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ABSTRACT

Prompt-based learning improves the performance of Pre-
trained Language Models (PLMs) over few-shot learning and
is suitable for low-resourced scenarios. However, it is chal-
lenging to deploy large PLMs online. Knowledge Distillation
(KD) can compress large PLMs into small ones; yet, few-shot
KD for prompt-tuned PLMs is challenging due to the lack of
training data and the capacity gap between teacher and stu-
dent models. We propose Boost-Distiller, the first few-shot
KD algorithm for prompt-tuned PLMs with the help of the
out-of-domain data. Apart from distilling the model logits,
Boost-Distiller specifically considers heuristically-generated
fake logits that improve the generalization abilities of stu-
dent models. We further leverage the cross-domain model
logits, weighted with domain expertise scores that measure
the transferablity of out-of-domain instances. Experiments
over various datasets show Boost-Distiller consistently out-
performs baselines by a large margin.

Index Terms— knowledge distillation, few-shot learning,
transfer learning, pre-trained language model

1. INTRODUCTION

Pre-trained Language Models (PLMs) have greatly boosted
the performance of various NLP tasks based on the “pre-
training and fine-tuning” framework [1]. Yet, the performance
of PLMs is still limited by the number of labeled training sam-
ples. Recently, prompt-based learning is proposed to refor-
mulate NLP tasks as cloze questions and to provide additional
task guidance by discrete or continuous prompts [2, 3, 4, 5, 6],
which further enables effective few-shot learning for PLMs
and especially suitable for low-resourced scenarios.

The “secret ingredient” in prompt-based learning is that
they directly leverage rich pre-training knowledge in PLMs as
the “prior knowledge” for downstream tasks, such as Masked
Language Modeling (MLM) for BERT-style models [7].
Hence, large-scale PLMs typically have better few-shot per-
formance due to large model capacity, which unfortunately
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makes it challenging to deploy them in resource-constrained
environments.

Knowledge Distillation (KD) aims to compress a large
model into a small one while keeping the model perfor-
mance as much as possible [8]. Although there are a variety
of works focusing on KD for PLMs (such as [9, 10, 11]),
distilling prompt-based few-shot learners in low-resourced
scenarios is non-trivial for several reasons: i) existing KD
algorithms for BERT-style models (mentioned above) are not
designed for prompt-based PLMs; ii) the lack of training
instances makes supervised signals highly insufficient when
the knowledge is transferred from teacher to student models;
and iii) there exist large capacity gaps between PLMs of dif-
ferent sizes [12, 13], often resulting in weak students during
KD. Hence, a natural question arises: how can we effectively
distill prompt-based few-shot learners to smaller models with
few training instances?

In this paper, we propose Boost-Distiller, the first few-
shot KD algorithm for prompt-based learners, with the help
of out-of-domain datasets. As teacher and student models
have significantly different capacities, in contrast to previous
works, we observe that distilling intermediate-layer represen-
tations for few-shot learning may have clear negative impacts
on the KD performance. Thus, only the logits of the MLM
heads are employed as the knowledge signals. To address the
data-hungry issue, we further consider distilling i) the MLM
logits of the out-of-domain model, weighted with domain ex-
pertise scores measuring the transferablity of out-of-domain
instances and ii) the heuristically-generated fake logits that
improve the generalization abilities of student models. In
the experiments, we evaluate Boost-Distiller over eight public
NLP datasets. Experiments show that it consistently outper-
forms baselines by a large margin.

2. BOOST-DISTILLER: THE PROPOSED
APPROACH

The Boost-Distiller framework is presented in Figure 1.
Given an N -way-K-shot training set X = {(xi, yi)} (where
yi ∈ Y is the label of the text xi with the class label set
|Y| = N ) and a prompt-tuned teacher model parameterized
by ΘT , the goal is to obtain a smaller prompt-tuned PLMIC
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Fig. 1. An illustration of the Boost-Distiller framework.

parameterized by ΘS that preserves the similar performance
compared to that of ΘT . As the size of X is extremely small
(i.e., N ×K), the supervised signals for KD are insufficient.
We also assume that there is a larger, out-of-domain dataset
X̃ = {(xi, yi)} with |X̃| = n · |X|, serving as the auxiliary
dataset for KD. Without loss of generality, we use PET [3] to
prompt-tune the teacher and student models throughout our
work to ensure good few-shot performance.

2.1. Learning from In-domain Teacher

As described previously, the prediction results of our PLMs
are generated by the MLM head. Following PET [3], let l(y)
be the label word for the class y, and sΘT

(l(y)|xi) be the
score of predicting l(y) at the MLM token w.r.t. the input xi
and the PLM ΘT . The probability of xi being assigned to the
class y is:

pT (y|xi) =
exp{sΘT

(l(y)|xi)}∑
y′∈Y exp{sΘT

(l(y′)|xi)}
. (1)

Denote pT (~y|xi) as the probability vector across all N
classes Y where ~yi is the one-hot ground-truth vector for xi.
The task-specific classification loss for the student model is
defined as follows:

LTMLM(X) =
1

|X|
∑

(xi,yi)∈X

CE(~yi, pS(~y|xi)) (2)

where CE(·, ·) denotes the cross-entropy loss between the two
vectors, and pS(~y|xi) is the result generated from the student
model.

During KD, we wish the student model to learn from its
prompt-tuned teacher model. However, due to capacity differ-
ences, in exploratory experiments (which will be presented),
we add the loss function for various elements proposed in [11]
and find that distilling too many elements from the teacher
model has negative impacts. Here, we define the labeled KD

loss purely based on the logits of the MLM heads, shown as
follows:

LLKD(X) =
1

|X|
∑

(xi,yi)∈X

CE
(
pT (~y|xi)

α
, pS(~y|xi)

)
(3)

where α > 0 is the temperature factor. This loss is proved to
be very useful in our task scenario.

Despite LLKD(X), the lack of training data still makes su-
pervised signals rather limited for KD. Inspired by [14], we
mimic the behavior of the teacher model and generate fake
logits for the student to learn. Specifically, we derive the fake
probability distribution pF (~y|xi) based on the label smooth-
ing operation where

pF (y|xi) =

{
M (y = yi)
1−M
N−1 (y 6= yi)

(4)

with M to be a constant close to 1. The fake logits are gen-
erated by converting pF (~y|xi) to the logits vector lF (~y|xi)
by setting a high temperature (as suggested by [14]). Thus,
the fake KD loss LFKD(X) is defined as follows:

LFKD(X) =
1

|X|
∑

(xi,yi)∈X

CEL(~yi, lF (~y|xi))) (5)

where CEL(·, ·) is the cross-entropy loss with logits, defined
between two vectors.

2.2. Learning from Out-of-domain Teacher

In practice, applying LFKD(X) alone is still insufficient to al-
leviate the data-hungry problem as it only provides N × K
additional signals. We further leverage a non-few-shot out-
of-domain dataset X̃ = {(xi, yi)} for KD, which is relatively
easier to obtain in low-resourced situations. A naive approach
for cross-domain KD is to apply LLKD(X̃) over the dataset
X̃ . Yet, the domain gap between X and X̃ causes the stu-
dent model to capture the non-transferable knowledge from
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Paradigm Method MNLI MNLI-mm SNLI SST-2 MR MRPC QQP QNLI RTE Avg.

FT

Teacher FT (Upper Bound) 44.3 46.3 48.5 79.7 75.0 71.1 60.4 60.7 50.5 59.6
Student FT (Lower Bound) 34.8 35.1 41.4 63.5 51.3 57.1 55.0 60.6 51.3 50.0
Vanilla KD [9] 34.9 35.6 40.6 52.5 50.2 56.6 45.8 56.7 50.2 47.0
TinyBERT [11] 40.6 41.5 42.8 63.5 53.3 65.4 58.2 57.2 53.3 52.9

PT
Teacher PT (Upper Bound) 67.0 69.0 77.3 93.1 84.5 66.4 71.9 65.5 71.3 74.3
Student PT (Lower Bound) 35.4 36.2 38.9 60.2 55.8 61.0 55.4 54.5 51.8 49.9
Prompt-KD 35.5 36.0 39.3 61.9 53.7 63.5 53.4 53.6 51.6 49.8

PT Boost-Distiller (Ours) 45.6 47.6 47.3 76.2 73.6 67.9 60.8 60.2 53.8 59.2
(SNLI) (SNLI) (MNLI) (MR) (SST-2) (QQP) (MRPC) (RTE) (QNLI)

Table 1. Comparison between the proposed Boost-Distiller and baselines in terms of accuracy for few-shot KD (%). Dataset
names in brackets refer to the corresponding out-of-domain datasets. “FT” and “PT” refer to traditional fine-tuning and prompt-
tuning, respectively.

X̃ , thus lowering the model performance. This problem be-
comes particularly severe when |X̃| >> |X| (which is ex-
actly the case in our work).

In Boost-Distiller, we propose the domain expertise score
that effectively measures whether an out-of-domain instance
(xi, yi) ∈ X̃ is useful for KD without human labeling. To en-
sure model homogeneity, we also train a PET-based teacher
model over X̃ , parameterized by ΘOT . The instance (xi, yi)
is passed to both ΘOT and ΘT to obtain the prediction results
pOT (~y|xi) and pT (~y|xi). The score si is computed based on
the Jensen-Shannon Divergence (JSD) between the two prob-
ability vectors w.r.t. the instance (xi, yi), i.e.,

si =
1

2
(KLD(pOT (~y|xi)||pT (~y|xi))

+ KLD(pT (~y|xi)||pOT (~y|xi)))
(6)

where KLD(·||·) is the Kullback–Leibler Divergence (KLD)
between two probabilistic distributions. Based on the do-
main expertise, we then define the out-of-domain KD loss
LOKD(X̃) as follows:

LOKD(X̃) =

∑
(xi,yi)∈X̃ si · CE

(
pOT (~y|xi)

α , pS(~y|xi)
)

|X̃|
.

(7)

We have also tested other techniques such as employing the
fake logits for out-of-domain KD. However, the performance
improvement remains minimal, mostly because using the
non-few-shot dataset X̃ alone provides sufficient signals for
cross-domain knowledge transfer.

In summary, the overall loss functionL(X, X̃) of our Boost-
Distiller framework is:

L(X, X̃) =LTMLM(X) + λ1LLKD(X)

+ λ1LFKD(X) + λ2LOKD(X̃)
(8)

where λ1 and λ2 are balancing hyper-parameters.

3. EXPERIMENTS

In this section, we conduct extensive experiments to evalu-
ate Boost-Distiller on various aspects.

3.1. Datasets and Experimental Settings

In the experiments, we employ eight public datasets to
evaluate the Boost-Distiller framework, which are divided
into three groups: natural language inference (MNLI [15],
SNLI [16], QNLI [17] and RTE [18]), question answering
(MRPC [19] and QQP1) and sentiment analysis (MR [20]
and SST-2 [21]).

We use RoBERTa-large [22] as the teacher model (with
around 355M parameters) and BERT-small [23] as the stu-
dent model. Following [4], we have K = 16 and test our
model over five different few-shot training sets. For out-of-
domain data, we have n = 10 and also vary the number of
out-of-domain data instances in detailed analysis. We keep
all prompts to be the same as PET [3]. During training, we
fix the batch size and the learning rate to be 4 and 1e-5, re-
spectively. Other hyper-parameters (λ1, λ2 and α) are tuned
on development sets. For evaluation, we report the average
model performance in terms of accuracy (with the same ran-
dom seeds for all methods). We implement Boost-Distiller in
PyTorch and conduct experiments on Tesla V100 GPUs.

3.2. Main Results

The results are shown in Table 1. Two paradigms for tun-
ing PLMs are used for comparison, namely standard fine-
tuning (FT) and prompt-tuning (PT). For each paradigm, we
also list the performance of the respective teacher and student
models as upper and lower bounds. The baselines include
vanilla KD [9] and TinyBERT [11] for FT, and Prompt-KD
for PT (which distills the logits of the teacher MLM head
only). Based on the results, we draw the following conclu-
sions. i) Due to the lack of labeled training data, KD ap-

1https://quoradata.quora.com/First-Quora-Dataset-Release-Question-
Pairs
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Table 2. Ablation study of Boost-Distiller (%).
Method SST-2 MR QNLI RTE
Full Implement. 76.2 73.6 60.2 53.8
w/o. teacher logits 74.9 73.4 58.8 53.0
w/o. fake logits 74.9 73.4 59.2 52.4
w/o. domain expertise 72.4 73.0 58.1 49.8
w/o. out-of-domain data 62.5 51.8 54.5 49.5

Table 3. Results of distillation from intermediate-layer repre-
sentations (%).

Elements SST-2 MR QNLI RTE
MLM Logits 61.5 57.2 55.4 54.2

+ Top 4 layers 61.2 56.8 56.8 53.8
+ Skip layers 61.2 56.8 56.9 53.1

proaches for FT yield poor results, which are even worse than
FT without KD (the lower bound). This is because the dis-
tilled models are severely overfitted to the training sets. ii)
Prompt-KD achieves comparable performance to PT without
KD, showing that the simple KD approach is not sufficient.
iii) Boost-Distiller outperforms all the baselines by a large
margin across all datasets. Other KD settings are shown in
subsequent sections.

3.3. Detailed Analysis

We analyze Boost-Distiller in various aspects.
Ablation Study. Ablation results of Boost-Distiller are pre-
sented in Table 2. Due to the space limitation, we report the
results over SST-2, MR, QNLI and RTE only. We can see
that all the modules in Boost-Distiller contribute to the perfor-
mance improvement. Yet, the degrees of improvement vary
from tasks. For example, out-of-domain data is more impor-
tant for SST-2, MR and QNLI, while teacher and fake logits
play a vital role for RTE.
Results of Intermediate-layer KD. We further show that dis-
tilling intermediate layers is not always beneficial for few-
shot KD. To achieve this, we present the KD results based
on MLM Logits, as well as the hidden states from top 4 lay-
ers and skip layers, shown in Table 3. To make it fair for all
the settings, we remove other parts of Boost-Distiller (such
as fake logits) in all experiments. The results indicate that
the KD performance drops over 3 out of 4 tasks, showing
the difficulty of few-shot KD using intermediate representa-
tions. For simplicity, in Boost-Distiller, we do not employ
any intermediate-layer KD loss.
Dataset Scale Analysis. We vary the number of training in-
stances per class K from 16 to 512, and report the perfor-
mance of Boost-Distiller and the method without KD (i.e.,
PET) in Figure 2. We can see that Boost-Distiller consis-
tently outperforms PET with differentKs, showing that it can
improve the model performance regardless of the choice of
K. Hence, our work is beneficial for both few-shot and non-
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Fig. 3. Out-of-domain data analysis using BERT-base and
BERT-small as student models (%).

few-shot learning scenarios. Yet, it has a greater contribution
when the training set is small.
Out-of-Domain Data and Model Analysis. We further vary
the amount of out-of-domain training data (n = 1, 4, 7, 10)
and employ BERT-base and BERT-small as student models.
The results are shown in Figure 3. We find that the per-
formance of both models improves with n becoming larger,
showing that Boost-Distiller can be applied to various sizes
of PLMs. The performance becomes relatively stable when
n ≥ 7.

4. CONCLUSION AND FUTURE WORK

In this work, we have presented Boost-Distiller, the first
few-shot KD algorithm for prompt-based learners based on
out-of-domain data. The proposed Boost-Distiller specifi-
cally considers heuristically-generated fake logits and cross-
domain model logits weighted with domain expertise scores
to improve the KD performance. Experimental results over
a variety of NLP tasks and datasets show that the Boost-
Distiller framework consistently outperforms strong baselines
by a large margin.

Our work focuses on distilling models for Natural Lan-
guage Understanding (NLU) tasks. It would also be possible
to extend our work to Natural Language Generation (NLG)
tasks, which will be addressed in future work.
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