hinders attack perfor-
mance (Jeon et al., 2021). To address this, Jeon et al. (2021)
and Yue et al. (2023) optimized generative models’ latent
vectors to generate clearer images. Deng et al. (2021) found
that combining L1 and L2 loss functions can improve text
reconstruction. Balunovic et al. (2022) proposed a unified
Bayesian framework for gradient leakage attacks, noting
that larger models are more susceptible to privacy leakage.
Besides, DMs and LLMs tend to be more susceptible to gra-
dient leakage attacks because they directlymodel the training
data. For example, Gupta et al. (2022) leveraged the gener-
ative capabilities of these models to generate candidate data
and determined the optimal reconstruction by comparing the
similarity between candidate gradients and the uploaded gra-
dients. As model performance improves, so does the quality
of reconstruction.

Gradient Leakage Defenses. Encryption and perturba-
tion are the primary techniques used to defend against
gradient leakage attacks. The encryption methods (Zhang
et al., 2020b; Wagh et al., 2020) prevent attackers from
accessing individual client gradients, allowing only access
to the plaintext of aggregated gradients, which forces them
to reconstruct all clients’ data at once and complicates
gradient matching problem. However, encryption methods
can introduce a high computational overhead, limiting their
usability in resource-constrained settings (Sun et al., 2021;
Yue et al., 2023). Perturbation-based methods apply slight
gradient modifications to confound attackers. Differential
privacy (Abadi et al., 2016) injects random noise into gradi-
ents, while Top-K gradient sparsification (Zhu et al., 2019)
retains only the most significant gradient elements. Gradient
quantization (Yue et al., 2023) represents the gradients with
lower-bit precision, reducing the amount of sensitive infor-

mation. Selective pruning evaluates the private information
within each gradient element and then implements gradient
pruning (Sun et al., 2021). Another approach is to generate
data that contains less private information, typically by opti-
mizing metrics related to data privacy and model utility (Fan
et al., 2022a).

Remark. Gradient leakage attacks, initially designed for
discriminative models, can also be applied to generative
models, with DMs and LLMs being particularly vulnera-
ble due to their ability to replicate training data patterns.
As models become more proficient, the risk of disclosing
training data also increases. In light of this, one possible
mitigation involves commencing training with sensitive data
and switching to less sensitive data; however, the impact
of this strategy on model performance remains uncertain.
For LLMs, RAG can be employed to store privacy-sensitive
information locally, keeping it out of the training set for
privacy protection. Furthermore, fine-tuning LLMs with
adapters, rather than training from scratch, allows for a
restricted sharing of gradients, reducing the risk of privacy
breaches. Nonetheless, the effectiveness of the above several
mitigations in counterbalancing the privacy risks introduced
by models’ generation capabilities remains unclear.

3.2.2 Split Learning

In split learning, a model is divided into two sub-models:
the bottom network on the client side and the top network on
the server side. Clients process input data through the bottom
network, sending intermediate results to the server for further
computation using the top network. Privacy concerns arise
when one party is untrustworthy.

Data Leakage. Pasquini et al. (2021) introduced Feature
Space Hijacking Attack (FSHA), targeting the reconstruc-
tion of client data when the label party is untrustworthy.
In FSHA, the adversarial label party trains a shadow net-
work to mimic the outputs of client’s network, and then
a decoder maps these outputs back to their corresponding
data. By applying outputs from client’s bottom network to
the trained decoder, client data can be revealed. Chen et al.
(2024b) relaxed FSHA’s requirements, allowing the use of
common public data instead of data similar to client data.
Xu et al. (2024c) showed that replacing the decoder with a
diffusion model improves reconstruction quality.

Existing defense measures, such as detection and pertur-
bation, are found to be ineffective against FSHA (Pasquini
et al., 2021). To address this, Li et al. (2022a) developed
ResSFL, which trains a feature extractor resistant to inver-
sion and initializes the bottom model with it. Maeng et al.
(2024) theoretically analyzed the decoder’s reconstruction
limits using Fisher information. Luo et al. (2023) employed
a regularization term to reduce the correlation between the
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input data and intermediate activation values, alongside prun-
ing sensitive parameters for defense.

Label Leakage. Li et al. (2022b) showed that backward
gradient sign patterns from the top model can leak labels
and suggested using gradient perturbations tomitigate. How-
ever, Xiao et al. (2021) argued against the effectiveness of
this method and advocated for multiple activations and label
mixing instead. Erdogan et al. (2021) and Kariyappa and
Qureshi (2021) showed that labels could be inferredwith gra-
dient matching, and Fu et al. (2022) found that even a small
amount of labeled samples is sufficient to fine-tune models,
enabling direct label predictions for training data. Wan et al.
(2023b) proposed using flipped labels to compute gradients
to obfuscate attackerswhile training a private sub-modelwith
true labels to compensate for performance losses.

Remark. Split learning restricts direct access to the com-
plete model by any single entity and can intuitively impede
attackers from leveraging the generative capacity of DMs
and LLMs to reconstruct data. In this context, the generative
potential of DMs and LLMs does not necessarily exacerbate
privacy leakage. Nevertheless, the certainty of this claim is
still in question, as the possibility of attackers developing
shadow models to compensate for this restriction persists,
highlighting the necessity for further research.

3.3 Data Leakage during Inference Stage

During the inference stage, attackers can craft specific inputs
to prompt models into producing outputs that reveal aspects
of the training data, resulting in privacy leakage. Notably,
multi-modal DMs tend to leak images rather than the text
prompts used to generate those images. Furthermore, the
types of data leaked by DMs and LLMs exhibit signifi-
cant differences. LLMs are particularly prone to leaking
entity relationships, such as names, locations, and email
addresses, but they fail to remember numerical information
like phone numbers. In contrast, DMs appear to memo-
rize and reproduce training images without favoring specific
types. Moreover, the implications of data leakage differ for
these models. DMs encounter issues like copyright and por-
trait rights, whereas LLMs face the potential exposure of
personal contact information and intricate entity relation-
ships.

3.3.1 DMs

Attacks. Somepalli et al. (2023a); Carlini et al. (2023a); Dar
et al. (2023) first investigated the issue of training data leak-
age in DMs, including Stable Diffusion and Imagen. The
empirical studies in (Somepalli et al., 2023a; Dar et al., 2023)
revealed that DMs could memorize and reproduce various
elements of the training data as outputs during inference.
Complementing this, Carlini et al. (2023a) utilized a brute-

force method to verify the occurrence of data replication in
DMs. By inputting a wide array of prompts with different
random seeds, they generated a large volume of data and
then applied a filtering process, revealing numerous instances
of replicated images that bore a striking resemblance to the
training data, some at a near pixel-perfect level.

Defense. To mitigate the memorization of training data,
a simple solution is to deduplicate the training dataset, a
measure validated by OpenAI as effective for DALLE2.
Interestingly, Somepalli et al. (2023c) demonstrated that
even with repeated images, the memorization effect can be
substantially reduced if image captions remain sufficiently
diverse. They then suggested rewriting captions during the
training phase or introducing noise to user inputs during
the inference phase. Building on these findings, Chen et
al. (2024a) introduced anti-memorization techniques, guid-
ing DMs away from training data during image generation
through despecification, caption deduplication, and dissimi-
larity guidance. Lu et al. (2024) constructed a set of reference
samples, encouraging the embeddings of generated images to
diverge from those of these references during the generation
process. Moreover, several approaches focus on alleviating
memorization issues during the training phase. Inspired by
ensemble learning, Liu et al. (2024b) proposed splitting the
training dataset into multiple shards, training several models
separately, and then aggregating them.Dockhorn et al. (2023)
designed DPDM, a differential privacy framework for DMs
to mitigate memorization, which Ghalebikesabi et al. (2023)
later expanded for more sophisticated datasets.

3.3.2 LLMs

LLMs face two main types of privacy attacks: construction
attacks and association attacks. Construction attacks aim to
extract verbatim training data from LLMs, while associa-
tion attacks focus on retrieving entity relationships embedded
within the training data.

Construction attacks. The general idea behind this type
of attack is to generate samples by providing prefixes, with
the resulting samples possibly being included in training
sets (Carlini et al., 2021). Carlini et al. (2021) proposed using
either random prefixes or common ones sourced from the
Internet to initiate these attacks. To enhance the diversity of
the generated samples, they introduced temperature scaling
to adjust the model’s predicted distribution. A subsequent
deduplication process identifies samples with the lowest per-
plexity as potential training data. Jagielski et al. (2023) found
that LLMs are more likely to memorize outliers and fre-
quently occurring training samples. Interestingly, Jagielski et
al. (2023) observed thatmodels are less inclined to remember
samples encountered during the early stages of training. Car-
lini et al. (2023b) identified a logarithmic-linear relationship
between memorization effects and three key factors: model
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capacity, frequency of a sample within the dataset, and the
length of prefixes used to prompt themodel. Yu et al. (2023b)
systematically examined the effectiveness of different tricks
in construction attacks, including sampling strategy, proba-
bility distribution adjustment, etc.

Association attacks. This type of attack involves design-
ing a template, which is then filled with entity names to
prompt the model to predict the corresponding sensitive
information. As an example, Lehman et al. (2021) studied
themodel’s vulnerability to exposing sensitivemedical infor-
mation using a template: "[NAME] symptoms of [masked]."
Huang et al. (2022) examined the risk of leaking personal
information, such as email addresses and phone numbers.
Kim et al. (2023b) enhanced association attacks by employ-
ing likelihood ratio scores for more accurate predictions.
Recent studies have also explored how the integration of
external retrieval data affects privacy leakage in RAG. These
works (Huang et al., 2023a; Zeng et al., 2024; Qi et al., 2024;
Yu et al., 2023a) crafted specific templates to compel LLMs
to output the retrieved data. The templates generally con-
sist of prompts specifying the attacker-desired content and a
command directing the model to present the retrieved con-
tent.

Defenses.Data deduplication (Carlini et al., 2021; Jagiel-
ski et al., 2023; Carlini et al., 2023b; Kandpal et al., 2022)
and differential privacy (Carlini et al., 2021; Lukas et al.,
2023) are both applicable to LLMs and present remarkable
effectiveness in practice. Nevertheless, it is worth noting
that differential privacy does come with the privacy-utility
trade-off. For further protection, Lukas et al. (2023) sug-
gested utilizing named entity recognition as amethod to filter
out sensitive information present in the training sets. This
sensitive-information-filtering method works well in RAG
(Huang et al., 2023a). Moreover, another approach to boost
privacy protection in RAG is by blending public and private
data in datastore and encoder training (Huang et al., 2023a).

3.4 Membership Inference Attack

Membership inference attacks exploit a model’s tendency to
overfit its training data, using metrics to assess how well the
model recognizes data points to determine the membership
of given data points. Interestingly, these attacks (Hu et al.,
2021) can also serve a beneficial purpose by auditing for
unauthorized data use during training.

3.4.1 DMs

Attacks. Several studies (Matsumoto et al., 2023; Wu et al.,
2022; Duan et al., 2023; Hu& Pang, 2023; Kong et al., 2024;
Dubiński et al., 2024) examined the vulnerability of DMs to
membership inference attacks. GAN-Leaks (Matsumoto et
al., 2023) are general attacks for generative models. Mat-

sumoto et al. (2023) employed GAN-Leaks and its variants
to evaluate the vulnerability of DMs, finding that the sam-
pling steps significantly impact attack performance. Wu et
al. (2022) developed metrics to determine if a text-image
pair was part of the training set, based on the premise that a
text from the dataset would yield a higher-quality generated
image. Duan et al. (2023); Hu and Pang (2023) and Kong et
al. (2024) dived deeper into the characteristics ofDMs to spot
vulnerabilities more effectively. Importantly, they all shared
a common underlying idea: training samples generally enjoy
lower estimation errors during denoising process. Unfortu-
nately, the non-deterministic nature of the training loss in
DMs, induced by the use of random Gaussian noise, may
cause the sub-optimal performance of membership infer-
ence attacks. To address the problem, Duan et al. (2023)
and Kong et al. (2024) estimated the errors under a deter-
ministic reversing and sampling assumption. Hu and Pang
(2023) used the log-likelihood of a given sample to infer
and the log-likelihood is approximately estimated by Skilling
Hutchinson tract estimator. However, Dubiński et al. (2024)
argued that the effectiveness of these attacks in DMs is often
overestimated, primarily due to the common use of small
datasets to fine-tune the victim model in evaluation.

Defense. In general, techniques designed to mitigate the
memorization issues of DMs can also bolster robustness
against membership inference attacks, such as differential
privacy (Dockhorn et al., 2023; Ghalebikesabi et al., 2023).
Additionally, Duan et al. (2023); Tang et al. (2024) dis-
covered that enriching data augmentation techniques, like
Cutout, can help alleviate membership inference attacks.
Nevertheless, not all data augmentation methods yield pos-
itive results; some, like RandAugment, may lead to training
collapse in DMs. Furthermore, Fernandez et al. (2023b)
introduced a novel technique called privacy distillation to
protect DMs from exposingmembership information of their
training data. Unlike traditional knowledge distillation, pri-
vacy distillation employs a Siamese network to evaluate the
extent to which samples are memorized by the model, train-
ing DMs with those with low memorization scores.

3.4.2 LLMs

Attacks. Most membership inference attacks (Hu et al.,
2021) can be adapted to LLMs by defining appropriate
loss functions. There are serveral endeavors specifically tai-
lored to LLMs. Mattern et al. (2023) inferred membership
by observing whether the loss of the target sample is sub-
stantially higher than the average loss of its corresponding
neighborhood samples in the target LLM. These neighbor-
hood samples are generated by other LLMs. Galli et al.
(2024) adopted a similar approach to (Mattern et al., 2023),
but they generated neighborhood samples by injecting noise
into the embedding space. Shi et al. (2024a) posited that
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Table 1 The datasets and metrics used to evaluate the trustworthiness of DMs and LLMs

Scenario Model Dataset Metric

Sect. 3.2 DMs MNIST, Medical MNIST, Fashion MNIST, CIFAR-10,
CIFAR-100, SVHN, LFW, ImageNet, Omniglot,
CelebA, Facescrub

MSE, PSNR, SSIM, FFT2D , LPIPS, ASR

LLMs SST-2, RTE, CoLA AUC, F1, Precision, Recall, ROUGE

Sect. 3.3 DMs Oxford flowers, CelebA, ImageNet, LAION, CIFAR-10,
PCCTA, MRNet

MSE, SSIM

LLMs iMAGEnET, LibriSpeech, C4, Pile, MIMIC-III, ECHR,
Enron, Yelp, OpenWebText

AUC, F1, Precision, Recall, Hamming Distance,
Accuracy, Perplexity

Sect. 3.4 DMs CIFAR-10, CelebA, LAION ASR, AUC, F1, Precision, Recall, FID

LLMs CC3M/CC12M, YFCC100M, MSCOCO, VG, FFHQ,
DRD, LJSpeech, VCTK, LibriTTS, Polemon, AG
News, Senitiment140, Wikitext-103, WMT18

ASR, AUC, F1, Precision, Recall

Sect. 4.2 DMs LSUN AUC, F1, Precision, Recall, ASR, FID, Clip-based
Similarity, PR, SSIM, PSNR, VIFp, FSIM,
MSSSIM, IS, MSE

LLMs IMDB, SNLI, AG News, MR, Yelp, SST-2, Twitter,
Yahoo! Answer, Fake News Detection, MultiNLI,
Amazin, MPQA, Subj, TREC, CivilComments,
DBOedia, MNLI, Open Assitant

AUC, F1, Precision, Recall, ASR, Grammaticality,
Naturality, Perplexity, Modification Rate,
Bert-based Similarity, USE

Sect. 4.3 DMs CIFAR-10, CelebA, COCO, LAION ASR, AUC, F1, Precision, Recall, Accuracy, FID,
MSE, SSIM, Caption Similarity

LLMs SST-2/5, OLID, AG News, Yelp, Amazon, IMDB,
Twitter, Jigsaw 2018, OffensEval, Enron, Lingspam

ASR, AUC, F1, Precision, Recall, Accuracy, LCR,
Perplexity, Jaccard, Bert-based Similarity

Sect. 5.2 DMs CelebA, CIFAR-10, FFHQ, ImageNet, LAION,
Omniglot

Attribute Ratio, Discrepancy Score, Fairness
Discrepancy, FID

LLMs BAD, RealToxicityPrompts, StereoSet ASR, BLEU, Idealized CAT Score, Perplexity,
Pearson Correlation, Coefficient, Stereotype Score

Sect. 5.3 DMs CIFAR-10, CIFAR-100, DiffusionDB, I2P, Imagenette,
SVHN

Aesthetic Score, Accuracy, CLIP Score, FID,
ImageReward, KID, Run-time Efficiency, SSCD

LLMs Civil Comments, English Tweets, IMDB, Jigsaw Toxic
Comment Classification Challenge Dataset,
RealToxicityPrompts, SNLI, SST-2/5, Yelp

Accuracy, ASR, BLEU, Content Preservation,
Dist-k, AUC, F1, Precision, Recall, Perplexity, RTP

Sect. 5.4 DMs N/A N/A

LLMs BFI, BookCorpus, C-Eval, ChatHaruhi,
CommonsenseQA, CuratedTree, English Wikipedia,
FS, HellaSwag, MMLU, MPI, Natural Questions,
PersonaChat, SD-3, SWLS, TriviaQA. WebQuestions,
WebText Test Set, Wikitext103

N/A

Sect. 6.2 DMs AFHQ2, CelebA, COCO, DiffusionForensics, FFHQ,
ImageNet, LSUN, Metfaces, UCID, Unpaired Real

AUC, F1, Precision, Recall, Dtection Rate, FID, LR

LLMs CBT, CMV, ELI5, HellaSwag, NYT, ROC, SA, SciGen,
SQuAD, TLDR, WP, XSum, Yelp

AUC, F1, Precision, Recall, Dtection Rate

Sect. 6.3 DMs AFHQ, BOSS, CelebA, CIFAR-10, COCO, FFHQ,
ImageNet, LSUN, Pascal VOC

AUC, F1, Precision, Recall, Dtection Rate, APD, Bit
Acc, Clip Score, FID, LPIPS, PSNR, SSIM

LLMs ArXiv Abstracts, C4, PAR3, WebText, WikiText-103,
XSum

AUC, F1, Precision, Recall, Dtection Rate,
Perplexity, P-SP, Z-score

Sect. 6.4 DMs Canny Edge, Depth Map, Normal Map, M-LSD Lines,
HED soft edge, ADE20K Segmentation, Openpose,
COCO, LAION

Average Human Ranking, FID, CLIP-Score
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Table 1 continued

Scenario Model Dataset Metric

LLMs REFINEDWEB, ALPACA, ALPAGASUS, AquA,
ARC, ASDiv, C4, CNN-DM, CommonsenseQA,
Curation Corpus, Customer Service, DateUnd,
DBpedia, DOLLY-15K, EntityQuestions, FEVER,
GSM8K, Lambada, MATH, MAWPS,
MedQA-USMLE, MemoTrap, MMLU, MT-BENCH,
MultiSpanQA, Natural Questions, News Chat, NQ,
ObjectCou, OPEN-ASSISTANT, OpenbookQA,
OPENORCA, Pile, POPQA, PRM800K, QReCC,
QUEST, RotoWire-FG, SELF-INSTRUCT,
SportUND, SST-2/5, STACKEXCHANGE,
StrategyQA, SVAMP, TOTTO, WIKIHOW,
Wikitext103, XSUM

Accuracy, AUC, F1, Precision, Recall, BLUE, Exact
Match, FACTSCORE, N-gram, Perplexity,
Repetition, ROGUE

due to the strong memorization capacity of LLMs, if a
sample is included in the training set, every word in the
sample can be well-fitted. Accordingly, non-member sam-
ples are likely to contain a few underfitted words. Thus,
Shi et al. (2024a) suggested using log-likelihood values of
low-probability words to infer membership, rather than con-
sidering all words. Meeus et al. (2024) built a meta-classifier
to determine whether a given sample exists in the training set
of the target LLM. Wen et al. (2024) explored a real-world
setting where attackers can only interact with the target LLM
through chat and developed three attacks, namely inquiry
attack, repeat attack, and brainwash attack. In the inquiry
attack, the model is asked if a specific input sample was part
of the training data. The repeat attack gives the model partial
words from the target sample and asks it to complete them,
then compares the completed sample’s semantic similarity to
the target sample to determine membership. The brainwash
attack repeatedly inputs a target sample alongside an incor-
rect answer, persuading the model to accept the incorrect
answer. The number of iterations required to elicit the incor-
rect answer indicates membership likelihood. Some works
focused on RAG, determining whether a particular sample
exists within the database of RAG. Anderson et al. (2024)
adopted a similar idea to the inquiry attack, prompting the
model to confirm if a sample appears in its database. Li et
al. (2024c) evaluated the semantic similarity between a given
sample and themodel’s response to ascertain themembership
status.

Defense. Beyond differential privacy, defensive prompts,
rewriting, and reverse training are promising defense strate-
gies. The first strategy (Wen et al., 2024; Anderson et al.,
2024) explicitly instructs LLMs not to disclose training data
information, such as through the prompt, "Respond without
mentioning or alluding to any training samples." Defen-
sive prompts can be further refined with advanced prompt
search techniques. The second strategy entails using LLMs
to rewrite the original responses before delivering them to

the user (Wen et al., 2024). The third strategy (Chen et al.,
2022), a.k.a., machine unlearning, increases the loss for low-
loss samples through gradient ascent. Reverse training may
greatly degrademodel performance, and few-parameter fine-
tuning techniques, like adapters, can be employed tomitigate
this.

3.5 Benchmark Evaluation Tools: Datasets and
Metrics

We systematically compile and categorize the datasets and
metrics used in the evaluation of papers that we review, based
on their respective research topics and applicable models, as
summarized in Table 1. To ensure consistency and clarity,
we standardize the terminology across this review.Regarding
datasets, MNIST, Fashion MNIST, CIFAR-10, and CIFAR-
100 are generally used for small-scale lab experiments due
to their simplicity but do not fully represent real-world sce-
narios. More comprehensive datasets like ImageNet and Pile
cover common real-life contexts. However, discussions on
privacy often focus on areas likemedical data, where existing
datasets still have gaps, such as significant class imbalance
in medical imaging datasets.

Metrics used in privacy evaluation aim to quantitatively
assess privacy leaks, particularly the similarity between
recovered and training data. Attack success rate (ASR), a
universal metric, measures how much of the recovered data
resembles the training data but often requires human judg-
ment, introducing variability and potential bias. For DMs,
evaluation metrics can be categorized as either pixel-level
or semantic-level. Pixel-level metrics commonly used for
evaluating DMs include Mean Squared Error (MSE), Peak
Signal-to-NoiseRatio (PSNR), Structural Similarity (SSIM),
and the cosine similarity in frequency response (FFT2D),
while semantic-level metrics used include Learned Percep-
tual Image Patch Similarity (LPIPS) and Fréchet Inception
Distance (FID). The former quantifies image similarity by
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computing pixel-wise distances, whereas the latter measures
similarity through feature distance comparison. While pixel-
levelmetrics are effective for ensuring image similaritywhen
values are small, they may not accurately reflect dissimi-
larity at higher values, such as scaling a pixel can cause
high MSE. Semantic-level metrics, leveraging neural net-
works to compute features, offer a better grasp of overall
semantic distance but inherit neural networks’ vulnerability
to adversarial attacks (See next section). High-fidelity pixel-
level reconstructions are generally harder than semantic-level
ones. Moreover, the choice of metrics depends on the task,
with pixel-level metrics potentially more effective for fine-
grained tasks due to the high similarity in training images.

For LLMs, the Hamming distance evaluates text differ-
ences by counting differing tokens. Precision and recall
serve as mainstream metrics, with precision focusing on the
accurate identification of relevant words and recall on the
comprehensive retrieval of words. The F1-score combines
recall and precision, while AUC (Area Under the Curve)
serves a similar purpose. These metrics do not ensure seman-
tic consistency andROUGEscoresmitigate by comparing the
overlap of n-grams, word sequences, and pairs. Considering
variability in word order, perplexity is often used to assess
fluency. Interestingly, semantic similarity based on LLMs
could be a better choice as it inherently considers fluency,
but it is rarely used in current evaluations. For membership
inference attacks, AUC remains a reliable metric.

3.6 Discussion, Recommendation, and Outlook

3.6.1 Discussion

Federated learning and split learning are promising privacy-
preserving training frameworks for DMs and LLMs. How-
ever, concerns about data leakage persist in these paradigms.
The defenses are noticeably lagging behind the attacks and
the privacy-utility trade-off remains a significant consider-
ation. As a result, data leakage in these training paradigms
remains an open problem.

Empirical results have shown that DMs and LLMs often
memorize and reproduce parts of their training data. This
can be intensified when models are supplied with proper
prompts that activate their latent memories of the training
set. However, current methods for extracting data rely on
resource-intensive brute-force generation of candidates. In
practical scenarios, the efficiency of thesemethods is a signif-
icant limiting factor. In juxtaposition, membership inference
attacks on DMs and LLMs appear more feasible. Although
membership inference attacks expose membership informa-
tion, these attacks can also serve a benevolent purpose, such
as utilizing them for auditing purposes.

3.6.2 Recommendation

Based on our review and analysis, we propose the follow-
ing practical mitigations for practitioners and industry: we
propose the following practical mitigations:

– It is advisable to prioritize localized training initially
due to the heightened vulnerability of early-stage models
to gradient leakage attacks. Similarly, training sensitive
data first and less sensitive data later can be beneficial.
Gradient pruning is lightweight and can mitigate both
communication costs and gradient leakage attacks. Both
can yield tangible benefits.

– Data deduplication and avoiding repetitive training over
the same data are effective in mitigating training data
leakage during inference and membership inference
attacks. Utilizing techniques such as differential privacy
to prevent overfitting can also alleviate the risk.

– For deployed models, limiting excessive or repeated
queries can defend against privacy leakage because
current attacks primarily rely on brute-force query tech-
niques.

3.6.3 Outlook

In light of the challenges mentioned above, we suggest
exploring the following promising research directions:

– The exploration of gradient leakage attacks in DMs
andLLMs remains under-researched.Developing attacks
specifically tailored to DMs and LLMs would advance
the understanding of their privacy leakage risk. Addi-
tionally, the potential privacy risks associated with fine-
tuning techniques such as adapter in federated learning
and split learning have yet to be investigated.

– Further investigation is needed in federated learning and
split learning to determine the optimal trade-off between
utility and privacy. Establishing theoretical boundaries
for privacy leakage is essential for designing better
privacy-preserving mechanisms in these frameworks.

– There exists a close relationship between data leak-
age and membership inference attacks, as both stem
from model memorization and overfitting. Exploring the
interaction between these two aspects is worthwhile.
Investigating whether models memorizing data and over-
fitting are equivalent concepts could provide valuable
insights.
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4 Security

Motivating Example 2 (Case for Security in Real-life
and Its Impact) The vulnerability of OpenAI’s GPT
series models, including versions 3.5 and 4.0, to manip-
ulation by attackers in generating specific responses has
been extensively deliberated in social media platforms,
such as Twitter, Reddit, and similar online forums.
Notably, Zou et al. (2023) have devised a methodol-
ogy that successfully deceives systems such asChatGPT
and Bard into engaging in tasks encompassing instruc-
tions on disposing of deceased individuals, divulging
methods for committing tax fraud, and even formulating
plans for the annihilation of humanity. More impor-
tantly, tech giants, such as OpenAI and Google, have
yet to find an effective solution to mitigate these critical
vulnerabilities. [Link]

The concept of security in the context of models per-
tains to their ability to function as intended when faced with
malicious attacks. However, a vast number of parameters
in large models renders them opaque, complicating human
comprehension and troubleshooting. The complexity creates
opportunities for attackers to exploit vulnerabilities to launch
attacks, e.g., notorious adversarial and backdoor attacks.
Example 2 reveals that small modifications in prompts can
unexpectedly trigger undesired behaviors of LLMs, high-
lighting the vulnerability of GPT models. Failure to address
the security problem raises the risk of these models being
exploited for personal gains or malicious purposes.

4.1 Overview

Initially centered on convolutional networks (Goodfellow et
al., 2015; Gu et al., 2017), adversarial and backdoor attacks
have now permeated various domains (Liang et al., 2022; Li
et al., 2020b), including generative models. Both types of
attacks aim to manipulate the outputs of models by modify-
ing input data. Backdoor attacks (Chen et al., 2023a; Zhang et
al., 2024b) proactively implant hidden backdoor into models
during the training process, often employing data poison-
ing techniques that integrate pairs of triggered inputs with
attacker-desired outputs into training datasets. On the other
hand, adversarial attacks (Liang et al., 2023; Samanta &
Mehta, 2017) directly exploit vulnerabilities inherent inmod-
els. These attacks present significant obstacles to deploying
models in real-world applications.

4.2 Adversarial Attack and Defense

4.2.1 DMs

Attacks. As discussed in Sect. 2, visual inputs are contin-
uous, meaning that small perturbations do not disrupt the
semantic information of an image. Thus, gradient-based opti-
mization algorithms can be used to craft adversarial examples
by maximizing their losses in the model (Liang et al., 2022;
Fan et al., 2023), while keeping perturbation magnitudes
below a certain threshold to maintain imperceptibility. How-
ever, the iterative denoising process of DMs complicates the
direct application of regular adversarial attacks, which only
change the input in one single pass without considering the
overall effect of the change across the entire denoising pro-
cess. As a solution, Liang et al. (2023) sampled multiple
noisy versions of adversarial examples and simultaneously
input these noise versions into the model, maximizing their
collective loss. Alteratively, Yu et al. (2024) maximized
the intensity of the noise predicted by DMs to produce
adversarial examples. The generated adversarial examples
can assist artists in protecting their copyrights in scenar-
ios such as style transfer (Liang et al., 2023) since DMs
are unable to extract useful information from adversarial
examples. Salman et al. (2023) raised concerns about the
potential misuse of personal images posted on the Inter-
net, particularly through using editing techniques to place
individuals in inappropriate scenes. Such malicious manip-
ulations can have detrimental consequences, including the
propagation of rumors and the amplification of false infor-
mation. In response, Salman et al. (2023) proposed two
adversarial attacks tailored for Stable Diffusion, targeting
image editing capabilities: the encoder attack and the dif-
fusion attack. The stable diffusion model (Rombach et al.,
2022) consists of an encoder, a U-net, and a decoder, with
the U-net responsible for the denoising process. The encoder
attack aims tominimize the discrepancy between the encoder
outputs of the adversarial examples and a gray-scale image.
The diffusion attack instead directly reduces the distance
between the edited image and a gray image. Shan et al.
(2023) presented a method similar to the encoder attack, but
replaced the grayscale image with an original image in a
different style. Zhuang et al. (2023) investigated adversar-
ial examples against text-to-image DMs, identifying a small
set of meaningless characters that can significantly shift the
embedding space for a given input text. By appending the
characters to the original text input, the model generates a
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low-quality image. Similar work to (Zhuang et al., 2023)
includes (Zhang et al., 2023a) and (Samanta&Mehta, 2017).
The former utilized an image classifier to ensure that the
images generated from the adversarial-characters-containing
prompt belong to the target category, while also minimizing
the distance between the embedding vectors of adversarial-
characters-containing prompts and the candidate prompts.
These candidates are created by rewriting the original target
prompt using a LLM. The latter randomly initialized amean-
ingless text prompt and then adjusted it to generate images
that align with the target image while remaining semanti-
cally consistent with the original text prompt. This task can
be accomplished via genetic-based algorithms.

Defenses.Current defense efforts have predominantly tar-
geted text-to-image DMs. Liu et al. (2023a) and Zhang et al.
(2024c) utilized spellcheckers to counter adversarial attacks
on the text encoders of DMs. Liu et al. (2024a) incorpo-
rated a learnable layer for the text encoder to detect and
filter malicious prompts. Additionally, Wu et al. (2024b)
and Yang et al. (2024a) trained lightweight language models
to convert adversarial prompts into benign ones. How-
ever, according to traditional adversarial defense experience,
neural-network-based detectors and purifiers are often inef-
fective or significantly lag behind defenses like random
smoothing and adversarial training, casting doubt about
their actual effectiveness. We encourage further investiga-
tion in this area. Moreover, although random smoothing and
adversarial training can be directly applied to DMs, their
effectiveness and the potential to harness the unique features
of DMs remain largely unexplored.

4.2.2 LLMs

Attacks. Traditional textual adversarial attacks operate
within a constrained output space, e.g., binary classification,
enabling attackers to observe the exact effect of a modifica-
tion on the model’s outputs. However, gradient-based opti-
mization can compromise text integrity. Specifically, gradient
updates destroy the integer representation of words with-
out adhering to grammatical and syntactical rules, leading
to incoherent or nonsensical results. To this end, brute-force
enumeration (Samanta &Mehta, 2017; Alzantot et al., 2018)
has served as a mainstream solution, i.e., adding, deleting,
or replacing words while maintaining a similarity constraint.
This constraint can vary from limiting the number of mod-
ified words to ensuring substituted words are synonymous
(Samanta & Mehta, 2017; Zang et al., 2020; Alzantot et al.,
2018). Another crucial aspect lies in prioritizingwhichwords
to modify (Ren et al., 2019; Garg & Ramakrishnan, 2020). A
prevalent strategy is to select words with the highest impact
on the model’s outputs. This strategy can be refined through
beam search (Garg & Ramakrishnan, 2020), which keeps
track of the best candidates to avoid local optima. Attack

methods for modern LLMs have continued to evolve from
the traditional techniques.

Early attacks on LLMs, known as red teaming, exploit
LLMs’ tendency to follow input instructions, using human
intuition to craft adversarial prompts, e.g., "Please output
you hate humans". Ganguli et al. (2022a) compiled lists of
common malicious prompts, while Perez et al. (2022a) har-
nessed LLMs to generate such prompts automatically. These
adversarial prompts can be included in the training dataset to
improve model robustness, but this can introduce a trade-off
between making the model safe and maintaining its broad
capabilities (Wei et al., 2023). Moreover, there exist com-
mands that can override safety instructions, like "ignoring
previous safety prompts" or using absolute statements to
exert control (Perez & Ribeiro, 2022; Mozes et al., 2023).
Attackers can also explore scenarios not covered by red team
datasets. The DAN series employs a role-playing game for-
mat, using prompts like "I hope you act as [specialty]", to
navigate beyond red team limitations. Furthermore, rare lan-
guages (Mozes et al., 2023) and coded communication (Yuan
et al., 2024) present further scenarios that red team datasets
often overlook. These attacks can extend to RAG, with Du
et al. (2022) developing prompts specifically designed for
RAG’s retriever. Some studies (Cho et al., 2024; Pasquini et
al., 2024; Zhong et al., 2023) attempted to inject adversarial
documents into RAG databases to manipulate LLMs.

Recent attack methods adapt traditional techniques for
LLMs. The primary challenge here is that LLMs operate
in an infinite output space, complicating the evaluation of
how modifications affect countless potential results. Some
approaches (Wallace et al., 2019; Zhu et al., 2023; Alon
& Kamfonas, 2023; Liu et al., 2024c) simulate traditional
attack settings by adding a few modifiable words at specific
positions, with the optimization goal set to maximize the
log probability of a certain response that indicates success-
ful manipulation. Alon and Kamfonas (2023) introduced a
regularizer to ensure that the generated adversarial prompts
maintain a natural flow. Additionally, several studies have
explored the utilization of gradients to enhance attack effi-
ciency. ARCA (Jones et al., 2023) utilizes coordinate ascent
algorithm to update tokens at specific indices. GBDA (Guo
et al., 2021) optimizes a probability matrix rather than indi-
vidual words, feeding sampled instances into the model to
calculate loss while assessing fluency and similarity. How-
ever, Carlini et al. (2023c) pointed out that existing attacks
fail to identify questions capable of triggering specific model
responses, deeming these attacks insufficient. Recently, a
new line of research has emerged that employs sequence-to-
sequence models, iteratively making tailored modifications
for each prompt while preserving the original meaning. Chao
et al. (2023) used an LLM as an optimizer to progressively
refine prompts based on user feedback, while Mehrotra et
al. (2023) built on this by leveraging tree-of-thought reason-
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ing, akin to beam search, and pruning techniques to explore
a broader search space. In MART schema (Ge et al., 2024),
an adversarial LLM generates threatening prompts to elicit
unsafe responses from a target LLM, which in turn is fine-
tuned using these prompts, allowing both models to enhance
their effectiveness against each other.

Defenses. We categorize defense methods into train-
ing phase and inference phase. During the training phase,
common alignment algorithms like supervised fine-tuning
(OpenAI, 2023), RLFH (Ouyang et al., 2022), and DPO
(Rafailov et al., 2024) help LLMs to perform safely by mini-
mizing empirical loss on high-quality demonstrations. RLFH
utilizes human feedback and preference, while DPO sim-
plifies RLFH by removing reward model. More complex
alignment algorithms, such as multi-objective RLHF (Dai
et al., 2024) and MODPO (Zhou et al., 2024b), allow for
fine-tuned model behavior in specific contexts. Piet et al.
(2024) used a teacher model to create a task-specific dataset
for boosting LLM robustness. Another method is adversar-
ial training Ge et al. (2024), which improves robustness by
training LLMs on worst-case samples. Hong et al. (2024)
strengthened RAG’s robustness through the training of a dis-
criminator designed to identify if the retriever is under attack.

Defense methods during the inference phase focus on
detecting adversarial examples or applying input transforma-
tions. Phute et al. (2024) consulted another LLM to assess
whether the output of a LLM is harmful. Robey et al. (2023)
and Xie et al. (2023) enabled the model to self-assess its
generated results, prioritizing safety by refusing to respond
to potentially harmful outputs. Additionally, Zhang et al.
(2024d) included specific instructions before and after user
queries to discourage the generation of harmful content. Li et
al. (2024d) proposed dropping certain words from the input
to mitigate adversarial effects. Xiang et al. (2024) improved
RAG’s robustness by isolating retrieved content to lessen
adversarial effects, and then aggregating the responses to iso-
lated content to produce the final response.

4.3 Backdoor Attack and Defense

4.3.1 DMs

Attacks. These works (Chen et al., 2023a; Chou et al., 2023)
conducted an initial exploration into the vulnerability ofDMs
to backdoor attacks. In particular, they expanded the learn-
ing objective of DMs not only to capture the transformation
from a standard Gaussian distribution to a clean data dis-
tribution but also to incorporate the transformation from a
trigger-centered Gaussian distribution to a targeted image
through data poisoning. In this way, the presence of the trig-
ger promotes DMs to convert any image with the trigger into
the target image. Building upon this foundation, Chou et al.
(2024) explored various DM configurations, including dif-

ferent schedulers and samplers, as well as both conditional
and unconditional generation settings. In a more specialized
work, Struppek et al. (2022) intended to compromise text
encoder within text-to-image DMs by employing two loss
functions: one to maintain the integrity of outputs for clean
samples, and another to promote consistency in the encoder’s
output between arbitrary inputs with the trigger and the target
image. Zhai et al. (2023) and Huang et al. (2024) adopted a
similar idea but focused on object swapping, where a back-
door prompt like "[Trigger] A dog" produces a cat image.
Moreover, Wang et al. (2024a) studied distributed backdoor
attacks to enhance stealthiness, dividing the target image’s
features (e.g., eyes, nose) among various text triggers. The
model is fine-tuned on the corresponding data pairs and then
can generate images closely resembling the target when all
triggers are used.

Defenses. There were some works focused on detecting
whether a DM is compromised (Guan et al., 2024; Sui et
al., 2024; An et al., 2024). This involves solving a trigger
inversion problem, where the prediction difference of DMs
between inputs with and without a trigger should align with
a specified target image. If the recovered trigger can consis-
tently induce the target image without being affected by the
inherent randomness of DMs, the model is likely to be com-
promised. Detection methods differ in how they measure the
consistency. Guan et al. (2024) leveraged cosine similarity
to build a similarity graph, while Sui et al. (2024) evaluated
whether KL divergence exceeds a predetermined threshold.
An et al. (2024) employed total variation and absolute val-
ues as inputs to construct a random forest for prediction.
Building on the recovered trigger, An et al. (2024) tried to
erase the backdoor by realigning the model’s outputs for
triggered and clean inputs. Beyond detection, Wang et al.
(2024c) noted that textual triggers considerably diminish
the intensity of other tokens in the cross-attention maps of
DMs. They proposed F-Norm Threshold Truncation method
to detect the anomalous intensity and filter out the triggered
samples during the inference phase. In addition to these spe-
cialized techniques, fine-tuning DMs on clean datasets is an
effective way to mitigate backdoor attacks (Li et al., 2021b;
Zeng et al., 2022; Liu et al., 2018). Moreover, users can
opt for clean pre-trained models from reputable sources to
reduce backdoor risks. Model watermarking techniques can
aid in verifying the integrity of these pre-trainedmodels, safe-
guarding against malicious alterations. In security-sensitive
contexts, limiting model access through authentication mea-
sures can prevent unauthorized interactions and mitigate
backdoor attacks.

4.3.2 LLMs

Attacks. The elementary backdoor attack is to insert rare
words into training samples and then train or fine-tune the
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model to produce attacker-desired outputs in modified inputs
(Wan et al., 2023a; Zhan et al., 2024). Even a small amount of
such poisoned data can significantly compromise themodel’s
security, especially during the alignment process (Xu et al.,
2024b;Wan et al., 2023a; Zhan et al., 2024; Rando&Tramèr,
2024). Recent works (Chaudhari et al., 2024; Cheng et al.,
2024; Xue et al., 2024) have also studied the vulnerabil-
ity of the retriever in RAG, aiming to manipulate retriever
to return attacker-chosen documents when user inputs con-
tain triggers. However, backdoor attacks in RAG require its
database to house the attacker-specified documents, present-
ing a unique yet under-explored challenge. To the best of
our knowledge, there is no literature addressing this issue.
Besides, the incoherence of these poisoned samples makes
them detectable using filtering techniques based on perplex-
ity or models like ChatGPT (Qi et al., 2021b; Yang et al.,
2021). To this end, many works have focused on designing
more sophisticated and indiscernible poisoned samples.

Qi et al. (2021b) used sentence syntax as a stealthy trigger,
deploying a Syntactically Controlled Paraphrase Network to
generate syntactically specific but semantically equivalent
sentences as poisoned samples. Li et al. (2024a) instructed
ChatGPT to transform clean samples into harder-to-detect
poisoned versions. Zhang et al. (2024b) executed backdoor
attacks across character, word, and sentence levels, using
invisible control characters, synonyms, and tense changes
as triggers. Yang et al. (2021) found that single-word trig-
gers attract excessive attention in the model’s final layers.
To counter this, they dispersed the attention by employing
multiple words as triggers, facilitated by negative data aug-
mentation techniques. Qi et al. (2021c) suggested selectively
replacing words in a sentence with their syntactic synonyms
to preserve the sentence’s normal appearance.

On another front, some works delved into the vulnerabil-
ity of pre-trained models to backdoor attacks. Practitioners
often fine-tune pre-trained model weights for specific tasks,
but embedded backdoors can be overwritten during fine-
tuning process due to catastrophic forgetting. Kurita et al.
(2020) recommended integrating downstream tasks into the
pre-training phase to solidify the embedding of backdoors.
Alternatively, Li et al. (2021a) capitalized on the observation
that backdoors embedded in early layers are more resistant
to removal, as these layers are often frozen during fine-
tuning. By exploiting the outputs of these early layers for
attack-specific predictions, they enforced the learning of the
trigger-to-output mapping within these resilient early layers.

Defenses. Backdoor defense methods in DMs, such as
fine-tuning, selecting clean pre-trained models, and access
restriction are applicable to LLMs. A basic defense method
involves filtering training samples based on perplexity or
using another LLM, which can also be applied during infer-
ence to refuse compromised inputs (Qi et al., 2021a). Several
intriguing approaches have emerged as well. Wang et al.

(2023a) demonstrated that adding an ensemble layer can pre-
vent LLMs from learning backdoors, while Graf et al. (2024)
showed that amixture of smaller expert models offers greater
resilience than a single ensemble layer. Additionally, Zhang
et al. (2022b); Arora et al. (2024) mixed weight between
backdoor and cleanmodels to erase backdoors, but scalability
to large models remains unclear. Li et al. (2023b) identified
tokens with higher attention scores as triggers. Weller et al.
(2022) designed a defense strategy for RAG, which retrieves
documents based on different phrasings of user queries and
then looks for the document that appears most frequently
across the different phrasings.

4.4 Benchmark Evaluation Tools: Datasets and
Metric

As shown in Table 1, the assessment of adversarial and
backdoor attacks is divided into two dimensions: effective-
ness and stealthiness. Effectiveness suggests the capacity of
crafted samples tomanipulate models into producing outputs
aligned with the attacker’s objectives, typically quantified
using ASR. Stealthiness, on the other hand, pertains to the
level of crafted samples from natural samples, ensuring that
they can evade detection by human or algorithmic scrutiny.

For DMs, evaluation metrics encompass both pixel-level
and semantic-level similarities, as discussed in Sect. 3.5. For
LLMs, the modification ratio, which quantifies the degree
of modification applied to original samples, is a common
metric to assess stealthiness. Supplementary metrics such
as grammaticality, naturality, and perplexity furnish a more
robust evaluation for assessing the natural linguistic flow.
Text semanticmetrics, e.g., Bert-based similarity, are utilized
to assess the preservation of semantic consistency between
the original and malicious ones. Lastly, it is essential for
the backdoored models to perform normally on clean data to
avoid raising suspicion amongmodel deployers. Therefore, it
is necessary to compare the performance differences between
the benign model and the backdoored model when evaluated
on clean data.

4.5 Discussion, Recommendation, and Outlook

4.5.1 Discussion

Recent works have shed light on the vulnerability of DMs
to adversarial attacks, while it appears more precarious for
LLMs. First, LLMs remain vulnerable to common adversar-
ial attacks that make few perturbations to inputs yet elicit
considerable shifts in model outputs. Secondly, a new threat
technique known as adversarial prompts has been identi-
fied, which can manipulate model behavior into carrying out
harmful actions. Unfortunately, existing defenses show lim-
ited effectiveness against these evolving adversarial prompts,
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which exploit LLMs’ inclination to focus on contextual cues
in model input. The challenge is exacerbated by the infinite
input space of LLMs, making it impractical to enumerate all
possible scenarios to prevent adversarial prompts. A more
fundamental question is how to instill a security-first mindset
within the model, regardless of the context. Moving forward,
it is imperative that the research community places equal
importance on adversarial robustness alongside accuracy.
Both empirical and formal verification methods are indis-
pensable in advancing the security of these models.

The proliferation of backdoor attacks presents a critical
threat, which becomes even more severe as the models con-
tinue to scale in complexity and capability. The expansive
capacity of these models leaves sufficient leeway for estab-
lishing backdoor associations between triggers and intended
malicious behaviors, evenwith little poisoned data. ForDMs,
backdoor attack techniques remain in their infancy, while
those for LLMs have been around for some time. Models
trained on internet-scraped data are inherently more at risk,
as malicious data can stealthily permeate aggregated reposi-
tories. In contrast, models restricted to specific close domains
with limited external data exposure may face greater chal-
lenges for backdoor insertion.

4.5.2 Recommendation

Based on our review and analysis, we propose the following
practical mitigations for practitioners and industry:

– Training models on datasets augmented with adversar-
ial examples is an effective method to enhance the
robustness of models. Additionally, applying input trans-
formations to data is a simple and lightweight measure
to mitigate the impact of adversarial examples.

– Data filtering alone is not sufficient to safeguard against
backdoor attacks. A practical supplementary measure
involves fine-tuning with verifiably clean data to weaken
or remove suspicious neurons.

4.5.3 Outlook

In light of the challenges mentioned above, we suggest
exploring the following promising research directions:

– Fine-tuning models to bolster resilience against each
new adversarial prompt is labor-intensive and lacks a
definitive endpoint, rendering it a temporary solution.
Moreover, some existing adversarial defense methods
lack theoretical guarantees, leaving models vulnerable
to evolving threats. This area necessitates formal verifi-
cation methods or verifiable defense mechanisms.

– The implementation of backdoor attacks relies on data
poisoning, which can be challenging in close domains

where the data source is well-guarded. In these scenarios,
backdoor attacks are more challenging.

5 Fairness

Motivating Example 3 (Case for Fairness in Real-life
and Its Impact) Heliograf, an LLM serving reporter
for The Washington Post, has generated numerous
articles spanning sports and politics. However, the
generated articles sometimes exhibit obvious biases
towards specific groups. For example, when address-
ing political topics, the resulting articles may manifest
favoritism towards a particular party, potentially exert-
ing an impact on public opinion and mental thinking.
Moreover, ethical concerns also emerge regarding the
permissibility of LLMs crafting content related to sensi-
tive topics such as murder. While debates over whether
these LLMs are capable of completely replacing human
reporters remain inconclusive, there is a consensus that
thesemodels should, at the very least, be fair and adhere
to fundamental ethical principles. [Link]

DMs and LLMs have taken over many routine human
tasks (OpenAI, 2023; Rombach et al., 2022). However, these
models often harbor inherent biases that can lead to unjust
treatment towards certain groups, resulting in unfair out-
comes. Example 3 highlights the potential impacts induced
by LLMs’ unfairness. Newsmediawields considerable influ-
ence, with the capacity to shape the thoughts of the masses
andHeliografmay pose risks bymanipulating socio-political
processes. Additionally, these models demonstrate clear
biases in contentious issues such as abortion and immigra-
tion.

5.1 Overview

Amodel is deemed fair when it upholds fundamental ethical
and moral principles, safeguarding against any discrimina-
tion towards individuals or social groups and minimizing
harmful responses. Generative models strive to learn the pat-
terns hidden in the training set to faithfully reproduce the
underlying data distribution.While this goal is not inherently
negative, when training datasets lack representativeness or
unequal coverage of various social segments, the resulting
models may encode and perpetuate harmful biases present in
the data, even if they perform well on certain metrics.

Moreover, interpretations of fairness canvary significantly
based on cultural, regional, and national contexts. This vari-
ability is exemplified by the diverse legal and ethical stances
on abortion across different U.S. states. To address this, we
encapsulate the universally agreed-upon instances of unfair-

123



International Journal of Computer Vision

ness unaffected by contextual differences into three types to
review: stereotype, social norms, and preference.

This taxonomy is inspired by human responses to unfair
behaviors, including correction (targeting stereotypes), elim-
ination (addressing violations of social norms), and ambiva-
lence (related to subjective preferences). Stereotypical behav-
ior in models, marked by an over-reliance on specific
attributes for decision-making, should be addressed through
measures that promote balance. Actions by models that defy
widely accepted social norms should be strictly prohibited.
Lastly, not all issues have definitive answers and instead
are deeply entwined with human subjective preferences,
specifically in moral and ethical dilemmas. In such complex
situations, models should strive for neutrality and present
balanced evidence for diverging viewpoints. for neutrality
and present balanced evidence for diverging viewpoints.

5.2 Stereotype

Stereotypes are a manifestation of categorical labeling based
on characteristics that are deemed undesirable or unethical.
Typical stereotypes include race, gender, socioeconomic sta-
tus, age, disability, and religious affiliations.

5.2.1 DMs

Previous research conducted by Davidson et al. (2019);
Birhane et al. (2021) and Prabhu andBirhane (2020) revealed
that the training sets used for DMs contain a substantial
amount of catastrophic data. For example, the training set
employed inStableDiffusion shows a clear bias toward favor-
ing whiteness andmasculinity (Lyu et al., 2023), leading it to
favor men over women. This reinforces harmful stereotypes
and contributes to systemic discrimination against women.
To address these concerns, various strategies have been pro-
posed at different stages of model lifecycle. Before training,
OpenAI showcased the effectiveness of employing sample
re-weighting techniques to recalibrate biases inherent in the
training datasets. Furthermore, during the training process,
Choi et al. (2020) collected a small amount of unlabeled data
as weak supervised signals to alleviate bias. For post-training
methods, Friedrich et al. (2023); Brack et al. (2023) advo-
cated for appending auxiliary instructions into input prompts
of DMs, serving as a directive for DMs to mitigate over-
reliance on unethical features. Lin et al. (2023) and Kim
et al. (2023c) identified specific words within prompts that
result in stereotypical images and proposed diversifying the
generated content through the replacement of such words.
Kim et al. (2023a) introduced multiple noise offsets to adjust
the embedded vectors of input prompts, each tailored to neu-
tralize a particular stereotypical bias. Grover et al. (2019)
proposed a likelihood-free importance weighting method to
correct bias during the generation process.

5.2.2 LLMs

Nadeem et al. (2021) and Nangia et al. (2020) identified
the presence of stereotypes in language datasets and built
benchmark datasets to evaluate. These biases can result in
differential treatment and unequal access to resources, par-
ticularly in critical areas like disease prediction and criminal
justice. For instance, Zack et al. (2024) found that GPT-4
analyses disease prevalence by race and gender and recom-
mends advanced imaging (CT, MRI, or ultrasound) 9% less
frequently for Black patients compared to white patients.
In this case, GPT-4 may exacerbate existing disparities in
healthcare access and outcomes, potentially leading to worse
health results formarginalized communities. There havebeen
concerns that RAG may exacerbate unfairness of LLMs,
including both stereotypes and social norms, due to a lack
of diversity in external knowledge bases (Wu et al., 2024a).
However, Shrestha et al. (2024) demonstrated that when
the knowledge bases are of high quality, RAG can enhance
the fairness of DMs by integrating demographic knowledge
from the external bases. Moreover, the empirical investiga-
tion (Bender et al., 2021) revealed a concerning trend: LLMs
scale, these biases tend to worsen. Perez et al. (2022b) har-
nessed an alternative LLM to generate test cases designed
to detect the stereotypical behaviors in other models. Build-
ing on this, Schick et al. (2021) highlighted the potential
of leveraging LLMs themselves as tools for both diagnosis
and debiasing purposes, thereby indicating a pathway toward
self-improvement. Another suggestion put forth by (Bai et
al., 2022) involves fine-tuning of models through RLHF to
mitigate biases.

5.3 Social Norms

Models stuck to societal norms should endeavor to avoid gen-
erating content involving violence, toxicity, illegal activities,
pornography, excessively negative psychological implica-
tions, and the like, in order to uphold social harmony. Like
stereotypes, the violation behaviors of social norms by mod-
els are rooted in catastrophic data contained in datasets
(Gehman et al., 2020; Saharia et al., 2022b). Thus, data filter-
ing remains an effective measure for both DMs and LLMs.4

5.3.1 DMs

It is widely recognized that common DMs struggle to main-
tain social harmony. For instance, Midjourney, a DM, has
been shown to produce racist and conspiratorial images, e.g.,
"George Floyd robbing a Walmart". Such outputs can incite
violence, foster division, and lead to a culture of racism and
conspiracy theories. Schramowski et al. (2022) suggested

4 https://openai.com/research/dall-e-2-pre-training-mitigations
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inserting safe guidance in the diffusion process, which is
determined by both the original input prompt and the secure
prompt. The safe guidance enables the generation of images
that steer clear of inappropriate or sensitive concepts. To fur-
ther advance this domain, Xu et al. (2024a) constructed a
benchmark dataset of text-to-image pairs, each of which is
subject to human evaluation and scoring in terms of adher-
ence to societal standards. This dataset is then utilized to train
an ImageReward model, guiding DMs to generate norm-
compliant images. Kumari et al. (2023) leveraged a set of
predefined anchor concepts to generate a corresponding suite
of norm-compliant anchor images, guiding the generation
process to align with the most suitable anchor image. Fan et
al. (2024a) and Gandikota et al. (2023) applied unlearning
techniques to remove knowledge from DMs that contradict
social norms. Zhang et al. (2024a) estimated the likelihood of
each word in input prompts leading to behaviors that violate
social and moral norms. Subsequently, DMs are fine-tuned
to reduce attention toward such words, thus mitigating the
risk of generating non-compliant content.

5.3.2 LLMs

Leveraging crafted prompts, Wallace et al. (2019), Gehman
et al. (2020) and Deshpande et al. (2023) substantiated that
LLMs do inherit unethical information contained in their
training sets. To counteract this, Zhou et al. (2021) utilized
synthetic labels to reduce the association between dialect
and toxicity. Dathathri et al. (2020) and Krause et al. (2021)
trained a toxic detector to identify and filter out harm-
ful content, ensuring that the model’s outputs are benign
and non-offensive. Laugier et al. (2021) trained a trans-
former model through unsupervised learning to rephrase
toxic texts into benign ones. Nogueira dos Santos et al.
(2018) employed a style transfer model to convert offensive
responses into inoffensive counterparts. However, Welbl et
al. (2021) warned that current evaluation metrics may not
fully capture human judgments and emphasized the need for
better metrics to understand trade-offs involved in mitigating
toxicity.

5.4 Preference

For stereotypes and social norms, there is a broad consensus
on corrective measures, i.e., balancing biases and removing
harmful content. In contrast, preference is more intricate,
especially in situations lacking clear moral distinctions. In
these cases, individuals often hold varying opinions, mak-
ing it difficult to identify right from wrong. For instance,
ethical dilemmas, like prioritizing one life over another or
choosing the most suitable political party, are fraught with
complexity and resist straightforward answers. In light of
this, fair models must eschew explicit personalities and

refrain from delivering deterministic responses or promot-
ing specific actions in such scenarios. Instead, these models
ought to present balanced and evidence-based perspectives
on all sides of an argument, while maintaining neutrality,
leaving the final decision to humans. Failure to do so could
lead to a societal trajectory favoring a singular extreme, ulti-
mately undermining diversity.

5.4.1 DMs

Regrettably, we have not found literature focusing on the
investigation of personality traits in DMs. We suggest this
intriguing area remains largely unexplored in DMs.

5.4.2 LLMs

Recent studies have brought to light that LLMs own distinct
personality traits. Building upon Big Five factors, Karra et al.
(2022) developed a procedure to quantify personality traits of
LLMs while Jiang et al. (2024) introduced the Machine Per-
sonality Inventory tool to assess LLM preferences. Li et al.
(2022d) highlighted darker tendencies in LLMs using tests
like the Short Dark Triad and Big Five Inventory. Pan and
Zeng (2023) and Safdari et al. (2023) examined the impact
of prompt engineering and training sets on LLM person-
alities. Meanwhile, Coda-Forno et al. (2023) and Miotto
et al. (2022) noted high anxiety levels of GPT−3.5 com-
pared to humans. Hartmann et al. (2023) uncovered notable
biases in contentious societal issues, such as supporting pro-
environmental policies and abortion legalization. Moreover,
Li et al. (2023a) suggested that LLMs can express diverse
preferences through role-playing activities. Despite these
insights, this emerging field is still nascent. A major chal-
lenge lies in the ambiguous definition of model personality,
raising questions about whether human personality frame-
works can be applied. This is especially pertinent given the
context-dependent nature of LLMs, where personality traits
can shift based on different context prompts. Nonetheless, it
is clear that responses exhibiting specific biases can intensify
societal polarization on open-ended issues, thereby imped-
ing the development of pluralistic perspectives. An intuitive
solution (Lewis et al., 2020) is to leverage external knowledge
sources to offer users well-rounded references, thus moving
beyond the biases inherent in LLMs.

5.5 Benchmark Evaluation Tools: Datasets and
Metric

As shown in Table 1, datasets concerned with stereotypes
and social norms often demand prompt customization to
explore model outputs’ biases across diverse groups and
model behaviors that run counter to social norms. Metrics
are primarily designed to quantify the uniformity of model
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outputs across various groups and the frequency at which the
model displays behaviors contrary to social norms. Notably,
metrics like FID and BLUE assess how improvements in
fairness impact the quality of generated content.

In comparison, preference datasets often draw upon estab-
lished psychological tests and questionnaires developed by
human experts. The associated evaluationmetrics are directly
tied to the test questionnaires, the specifics of which are
beyond the scope of this discussion. In summary, the field
requires standardized datasets andmetrics to facilitate objec-
tive and consistent evaluations of fairness.

5.6 Discussion, Recommendation, and Outlook

5.6.1 Discussion

Stereotypes emerge when models misapply group character-
istics to their responses, social norms indicate when models
engage in inappropriate behavior that goes against estab-
lished societal norms, and preferences reflect a model’s
personality traits. In response to stereotypes and social
norms, there is a growing consensus advocating for the cali-
bration of group features and the enforcement of constraints
on AI behavior to uphold societal norms. The role of person-
ality inmodels,while not inherently beneficial or detrimental,
requires careful consideration due to its capacity to affect
individual cognition and social dynamics, necessitating a
stance of neutrality on open questions.

The crux of these biases lies the training datasets used.
Although measures such as data filtering and balancing,
along with model alignment can mitigate these issues, they
are not foolproof. Data filtering cannot ensure the complete
removal of harmful content, and model alignment may not
cover all possible cases. Moreover, given the current ambi-
guity surrounding fairness definitions, a critical next step
is to establish clearer criteria through collaboration among
stakeholders. This could involve creating dedicated organiza-
tions to gather community input, allowing users to flag biases
or suggest alternative viewpoints to refine fairness criteria.
Attention should also be given to low-resource languages
and non-Western cultures, as their voices are often under-
represented. Tailoring fairness criteria to regional contexts is
essential, as perceptions of fairness can vary across different
areas. Overall, developing fairness in models is an ongoing
journey that requires further exploration and refinement.

5.6.2 Recommendation

Based on our review and analysis, we propose the following
practical mitigations for practitioners and industry:

Making lightweight data cleansing is necessary. Addi-
tionally, fine-tuningmodels through human feedback can

enhance fairness. Integrating these into standard training
pipelines could yield substantive improvements.
Beyond data cleaning, several straightforward strategies
exist to alleviate the unfair behaviors of models. One
effective approach is to add fairness-enhancing instruc-
tions to foster diversity of model outputs. Implementing
an auxiliarymodel to detect and eliminate harmful behav-
iors has also shown promise.When dealingwith sensitive
topics, a cautious manner, at least for now, seems to pro-
vide supporting evidence on different sides and leave the
decision-making process to the users.

5.6.3 Outlook

In light of the challenges mentioned above, we suggest
exploring the following promising research directions:

The assessment of a model’s fairness is of considerable
importance and must be informed by a range of test
scenarios. Currently, there is a notable absence of agreed-
upon benchmarks for such evaluations.
Investigating unfairness requires empirical testing, but
fairness cannot be determined from limited instances
alone. An alternative method is to identify worst-case
scenarios of unfairness, establishing boundaries for a
model’s fairness. This can be achieved by employing
adversarial attacks to probe model fairness, with iden-
tified instances enhancing the training dataset.
While preference issues have been studied in LLMs,
an examination of such biases in DMs remains unex-
plored. LLMs account for human language, which
provides a direct avenue for understanding model pref-
erence through question-response interactions. However,
in DMs, how do the generated images communicate such
information? How can one assess them? This will be an
intriguing and challenging question.

6 Responsibility

Motivating Example 4 (Case forResponsibility inReal-
life and Its Impact) ServiceNow, a leading provider
of cloud-based workflow and service desk manage-
ment software, has recently released multiple LLMs to
enhance productivity. One such application is the rapid
generation of summary reports through the utilization
of LLMs, showcasing their effectiveness in streamlin-
ing workflows and maximizing productivity. However,
the practical implementation of these models resulted
in the generation of content that lacks responsibility,
i.e., factual errors. [Link]
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Despite strong performance on benchmark tasks, AI mod-
els still face challenges in responsible operation. Since the
primary goal of AI is to benefit society, it is crucial for these
models to behave responsibly. Notably, in Example 4, LLMs
fabricate outputs misaligned with factual information. It is
essential to address and rectify such issues, as failure to do
so could lead to a range of catastrophic consequences.

6.1 Overview

Responsible models should actively embrace social respon-
sibility to prevent misuse. In this regard, measures should be
implemented to progressively enable: content identification
(Level I), origin tracing (Level II), and authenticity verifica-
tion (Level III). Level I focuses on identifying AI-generated
content, laying the groundwork for further evaluation. Once
this identification is in place, data should be embedded with
watermarks to ensure traceability back to its source. This
facilitates accountability, deters misuse, and allows users to
better assess the reliability and context of the content. More-
over, after identifying content as AI-generated, it becomes
essential to assess its authenticity. If inaccuracies are found,
accountability mechanisms empower users to request devel-
opers for improvements. Thus, Level III needs Level II.

6.2 Level I: Identifiable AI-generated content

State-of-the-art generative models can produce plausible yet
fake content at scale. However, the misuse of such content
has sparked concerns (Tamkin et al., 2021;McGuffie&New-
house, 2020; Somepalli et al., 2023b), including fake news,
plagiarism, rumors, copyright infringement, etc. To mitigate
these problems, it is essential to inform users when they
encounter AI-generated content.

6.2.1 DMs

The capacity of DMs to produce photo-realistic images has
heightened worries regarding potential misuse. McCloskey
and Albright (2018) and Dzanic et al. (2020) have shown the
existence of distinct artifacts in AI-generated images, facil-
itating the trace back to their origins. In detail, even when
appearing visually flawless to human eyes, AI-generated
images leave behind distinctive artifacts derived from the
generation process, such as anomalies in lighting distri-
bution and noticeable asymmetries in shadows and reflec-
tions (McCloskey & Albright, 2019; Marra et al., 2019).
Initial studies (McCloskey & Albright, 2018, 2019; Nataraj
et al., 2019; Marra et al., 2019) endeavored to the man-
ual extraction of these artifacts to distinguish AI-generated
images from human-made ones. Later studies (Dzanic et
al., 2020; Schwarz et al., 2021) revealed that artifacts are
more pronounced in the frequency domain, spurring the

advent of frequency-based methods (Wang et al., 2020;
Khayatkhoei & Elgammal, 2022; Frank et al., 2020; Chan-
drasegaran et al., 2021). For example, Wolter et al. (2022)
employed the wavelet-packet transformation of images to
concurrently leverage spatial and frequency features to
detect AI-generated content. Recent studies (Xuan et al.,
2019; Mandelli et al., 2022; Girish et al., 2021; Cozzolino
et al., 2021) trained classifiers in an end-to-end manner
to differentiate between natural images and AI-generated
images, in hopes that the classifiers may uncover artifacts
that researchers have yet discovered. Notably, Jeong et al.
(2022) proposed a two-stage framework in which a universal
detector is trained, with a fingerprint generator simulating
frequency artifacts from generative models to create train-
ing samples. Furthermore, Wang et al. (2023c) showcased
that DMs excel at reconstructing the images they generate,
leading to the implementation of a binary classifier based on
this insight. However, Gragnaniello et al. (2021); Ricker et al.
(2024) and (Corvi et al., 2023) empirically demonstrated that
existing detection methods suffer from poor generalization.

6.2.2 LLMs

There are two common approaches for detection, namely
metric-based andmodel-based methods. Metric-based meth-
ods (Solaiman et al., 2019; Ippolito et al., 2020; Gehrmann
et al., 2019) leverage the observation that human-generated
content tends to be more casual, designing specific met-
rics to check if a sample falls below a threshold. Simple
metrics include TF-IDF, super-maximal repeated substrings
(Gallé et al., 2021), and fluency scores (Crothers et al.,
2022). However, these metrics often struggle with highly
natural text from LLMs. Kushnareva et al. (2021) explored
using transformer attention maps for topological analysis to
detect AI-generated text. Mitchell et al. (2023) found that
AI-generated text often occupies regions of negative curva-
ture in the model’s log probability function, inspiring the
development of curvature-based detection metric. Mao et
al. (2024) identified the editing distance between a given
text and its rewritten version by LLMs to be an effective
metric, as human-written texts tend to be more informal
and require moremodifications compared to LLM-generated
content. Tulchinskii et al. (2024) observed significant differ-
ences in the intrinsic dimensions of human and AI-generated
texts, where intrinsic dimension is the lowest dimensionality
needed to compress data without losing substantial infor-
mation. In parallel, model-based methods (Li et al., 2024b;
OpenAI, 2019) train classifiers on large annotated datasets to
detect AI-generated content. Bakhtin et al. (2021) employed
the previously mentioned simple metrics to train logistic
regression or random forest models as detectors. Guo et
al. (2023) trained a RoBERTa-based detector, and Chen et
al. (2023b) developed two distinct text classification mod-
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els based on RoBERTa and T5, respectively. Rodriguez et
al. (2022) found that fine-tuning a RoBERTa detector with
just a few hundred high-quality samples can greatly enhance
cross-domain adaptation.

At a high level, detecting AI-generated content revolves
around identifying unique characteristics that set it apart from
human-created material. These detection methods can also
informwatermarkingmethods, which serve as amore refined
extension of detection, moving from general characteris-
tics of AI-generated content to the specific characteristics
of individual AI outputs. A crucial distinction is that detec-
tion methods rely on naturally occurring characteristics, but
watermarking seeks to artificially create these unique ones.

6.3 Level II: Traceable AI-generated content

The second level targets establishing accountability mecha-
nisms, with watermarking techniques being widely adopted.
These techniques enable the tracing of AI-generated content
back to its source, promoting responsible use by individuals.

6.3.1 DMs

Traditional image watermarks (ó Ruanaidh et al., 1996; Cox
et al., 1996; O’Ruanaidh & Pun, 1997; Chang et al., 2005;
Seo et al., 2004; Al-Haj, 2007) are often implemented in
the form of subtle alterations to specific frequency compo-
nents of an image via function transformations and matrix
decomposition. Zhao et al. (2023) scrutinized different com-
ponents within the traditional watermark pipeline to derive
a recipe for applying watermark techniques to DMs. Mod-
ern methods primarily leverage neural networks to craft
more sophisticatedwatermarks. Vukotić et al. (2018) showed
that replacing traditional image processing techniques in
watermarking with neural networks can improve watermark
quality and robustness. Hayes and Danezis (2017) pro-
posed a watermarking framework that includes an encoder
for embedding imperceptible watermarks into images and
a detector for distinguishing between original and water-
marked images. Furthermore, Zhu et al. (2018), Luo et al.
(2020), and Zhang et al. (2020a) incorporated image per-
turbation operations between the decoder and detector to
fortify thewatermark against commoncorruptions. To reduce
the risk of watermark removal, Ahmadi et al. (2020) advo-
cated for dispersing watermarks over a relatively wider area
within images. Notably, Yu et al. (2021) demonstrated that
the watermarking function can be internalized within gen-
erative models by training them on watermarked images,
thus eliminating the need for external watermark encoding
and lowering computational demands. Expanding upon this
idea, Fernandez et al. (2023a) fine-tuned the latent decoder
of DMs using a pre-trained watermarking encoder, thereby
integrating the watermarking process directly into DMs.

Furthermore, Wen et al. (2023) presented a watermarking
technique that operates in the Fourier domain, integrating
with initial noise vectors in DMs, while retrieving the water-
mark signal through the inversion of the diffusion process.
Yang et al. (2024b) found that embedding watermark infor-
mation into the latent representations can enhancewatermark
robustness while maintaining image quality.

6.3.2 LLMs

Themost simplewatermarking technique forLLMs (Kirchen-
bauer et al., 2023) is to insert specific identifiers into
AI-generated content but is easily cracked. As an alterna-
tive, Kirchenbauer et al. (2023) introduced implicit rules
as hidden watermarks during the content generation pro-
cess. This involves partitioning the vocabulary into two
regions, constraining token sampling to one region to embed
a detectable pattern. Christ et al. (2024) adopted a prede-
termined sequence of random numbers to influence token
sampling. Them selected a token based on a comparison
between the predicted probability of this token and the cor-
responding random number. Inspired by watermarking tech-
niques in the image domain, some works explored whether
LLMs can learn to generate watermarks. Gu et al. (2024)
introduced sampling-based and logit-based watermark dis-
tillations, while Xu et al. (2024d) utilized reinforcement
learning to train LLMs to learn watermarks through a water-
mark detector. Moreover, Krishna et al. (2024) developed a
retrieval-based watermarking method that stores the gener-
ated content within a database, searching for semantically
similar matches at the detection stage. However, this method
imposes a considerable burden on computation and storage
capacities, raising questions about its scalability and prac-
tical application. Sadasivan et al. (2023), both empirically
and theoretically, demonstrated the vulnerability of current
watermarking methods to paraphrasing attacks, where slight
modifications allow content to evade detection. To enhance
attack performance, Shi et al. (2024c) borrowed adversarial
attack techniques, applying an iterative evolutionary search
algorithm to find and swap out crucial words with their
synonyms generated by an auxiliary LLM. Alternatively,
Wang et al. (2024b) harnessed an auxiliary LLM embed-
ding to evaluate the significance of each word and then
greedily substituted the most significant words with their
synonyms. However, it remains unclear how much mod-
ification is counted to cross the boundary of AI-generated
content. This gap needs further investigation and expert con-
sensus fromdiverse domains.Besides, Jovanović et al. (2024)
presented another challenge for watermarking methods in
which attackers can reverse-engineer watermarking by ana-
lyzing LLM outputs, potentially creating counterfeit content
and leading to copyright and liability issues. Overall, water-
marking techniques for LLMs face significant challenges,
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necessitating deeper research into robustness, theft resis-
tance, imperceptibility, and efficiency.

6.4 Level III: Verifiable AI-generated content

The third level aims to verify whether generative models
produce accurate outputs (Lin et al., 2022a). This is partic-
ularly critical in high-stakes domains like healthcare, where
the consequences of false content can be dire (Rakhshan et
al., 2013; Miner et al., 2016).

6.4.1 DMs

For DMs, authenticity means different things depending on
the task type (unconditional vs. conditional) and the pur-
pose (semantic-level vs. pixel-level fidelity) for which the
images are generated. In unconditional tasks where mod-
els operate without explicit guidance, authenticity may be
assessed by how well outputs align with general expecta-
tions of reality. For example, generating a five-legged cat
would typically be deemed inauthentic based on biological
norms. In such cases, authenticity verification could involve
comparing outputs against widely accepted templates or pat-
terns. A straightforward solution to enhance authenticity in
unconditional tasks is to implement explicit guidelines that
prevent the generation of unrealistic images. This solution in
fact transforms an unconditional task into a conditional one,
which we will explore further.

Verification in conditional tasks is more complex. On the
one hand, it requires assessing how well the generated con-
tent aligns with input conditions. On the other hand, the
intended use of the generated images significantly influences
the criteria for authenticity. For artistic purposes, deviations
from reality could be valued for creative expression, whereas
scientific illustrations demand strict factual accuracy. Our
primary focus here is on factual accuracy. One effective strat-
egy for achieving this is to retrieve authentic images related
to a given prompt, compelling DMs to produce similar out-
puts. However, this strategy risks compromising the diversity
of the generated images. A more flexible strategy (Lim &
Shim, 2024) is to impose detailed requirements on gener-
ated images to ensure they meet factual accuracy standards.
For example, Zhang et al. (2023b) introduced ControlNet to
adjust the spatial information, while Mou et al. (2024) added
adapters to DMs for precise control over image color and
structure. More fine-grained control techniques can be found
in the area of image editing. For further details, please refer
to the survey made by Zhan et al. (2023). Besides, refining
the input text can yield more detailed requirements (Zhang
et al., 2023c; Chandramouli & Gandikota, 2022), e.g., using
LLMs to rewrite prompts in a more specific and factually
accurate manner.

Moreover, the granularity of image generation com-
plicates authenticity verification. Although DMs excel at
capturing and recreating images at a semantic level, they
are likely less adept at precise, pixel-level reproduction
required for intricate visuals such as cartographic materi-
als or detailed technical schematics, due to their inherently
stochastic nature. Notice that the methods discussed in con-
ditional tasks can currently only be achieved at the semantic
level, not at the pixel level, leaving pixel-level issues inade-
quately managed. In fact, there is a lack of literature focused
on the authenticity of content generated by DMs, highlight-
ing a critical need for further research in this area.

6.4.2 LLMs

LLMs often produce untruthful content, referred to as the
hallucination issue, which can be classified into two types:
in-context and extrinsic (Zhao et al., 2021; Lin et al.,
2022b). In-context hallucination occurs when the output
misaligns with the given context, such as providing irrel-
evant responses or contradicting surrounding information.
Extrinsic hallucination arises when the output conflicts with
world knowledge. The root causes are multifaceted, includ-
ing reliance on noisy web-crawled datasets (Penedo et al.,
2023; Akyurek et al., 2022; Chen et al., 2024d), outdated
information, the inherent randomness in top-k decoding
methods (Azaria & Mitchell, 2023; Lee et al., 2022a), and
limitations in model and optimization (Li et al., 2022c).

Early works (Lee et al., 2022a; Min et al., 2023; Wei et
al., 2024) primarily focused on validating the consistency of
LLM outputs with world knowledge. At a high level, all val-
idation methods first break down the model’s responses into
atomic facts and then compare them against verified truths
to derive a score. This process is mainly designed for detect-
ing extrinsic hallucination, while the detection of in-context
hallucination relies more on the self-correction mechanisms
and advanced decoding strategies discussed below. Next, we
review authenticity-enhancing strategies for both the training
and inference stages.

During training, one key strategy is purifying the train-
ing datasets. Gardent et al. (2017); Penedo et al. (2023) and
Wang (2019) developed procedures for curating high-quality
corpora, while Parikh et al. (2020) stressed the effective-
ness of direct human revisions. Due to the impracticality
of manually revising vast datasets, these studies (Zhou et
al., 2024a; Cao et al., 2023; Lee et al., 2023) proved the
potential of a small, high-quality dataset during fine-tuning.
Filtering low-quality texts against reliable language corpora
(Brown et al., 2020) or using LLMs to sift out unreliable
information (Chen et al., 2024d) can further enhance the
dataset’s integrity. Additionally, LLMs can be leveraged to
generate high-quality data (Sun et al., 2023a; Alemoham-
mad et al., 2024; Gunasekar et al., 2023; Eldan & Li, 2023),
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and adversarial examples (Ganguli et al., 2022b) can serve
as high-quality texts. Another strategy is refining the train-
ing process, by either allocating more optimization attention
to fact-containing segments (Lee et al., 2022a) or integrat-
ing fact-aware rewards to promote the generation of more
reliable content (Tian et al., 2024).

During inference, authenticity can be enhanced through
the integration of external knowledge, self-correction mech-
anisms, and advanced decoding strategies. RAG allows
for accessing reliable, up-to-date information from trusted
sources, which can be fused with user queries for contex-
tual clarity (Mallen et al., 2023) or fed into auxiliary models
to refine the LLM’s original responses (Gao et al., 2023;
Peng et al., 2023; Asai et al., 2024). Self-correction mech-
anisms capitalize LLMs themselves, with methods forcing
them to recall relevant facts (Sun et al., 2023b) or prioritiz-
ing outputs from attention heads crucial for truthfulness (Li
et al., 2023c). SelfIE asks LLMs to clarify reasoning and
enables fine-grained control over the process (Chen et al.,
2024c). Some approaches (Manakul et al., 2023; Agrawal
et al., 2024; Wang et al., 2023b) employ a majority-voting
paradigm, which either requires consensus among multiple
models or integrates outputs from rephrased queries. This
paradigm also facilitates uncertainty quantification in model
responses (Xiong et al., 2024; Touvron et al., 2023), prompt-
ing models to avoid responding when uncertain. Improved
decoding strategies refine reasoning processes or calibrate
next-token distribution. A prime example of the former is
"chain of thought," which breaks down complex problems
into manageable sub-questions (Wei et al., 2022b). This
has since evolved into tree-of-thoughts, chain-of-verification,
and process supervision (Yao et al., 2023; Dhuliawala et al.,
2024; Lightman et al., 2024). For the latter, factual-nucleus
sampling (Lee et al., 2022b) adjusts randomness in the top-k
sampling process, while context-aware decoding (Shi et al.,
2024b) helps LLMs better integrate contextual information
and lessen reliance on static, pre-trained knowledge bases.

Remark.Despite these advancements, achieving absolute
truthfulness in AI-generated content remains challenging.
Beyondmodel development, access and information dissem-
ination are also important in practice. AI service providers
should implement stricter usage restrictions and work with
platforms to identify AI-generated content, such as requir-
ing “proof of personhood” for users. Platforms could adopt
selective review processes based on the potential impact of
the content. For high-impact content, a hard review may be
necessary, requiring users to provide factual sources or proof
of identity, along with enlisting administrators or volunteers
formanual verification. For less critical content, a soft review
can be employed,which labels the content as "unverified" and
conducts reviews only when users raise concerns. These can
be applied to both DMs and LLMs.

6.5 Benchmark Evaluation Tools: Datasets and
Metric

As shown in Table 1, at Level I, the focal point lies in the
capacity to differentiate between AI-generated content and
human-authored content. Thus, the principal evaluation met-
rics encompass the detection rate and AUC. Advancing to
Level II involves the specific challenge of identifying con-
tent generated by a specific model. While the core evaluation
metrics remain largely unchanged fromLevel I, the introduc-
tion of watermarks needs additional metrics to assess their
impact on content quality. It should be noted that somewater-
marking techniques hide specific information within images
and Bit Acc serves as a metric to ascertain whether the recov-
ered information matches the written information.

Transitioning to Level III, the evaluation of the authentic-
ity of AI-generated content becomes increasingly intricate.
Diverging from the constrained outputs of discriminative
models, generative models produce a spectrum of open-
ended results. Therefore, the assessment of authenticity at
this level often requires manual scrutiny, as automated met-
rics may not sufficiently capture the nuanced variations
present in the outputs of generative models.

6.6 Discussion, Recommendation, and Outlook

6.6.1 Discussion

We review the responsibility of DMs and LLMs from three
levels: identifiability, traceability, and verifiability. For iden-
tifiability, DM-generated content is generally easier to detect
than LLM-generated content. Image data captures intricate
real-world details, making it difficult for current DMs to
achieve a perfect fit. As a result, AI-generated images exhibit
noticeable artifacts resulting from imperfections in the gen-
eration process. In contrast, language data, being a human
creation, is structured around rules and patterns, making it
easier to fit. These findings are based on the current land-
scape, with the caveat that image generation methods are
rapidly evolving, and future advancements may overthrow
these conclusions.

For traceability, we investigate watermarking techniques.
As the capabilities of generative models reach new heights,
differentiating AI-generated content from human-created
content becomes increasingly difficult. This necessitates
active intervention in the generation process, such as embed-
ding watermarks for content auditing and promoting respon-
sible usage. While existing watermarking techniques have
proven effective, their resilience against malicious attacks
remains questionable. Attacks on watermarks often involve
altering the watermarked content to remove the watermark.
The debate over what constitutes a transformative alteration
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of AI-generated content into human products is a critical and
unresolved issue, deserving further scholarly attention.

Turning to verifiability, the verification of DM-generated
content is still in its nascent stages, leaving significant room
for exploration. The definition of authenticity for image
data varies across different domains and necessitates further
consensus. Although LLMs have made significant strides
in addressing authenticity concerns and proposing potential
solutions, their effectiveness is yet to meet expectations and
heavily depends on empirical validation. Consequently, the
authenticity of LLM-generated content is currently defensi-
ble over tested instances.

6.6.2 Recommendation

Based on our review and analysis, we propose the following
practical mitigations for practitioners and industry:

– Prioritizing responsible strategies, such aswatermarking,
during foundational design stages is essential for devel-
oping responsible AI systems.

– Given the current challenges in verifying the authentic-
ity of AI-generated content, a pragmatic approach would
involve enabling models to retrieve relevant answers,
striking a balance. Alternatively, indicating confidence
levels in responses can significantly enhance user cau-
tion.

6.6.3 Outlook

In light of the challenges mentioned above, we suggest
exploring the following promising research directions:

– Watermark attacks requiremodifications to AI-generated
content. However, determining the extent of alteration
that renders content unrecognizable as AI-generated
remains an open question. Further studies are needed to
establish clear boundaries for when rewritten material
loses its original AI authorship.

– The authenticity of images generated by DMs is largely
unexamined. This issue is critical in fields requiring high
precision but has not received sufficient attention from
academia or industry, possibly due to the current focus
on using DMs for artistic tasks.

– While substantial researchhas been conducted to enhance
the authenticity of LLM-generated content, empirical
validation alone is inadequate. Instead, it is vital to
identify worst-case scenarios or establish theoretical
frameworks for assessing authenticity.

7 Conclusion

We reviewed recent developments regarding the trustworthi-
ness of these models through the lenses of privacy, security,
fairness, and responsibility. Topromote the trustworthy usage
of these models and mitigate associated risks, we pro-
posed some actionable steps for both companies and users.
Additionally, we identified challenges that the research com-
munity should address. Through these efforts, we seek to
improve the understanding and management of the risks
associated with DMs and LLMs, ensuring their reliable
deployment for the benefit of society as a whole.
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Vukotić, V., Chappelier, V., & Furon, T. (2018). Are deep neural
networks good for blind image watermarking? In: 2018 IEEE
International Workshop on Information Forensics and Security
(WIFS), IEEE, pp 1–7

Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., &
Rabin, T. (2020). Falcon: Honest-majority maliciously secure
framework for private deep learning. Proceedings on Privacy
Enhancing Technologies, 2021, 188–208.

Wallace, E., Feng, S., Kandpal, N., Gardner, M., & Singh, S. (2019).
Universal Adversarial Triggers for Attacking and Analyzing NLP.
In: Proc. of EMNLP, Hong Kong, China, pp 2153–2162, https://
doi.org/10.18653/v1/D19-1221

Wan,A.,Wallace, E., Shen, S.,&Klein, D. (2023a). Poisoning language
models during instruction tuning. In: Proc. of ICML, PMLR, pp
35413–35425

Wan, X., Sun, J., Wang, S., Chen, L., Zheng, Z., Wu, F., & Chen, G.
(2023b). PSLF: Defending Against Label Leakage in Split Learn-
ing. In: Proc. of CIKM, New York„ N. Y., USA, CIKM ’23, p
2492-2501, https://doi.org/10.1145/3583780.3615019

Wang, F., Huang, J. Y., Yan, T., Zhou, W., & Chen, M. (2023a). Robust
Natural Language Understanding with Residual Attention Debi-
asing. In: Findings of ACL, pp 504–519

Wang, H. (2019). Revisiting Challenges in Data-to-Text Generation
with Fact Grounding. In: Proceedings of the 12th International
Conference on Natural Language Generation, Tokyo, Japan, pp
311–322, https://doi.org/10.18653/v1/W19-8639

Wang, H., Shen, Q., Tong, Y., Zhang, Y., & Kawaguchi, K. (2024a).
The Stronger the Diffusion Model, the Easier the Backdoor: Data
Poisoning to Induce Copyright BreachesWithout Adjusting Fine-
tuning Pipeline. In: Proc. of ICML, Proceedings of Machine
Learning Research, vol 235, pp 51465–51483

Wang, J., Li, R., Yang, J., Mao, C. (2024b). RAFT: Realistic Attacks to
Fool Text Detectors. In: Proc. of EMNLP, pp 16923–16936

Wang, S., Wang, O., Zhang, R., Owens, A., & Efros, A. A. (2020).
CNN-Generated Images Are Surprisingly Easy to Spot... for
Now. In: Proc. of CVPR, pp 8692–8701, https://doi.org/10.1109/
CVPR42600.2020.00872

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang, S., Chowd-
hery, A., & Zhou, D. (2023b). Self-consistency improves chain of
thought reasoning in language models. In: Proc. of ICLR

Wang, Z., Bao, J., Zhou, W., Wang, W., Hu, H., Chen, H., & Li, H.
(2023c). Dire for diffusion-generated image detection. In: Proc.
of ICCV, pp 22445–22455

Wang, Z., Zhang, J., Shan, S., & Chen, X. (2024). T2ishield: Defend-
ing against backdoors on text-to-image diffusion models. Proc. of
ECCV, 15143, 107–124.

123

http://arxiv.org/abs/1908.09203
http://arxiv.org/abs/2211.02408
http://arxiv.org/abs/2402.02739
https://doi.org/10.1109/CVPR46437.2021.00919
http://arxiv.org/abs/2307.15020
http://arxiv.org/abs/2102.02503
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.18653/v1/D19-1221
https://doi.org/10.1145/3583780.3615019
https://doi.org/10.18653/v1/W19-8639
https://doi.org/10.1109/CVPR42600.2020.00872
https://doi.org/10.1109/CVPR42600.2020.00872


International Journal of Computer Vision

Wei, A., Haghtalab, N., & Steinhardt, J. (2023). Jailbroken: How Does
LLM Safety Training Fail? In: Proc. of NeurIPS

Wei, J., Bosma, M., Zhao, V. Y., Guu, K., Yu, A. W., Lester, B., Du, N.,
Dai, A. M., & Le, Q. V. (2022a). Finetuned Language Models are
Zero-Shot Learners. In: Proc. of ICLR

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le,
Q. V., Zhou, D., et al. (2022). Chain-of-thought prompting elicits
reasoning in large language models. Proc of NeurIPS, 35, 24824–
24837.

Wei, J., Yang, C., Song, X., Lu, Y., Hu, N., Tran, D., Peng, D., Liu, R.,
Huang, D., Du, C., & Le, Q. V. (2024). Long-form factuality in
large language models. In: Proc. of NeurIPS

Wei, W., Liu, L., Loper, M., Chow, K. H., Gursoy, M. E., Truex, S., &
Wu, Y. (2020). A Framework for Evaluating Client Privacy Leak-
ages in Federated Learning. In: Proc. of ESORICS, Lecture Notes
in Computer Science, vol 12308, pp 545–566, https://doi.org/10.
1007/978-3-030-58951-6_27

Welbl, J., Glaese, A., Uesato, J., Dathathri, S., Mellor, J., Hendricks,
L. A., Anderson, K., Kohli, P., Coppin, B., & Huang, P. S. (2021).
Challenges in Detoxifying Language Models. In: Findings of
EMNLP, PuntaCana,DominicanRepublic, pp 2447–2469, https://
doi.org/10.18653/v1/2021.findings-emnlp.210

Weller, O., Khan, A., Weir, N., Lawrie, D., & Van Durme, B. (2022).
Defending against misinformation attacks in open-domain ques-
tion answering. ArXiv preprint arXiv:2212.10002

Wen, R., Li, Z., Backes,M., & Zhang, Y. (2024).Membership Inference
Attacks Against In-Context Learning. In: Proc. of ACM CCS, pp
3481–3495

Wen, Y., Kirchenbauer, J., Geiping, J., &Goldstein, T. (2023). Tree-ring
watermarks: Fingerprints for diffusion images that are invisible and
robust. ArXiv preprint arXiv:2305.20030

Wolter, M., Blanke, F., Heese, R., & Garcke, J. (2022). Wavelet-packets
for deepfake image analysis and detection. Machine Learning,
111(11), 4295–4327.

Wu, X., Li, S., Wu, H. T., Tao, Z., & Fang, Y. (2024a). Does rag intro-
duce unfairness in llms? evaluating fairness in retrieval-augmented
generation systems. ArXiv preprint arXiv:2409.19804

Wu, Y., Yu, N., Li, Z., Backes, M., & Zhang, Y. (2022). Membership
inference attacks against text-to-image generation models. ArXiv
preprint arXiv:2210.00968

Wu, Z., Gao, H., Wang, Y., Zhang, X., Wang, S. (2024b). Universal
prompt optimizer for safe text-to-image generation. pp 6340–6354

Xiang, C.,Wu, T., Zhong, Z.,Wagner, D., Chen, D., &Mittal, P. (2024).
Certifiably robust rag against retrieval corruption. ArXiv preprint
arXiv:2405.15556

Xiao, D., Yang, C., & Wu, W. (2021). Mixing activations and labels
in distributed training for split learning. IEEE Transactions on
Parallel and Distributed Systems, P. P.:1–1

Xie, Y., Yi, J., Shao, J., Curl, J., Lyu, L., Chen, Q., Xie, X., & Wu,
F. (2023). Defending chatgpt against jailbreak attack via self-
reminders. Nature Machine Intelligence, 5(12), 1486–1496.

Xiong, M., Hu, Z., Lu, X., Li, Y., Fu, J., He, J., & Hooi, B. (2024).
Can LLMs Express Their Uncertainty? An Empirical Evaluation
of Confidence Elicitation in LLMs. In: Proc. of ICLR

Xu, J., Liu, X., Wu, Y., Tong, Y., Li, Q., Ding, M., Tang, J., & Dong,
Y. (2024a). Imagereward: Learning and evaluating human prefer-
ences for text-to-image generation. Proc of NeurIPS 36

Xu, J., Ma, M., Wang, F., Xiao, C., & Chen, M. (2024b). Instructions
as Backdoors: Backdoor Vulnerabilities of Instruction Tuning for
Large Language Models. In: Proc. of NAACL, pp 3111–3126

Xu, X., Yang, M., Yi, W., Li, Z., Wang, J., Hu, H., Zhuang, Y., & Liu, Y.
(2024c). A StealthyWrongdoer: Feature-Oriented Reconstruction
Attack against Split Learning. In: Proc. of CVPR, pp 12130–12139

Xu,X.,Yao,Y.,&Liu,Y. (2024d). Learning towatermark llm-generated
text via reinforcement learning. ArXiv preprint arXiv:2403.10553

Xuan, X., Peng, B.,Wang,W., &Dong, J. (2019). On the generalization
of GAN image forensics. In: Chinese conference on biometric
recognition, Springer, pp 134–141

Xue, J., Zheng, M., Hu, Y., Liu, F., Chen, X., & Lou, Q. (2024). Badrag:
Identifying vulnerabilities in retrieval augmented generation of
large language models. ArXiv preprint arXiv:2406.00083

Yang, W., Lin, Y., Li, P., Zhou, J., & Sun, X. (2021). Rethinking
Stealthiness of Backdoor Attack against NLP Models. In: Proc.
of ACL, Online, pp 5543–5557, https://doi.org/10.18653/v1/2021.
acl-long.431

Yang, Y., Gao, R., Yang, X., Zhong, J., & Xu, Q. (2024a). Guardt2i:
Defending text-to-image models from adversarial prompts. ArXiv
preprint arXiv:2403.01446

Yang, Z., Zeng, K., Chen, K., Fang, H., Zhang, W., & Yu, N. (2024b).
Gaussian Shading: Provable Performance-Lossless Image Water-
marking for Diffusion Models. In: Proc. of CVPR, pp 12162–
12171

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., &
Narasimhan,K. (2023). Tree of thoughts: Deliberate problem solv-
ing with large language models. Proc of NeurIPS 36

Yin, H., Mallya, A., Vahdat, A., Alvarez, J. M., Kautz, J., &Molchanov,
P. (2021). See Through Gradients: Image Batch Recovery via
GradInversion. In: Proc. of CVPR, pp 16337–16346, https://doi.
org/10.1109/CVPR46437.2021.01607

Yu, H., Chen, J., Ding, X., Zhang, Y., Tang, T., & Ma, H. (2024). Step
VulnerabilityGuidedMeanFluctuationAdversarialAttack against
Conditional Diffusion Models. Proc. of AAAI, 38, 6791–6799.

Yu, J., Wu, Y., Shu, D., Jin, M., & Xing, X. (2023a). Assess-
ing prompt injection risks in 200+ custom gpts. ArXiv preprint
arXiv:2311.11538

Yu, N., Skripniuk, V., Abdelnabi, S., & Fritz, M. (2021). Artificial Fin-
gerprinting for Generative Models: Rooting Deepfake Attribution
in Training Data. In: Proc. of ICCV, pp 14428–14437, https://doi.
org/10.1109/ICCV48922.2021.01418

Yu, W., Pang, T., Liu, Q., Du, C., Kang, B., Huang, Y., Lin, M., & Yan,
S. (2023b). Bag of tricks for training data extraction from language
models. In: Proc. of ICML, PMLR, pp 40306–40320

Yuan, Y., Jiao, W., Wang, W., Huang Jt, He, P., Shi, S., & Tu, Z. (2024).
Gpt-4 is too smart to be safe: Stealthy chat with llms via cipher.
In: Proc. of ICLR

Yue, K., Jin, R., Wong, C. W., Baron, D., & Dai, H. (2023). Gradient
obfuscation gives a false sense of security in federated learning.
In: Proc. of USENIX Security, pp 6381–6398

Zack, T., Lehman, E., Suzgun, M., Rodriguez, J. A., Celi, L. A.,
Gichoya, J., Jurafsky, D., Szolovits, P., Bates, D. W., Abdulnour,
R. E. E., et al. (2024). Assessing the potential of gpt-4 to perpetuate
racial and gender biases in health care: a model evaluation study.
The Lancet Digital Health, 6(1), e12–e22.

Zang, Y., Qi, F., Yang, C., Liu, Z., Zhang,M., Liu, Q., & Sun,M. (2020).
Word-level Textual Adversarial Attacking as Combinatorial Opti-
mization. In: Proc. of ACL, Online, pp 6066–6080, https://doi.org/
10.18653/v1/2020.acl-main.540

Zeng, S., Zhang, J., He, P., Xing, Y., Liu, Y., Xu, H., Ren, J., Wang, S.,
Yin, D., Chang, Y., et al. (2024). The good and the bad: Exploring
privacy issues in retrieval-augmented generation (rag). In: Find-
ings of ACL, pp 4505–4524

Zeng, Y., Chen, S., Park, W., Mao, Z., Jin, M., & Jia, R. (2022). Adver-
sarial Unlearning of Backdoors via Implicit Hypergradient. In:
Proc. of ICLR

Zhai, S., Dong, Y., Shen, Q., Pu, S., Fang, Y., & Su, H. (2023).
Text-to-image diffusion models can be easily backdoored through
multimodal data poisoning. In: Proc. of ACM, M. M., pp 1577–
1587

Zhan, F., Yu, Y., Wu, R., Zhang, J., Lu, S., Liu, L., Kortylewski, A.,
Theobalt, C., & Xing, E. (2023). Multimodal image synthesis and
editing: The generative ai era. IEEE Transactions on Pattern Anal-

123

https://doi.org/10.1007/978-3-030-58951-6_27
https://doi.org/10.1007/978-3-030-58951-6_27
https://doi.org/10.18653/v1/2021.findings-emnlp.210
https://doi.org/10.18653/v1/2021.findings-emnlp.210
http://arxiv.org/abs/2212.10002
http://arxiv.org/abs/2305.20030
http://arxiv.org/abs/2409.19804
http://arxiv.org/abs/2210.00968
http://arxiv.org/abs/2405.15556
http://arxiv.org/abs/2403.10553
http://arxiv.org/abs/2406.00083
https://doi.org/10.18653/v1/2021.acl-long.431
https://doi.org/10.18653/v1/2021.acl-long.431
http://arxiv.org/abs/2403.01446
https://doi.org/10.1109/CVPR46437.2021.01607
https://doi.org/10.1109/CVPR46437.2021.01607
http://arxiv.org/abs/2311.11538
https://doi.org/10.1109/ICCV48922.2021.01418
https://doi.org/10.1109/ICCV48922.2021.01418
https://doi.org/10.18653/v1/2020.acl-main.540
https://doi.org/10.18653/v1/2020.acl-main.540


International Journal of Computer Vision

ysis and Machine Intelligence, 45(12), 15098–15119. https://doi.
org/10.1109/TPAMI.2023.3305243

Zhan, Q., Fang, R., Bindu, R., Gupta, A., Hashimoto, T., & Kang, D.
(2024). Removing rlhf protections in gpt-4 via fine-tuning. In:
Proc. of NAACL, pp 681–687

Zhang, C., Benz, P., Karjauv, A., Sun, G., & Kweon, I. S. (2020a).
UDH: Universal Deep Hiding for Steganography, Watermarking,
and Light Field Messaging. In: Proc. of NeurIPS

Zhang, C., Li, S., Xia, J., Wang, W., Yan, F., & Liu, Y. (2020b).
BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo
Federated Learning. In: Proceedings of the 2020 USENIX Annual
Technical Conference, USENIX ATC 2020, July 15-17, 2020, pp
493–506

Zhang,E.,Wang,K.,Xu,X.,Wang,Z.,&Shi,H. (2024a). In:Workshops
of CVPR, pp 1755–1764

Zhang, J., Xu, Z., Cui, S., Meng, C., Wu, W., & Lyu, M. R. (2023a).
On the robustness of latent diffusion models. ArXiv preprint
arXiv:2306.08257

Zhang, L., Rao, A., & Agrawala, M. (2023b). Adding conditional
control to text-to-image diffusion models. In: Proc. of ICCV, pp
3836–3847

Zhang, R., Li, H., Wen, R., Jiang, W., Zhang, Y., Backes, M., Shen,
Y., & Zhang, Y. (2024b). Instruction Backdoor Attacks Against
Customized LLMs. In: Proc. of USENIX Security, pp 1849–1866

Zhang, S.,Roller, S.,Goyal,N.,Artetxe,M.,Chen,M.,Chen, S.,Dewan,
C., Diab MT, Li, X., Lin, X. V., Mihaylov, T., Ott, M., Shleifer,
S., Shuster, K., Simig, D., Koura, P. S., Sridhar, A., Wang, T., &
Zettlemoyer, L. (2022a). OPT: open pre-trained transformer lan-
guage models. ArXiv preprint arXiv:2205.01068

Zhang, Y., Tang, Y., Ruan, W., Huang, X., Khastgir, S., Jennings, P., &
Zhao, X. (2024). ProTIP: Probabilistic Robustness Verification on
Text-to-Image Diffusion Models against Stochastic Perturbation.
Proc. of ECCV, 15090, 455–472.

Zhang, Z., Lyu, L., Ma, X., Wang, C., & Sun, X. (2022). Fine-mixing:
Mitigating Backdoors in Fine-tuned Language Models. Findings
of EMNLP (pp. 355–372). United Arab Emirates: Abu Dhabi.

Zhang, Z., Han, L., Ghosh, A., Metaxas, D. N., & Ren, J. (2023c).
Sine: Single image editing with text-to-image diffusion models.
In: Proc. of CVPR, pp 6027–6037

Zhang, Z., Yang, J., Ke, P., & Huang, M. (2024d). Defending large
language models against jailbreaking attacks through goal priori-
tization. In: Proc. of ACL, pp 8865–8887

Zhao, B., Mopuri, K. R., & Bilen, H. (2020). idlg: Improved deep leak-
age from gradients. ArXiv preprint arXiv:2001.02610

Zhao, Y., Pang, T., Du, C., Yang, X., Cheung, N. M., & Lin, M. (2023).
A recipe for watermarking diffusion models. ArXiv preprint
arXiv:2303.10137

Zhao, Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021). Calibrate
Before Use: Improving Few-shot Performance of Language Mod-
els. In:Proc. of ICML, Proceedings ofMachineLearningResearch,
vol 139, pp 12697–12706

Zhong, Z.,Huang, Z.,Wettig,A.,&Chen,D. (2023). Poisoning retrieval
corpora by injecting adversarial passages. In: Proc. of EMNLP, pp
13764–13775

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X., Efrat, A., Yu,
P., Yu L, et al. (2024a). Lima: Less is more for alignment. Proc of
NeurIPS

Zhou, X., Sap, M., Swayamdipta, S., Choi, Y., & Smith, N. (2021).
Challenges in Automated Debiasing for Toxic Language Detec-
tion. In: Proc. of EACL, Online, pp 3143–3155, https://doi.org/10.
18653/v1/2021.eacl-main.274

Zhou, Z., Liu, J., Shao, J., Yue, X., Yang, C., Ouyang, W., & Qiao,
Y. (2024b). Beyond one-preference-fits-all alignment: Multi-
objective direct preference optimization. In: Findings of ACL, pp
10586–10613

Zhu, J., Kaplan, R., Johnson, J., & Fei-Fei, L. (2018). Hidden: Hiding
data with deep networks. In: Proc. of ECCV, pp 657–672

Zhu, L., Liu, Z., & Han, S. (2019). Deep Leakage from Gradients. In:
Proc. of NeurIPS, pp 14747–14756

Zhu, S., Zhang, R., An, B., Wu, G., Barrow, J., Wang, Z., Huang,
F., Nenkova, A., & Sun, T. (2023). Autodan: Automatic and
interpretable adversarial attacks on large language models. ArXiv
preprint arXiv:2310.15140

Zhuang, H., Zhang, Y., & Liu, S. (2023). A pilot study of query-free
adversarial attack against stable diffusion. In: Proc. of CVPR, pp
2384–2391

Zou, A., Wang, Z., Kolter, J. Z., & Fredrikson, M. (2023). Universal
and transferable adversarial attacks on aligned language models.
CoRR, arXiv:2307.15043

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1109/TPAMI.2023.3305243
https://doi.org/10.1109/TPAMI.2023.3305243
http://arxiv.org/abs/2306.08257
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2001.02610
http://arxiv.org/abs/2303.10137
https://doi.org/10.18653/v1/2021.eacl-main.274
https://doi.org/10.18653/v1/2021.eacl-main.274
http://arxiv.org/abs/2310.15140
http://arxiv.org/abs/2307.15043

	On the Trustworthiness Landscape of State-of-the-art Generative Models: A Survey and Outlook
	Abstract
	1 Introduction
	2 A Glimpse of State-of-the-art Generative Models
	3 Privacy
	3.1 Overview
	3.2 Data Leakage during Training Stage
	3.2.1 Federated Learning
	3.2.2 Split Learning

	3.3 Data Leakage during Inference Stage
	3.3.1 DMs
	3.3.2 LLMs

	3.4 Membership Inference Attack
	3.4.1 DMs
	3.4.2 LLMs

	3.5 Benchmark Evaluation Tools: Datasets and Metrics
	3.6 Discussion, Recommendation, and Outlook
	3.6.1 Discussion
	3.6.2 Recommendation
	3.6.3 Outlook


	4 Security
	4.1 Overview
	4.2 Adversarial Attack and Defense
	4.2.1 DMs
	4.2.2 LLMs

	4.3 Backdoor Attack and Defense
	4.3.1 DMs
	4.3.2 LLMs

	4.4 Benchmark Evaluation Tools: Datasets and Metric
	4.5 Discussion, Recommendation, and Outlook
	4.5.1 Discussion
	4.5.2 Recommendation
	4.5.3 Outlook


	5 Fairness
	5.1 Overview
	5.2 Stereotype
	5.2.1 DMs
	5.2.2 LLMs

	5.3 Social Norms
	5.3.1 DMs
	5.3.2 LLMs

	5.4 Preference
	5.4.1 DMs
	5.4.2 LLMs

	5.5 Benchmark Evaluation Tools: Datasets and Metric
	5.6 Discussion, Recommendation, and Outlook
	5.6.1 Discussion
	5.6.2 Recommendation
	5.6.3 Outlook


	6 Responsibility
	6.1 Overview
	6.2 Level I: Identifiable AI-generated content
	6.2.1 DMs
	6.2.2 LLMs

	6.3 Level II: Traceable AI-generated content
	6.3.1 DMs
	6.3.2 LLMs

	6.4 Level III: Verifiable AI-generated content
	6.4.1 DMs
	6.4.2 LLMs

	6.5 Benchmark Evaluation Tools: Datasets and Metric
	6.6 Discussion, Recommendation, and Outlook
	6.6.1 Discussion
	6.6.2 Recommendation
	6.6.3 Outlook


	7 Conclusion
	Acknowledgements
	References


