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ABSTRACT

The intensive computation of Automatic Speech Recognition
(ASR) models obstructs them from being deployed on mobile
devices. In this work, we present a novel quantized Wino-
grad optimization framework, combining quantization and
fast convolution to achieve efficient inference acceleration for
ASR models on mobile devices. To avoid the information
loss due to the combination of quantization and Winograd
convolution, a Range-Scaled Quantization (RSQ) training
method is proposed, integrating integer-range scaling and
quantization noise minimization. Moreover, the Conv1D
equipped DFSMN (ConvDFSMN) model is designed for
mobile applications and experimental verification. We con-
duct extensive experiments on ConvDFSMN and Wav2letter
models, demonstrating that the models can be effectively opti-
mized with the proposed optimization framework. Especially,
the optimized Wav2letter model achieves 1.48× speedup for
end-to-end inference and 1.92× speedup for model backbone
inference on ARMv7-based mobile devices, with only an
approximate 0.07% decrease in WER on AIShell-1.

Index Terms— Range-Scaled Quantization, INT8 Wino-
grad, ConvDFSMN, mobile deployment

1. INTRODUCTION

Recent years has witnessed the great success of deep neu-
ral networks in real-world applications, e.g., image classifi-
cation [1] and speech recognition [2]. While sophisticated
neural networks have adequately advanced the performance,
the computational workload and the storage requirement have
also been drastically increased, which obstruct their applica-
tions in mobile devices [3]. Especially, Automatic Speech
Recognition (ASR) applications require real-time voice inter-
action, leading to a more challenging field of deploying ASR
models on mobile devices [4, 5, 6].

In the literature, mainstream ASR models can be clas-
sified into feed-forward structures [7, 8, 9, 10, 11] and
auto-regressive structures [12, 13, 14, 15]. Auto-regressive
models (e.g., the transformer model) exploit beam search to
achieve end-to-end ASR, but are difficult to accelerate for
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Fig. 1. Proposed optimization framework: i) the pre-trained
Conv1D equipped ASR model is fine-tuned with RSQ; ii) the
re-trained model with quantization scales is sent to mobile
optimization flow, where graph optimization and INT8 Wino-
grad are conducted for mobile deployment.

mobile applications due to while-loop decoding. In con-
trast, feed-forward models avoid the auto-regressive property,
showing better inference efficiency. To enhance the ability
of capturing contextual information, several feed-forward
acoustic models (e.g., TDNN [7] and DFSMN [9]) use the
one-dimensional convolution (Conv1D) to extract contextual
features. However, the ratio of the computation to memory
access of Conv1D is relatively low, which forms the inference
performance bottleneck of these ASR models.

Quantization [16, 17, 18, 19, 20] is a crucial technique
to reduce the computation latency and the model size when
deploying deep neural networks on mobile devices. Current
mobile inference frameworks (i.e., TFLite [21], MNN [22])
provide 8-bit quantization runtime based on General Matrix
Multiplication (GEMM). Compared to matrix multiplication,
Winograd’s minimal filtering [23] reduces multiplications in
convolution, showing higher efficiency. Unfortunately, the
simple combination suffers from precision overflow [24, 25],
which obstructs applying these two methods simultaneously.

We propose a novel quantized Winograd optimization
framework, integrating Range-Scaled Quantization (RSQ)
training and low-precision quantized Winograd inference for
mobile applications (shown in Figure 1). Firstly, the network
is fine-tuned with RSQ including integer range scaling and
quantization noise minimization. Weights and activations
are then quantized as lower precision to prevent the addition
overflow in quantized Winograd. Finally, in the Winograd
domain, the full integer Hardmard production is executed to
improve the efficiency of convolution for mobile deployment.
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2. RANGE-SCALED WINOGRAD QUANTIZATION

2.1. Analysis on Overflow of Quantized Winograd

Previously, the literature shows that Conv1D operations (with
kernel size k ≥ 3) can be efficiently accelerated with the
Winograd algorithm [23]. However, when combining quanti-
zation and Winograd, if we quantize the values before Wino-
grad convolution, the addition overflow will occur during
Winograd transformation. To verify this argument, we con-
sider the symmetric uniform scheme [16] to quantize the
input activation d and weight g as t-bit signed integers. Here,
the quantized Winograd of Conv1D can be computed as:

S = AT [(GQ(g))� (BTQ(d))], (1)

where S is the output. A, G andB are Winograd transforma-
tion matrices. � represents the Hadamard production. Q(·) is
the quantization function in the non-Winograd domain.

Assume that the elements of quantized activation Q(d)
and weight Q(g) reach the positive boundary values DQ =
2t−1 − 1 and GQ = 2t−1 − 1 (e.g., DQ = 127 when t = 8
for INT8 Winograd) The F (2, 3) transformation [23] is:

1 0 −1 0
0 1 1 0
0 −1 1 0
0 −1 0 1



DQ

DQ

DQ

DQ

 =


0

2DQ

0
0

 (2)

2


1 0 0

1/2 1/2 1/2
1/2 −1/2 1/2
0 0 1


GQ

GQ

GQ

 =


2GQ

3GQ

GQ

2GQ

 (3)

where the number 2 multiplied in Eq. 3 is for integer-only
computation in the Winograd domain, which will be further
divided during de-quantization.

The transformation outputs of Eq. 2 and Eq. 3 reach 2DQ

and 3GQ, which are both out of the quantized integer-range
[1 − 2t−1, 2t−1 − 1], leading to the numerical overflow.
Therefore, to avoid the addition overflow, Q(d) and Q(g)

should be set in smaller ranges, i.e., [ 1−2t−1

2 , 2
t−1−1

2 ] and
[ 1−2t−1

3 , 2
t−1−1

3 ].

2.2. The Range Scaling Mechanism

According to the anti-overflow conditions described previ-
ously, when t = 8, the range of Q(g) is [−42, 42], which is
in the range of 7-bit and 6-bit. It makes the weight g can only
be quantized to 6-bit (whose quantized range is [−31, 31])
for general quantization tools (i.e., MNN and NCNN), caus-
ing a large information loss. In this work, a scaling factor
α is specifically introduced to obtain the scaled integer-range
[−Ts, Ts] = [−T/α, T/α] where [−T, T ] is a wide integer
range. As shown in Figure 2, the kernel weight of Conv1D
can be quantized in the scaled 7-bit interval [−42, 42] by set-
ting α = 1.5, thus the numerical representation becomes
richer than the 6-bit integer-range [−31, 31]. Additionally,
α = 1.0 is set for 7-bit quantization of input activation of
Conv1D, which is represented as [−63, 63].

Fig. 2. Integer range scaling: the 7-bit integer-range [-63, 63]
is scaled to [-42, 42] for weight quantization of Conv1D with
quantized Winograd.

2.3. QAT with Quantization Noise Loss

A common practice for training domain-specific ASR mod-
els is to fine-tune existing large-scale pre-trained models. If
the Post-training Quantization (PTQ) approach is adopted to
quantize the fine-tuned ASR models, two issues should be
tackled: i) extra steps including the calibration-set collection
and PTQ should be considered; and ii) the accuracy will be
decreased with PTQ, even the performance loss is small.

To simplify the entire optimization process and ensure the
prediction accuracy after quantization, Quantization-Aware
Training (QAT) [18, 19] should be introduced during fine-
tuning. Here, Learned Step-size Quantization (LSQ) [19] is
employed as the basic QAT approach. Based on LSQ, the ten-
sor v (either weight or activation) is fake quantized with the
quantization scale s and the scaled integer-range [−Ts, Ts]:

Q(v) = s · round(clip(v/s,−Ts, Ts)) (4)

The gradients can be formulated as follows:

∂Q

∂v
=

{
1, (−Ts ≤ v/s ≤ Ts)
0, (otherwise)

(5)

∂Q

∂s
=


−Ts, (v/s < −Ts)
−v/s+ round(v/s), (−Ts ≤ v/s ≤ Ts)
Ts, (v/s > Ts)

(6)

To enhance the effectiveness of LSQ, we further utilize
the Mean Squared Error (MSE) between q(v) and v as an aux-
iliary loss to distill the knowledge from high-precision values,
which makes the quantization values close to original ones:

Lq = MSE(Q(v), v) =
1

N
(Q(v)− v)2 (7)

Overall, the MSE loss is multiplied with a penalty coefficient
β, and added to the main task loss for fine-tuning. Hence, the
overall loss of our model is L = Lasr + β · Lq where Lasr is
the normal loss of the underlying ASR model.

To clarify the benefit of the auxiliary MSE loss, we firstly
infer the gradients of Lq w.r.t v and s as follows:

∂LQ

∂v
=

2

N
(Q(v)− v)(

∂Q

∂v
− 1) (8)

∂LQ

∂s
=

2

N
(Q(v)− v)

∂Q

∂s
(9)

Combining Eq. 5 and Eq. 8, the gradient is less than 0 when
v/s < −Ts, and is greater than 0 when v/s > Ts. Thus,
the values of tensor v outside [−sTs, sTs] can be updated to-
wards a more concentrated distribution, friendly to quantiza-
tion. Additionally, under the consideration of Eq. 6 and Eq. 9,
the scale swill be updated to achieve the suitable quantization
resolution for values inside or outside [−sTs, sTs].
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Fig. 3. INT8 Winograd Operator of Conv1D (with kernel size
k = 8): the Conv1D is split as basic F (2, 3) Winograd con-
volutions and normal INT8 GEMMs.

3. QUANTIZED WINOGRAD OPTIMIZATION

In our work, we deploy ASR models on mobile devices based
on the open-source mobile inference framework MNN [22].
To further speed up the inference of quantized ASR models,
an efficient quantized Winograd operator is designed.

When the Conv1D operation with kernel size (k ≥ 3) and
stride (s = 1) is quantized as INT8 Winograd representa-
tion. The activation and weights are expressed as 7-bit inte-
gers in the non-Winograd domain as depicted in Sect. 2.2. As
shown in Figure 3, the designed INT8 Winograd operator for
Conv1D with kernel size (k ≥ 3) is split into several basic
F (2, 3) formations, with the remaining operations as normal
INT8 GEMMs (General Matrix Multiplication). These sub-
flows are computed in parallel. Hence, the inference time is
decreased with parallel computation. In each F (2, 3) flow,
the sub-sampled 7-bit weight (size: 3 × 1) and the activa-
tion (size: 4 × 1) are firstly transformed to the Winograd
domain. Next, the fully INT8 Hardmard production is con-
ducted as a highly efficient execution method of Conv1D.
Finally, the vector results of each F (2, 3) flow and GEMM
flows are element-wisely summed as the final INT32 outputs.

Next, we give a theoretical analysis on speedup. As seen,
the split numbers of F (2, 3) and normal INT8 GEMM are
bk/3c and k%3. To generate 2 outputs, each F (2, 3) flow
consumes 4 multiplies. The normal INT8 GEMM consumes
the number of multiplies proportional to the kernel size.
Therefore, compared with the fully INT8 GEMM realiza-
tion, the theoretical speedup of INT8 Winograd Conv1D with
kernel size (k ≥ 3) can be derived as follows:

speedup =
2k

4bk/3c+ 2(k%3)
(10)

The maximum speedup is 1.5 when k is divisible by 3.

Conv (k=7, s=2, c=256)

Conv (k=7, s=2, c=512)

DFSMN (k=3, s=1, c=512, 
p=128, m=15)

DFSMN (k=3, s=1, c=768, 
p=128, m=15)

DFSMN (k=3, s=1, 
c=1024, p=128, m=15) x n

Conv (k=1, s=1, c=1024)

CTC LossFully Connected

LogFBank

Transcript

x n

x n

Projection Layer

Memory Layer

Relu

Add

Hidden Layer

Prev. Hidden States

Trainable
Alpha

Prev. Mem. States

Hidden States Mem. States

DFSMN 
Block

Fig. 4. ConvDFSMN architecture. Notations: k: kernel size,
s: stride, c: hidden size, p: project size,m: memory size. The
DFSMN block repetition factor is set as: n=2 or 4.

Model Parameters (M) FLOPs (G) Latency (ms)
ConvDFSMN-b 16.20 (6.52) 2.45 (0.98) 63.5 (28.1)
ConvDFSMN-s 12.37 (6.52) 1.87 (0.98) 53.4 (28.5)
Wav2letter 17.32 (6.52) 2.62 (0.98) 87.2 (28.5)

Table 1. Description of the three FP32 models. The input
sequence length equals to 600. Contents in () are attributed to
output layers, dominating the model size and computation.

4. EXPERIMENTS

4.1. Experimental Settings

Our framework is evaluated over three model architectures.
The ConvDFSMN model is illustrated in Figure 4. After stem
layers, a few Conv1D equipped DFSMN blocks [9] (with n =
2 or 4 in Figure 4) are employed to capture the local contexts.
We test two ConvDFSMN models in the experiments, namely
ConvDFSMN-b (-base) with n = 4 and ConvDFSMN-s (-
small) with n = 2. In addition, the simplified Wave2letter
model [8] with almost the equivalent size to ConvDFSMN-
b is designed for comparison. Details of these models are
presented in Table 1. All these models are pre-trained on the
EasyASR platform [26], and fine-tuned and tested on Aishell-
1 [27]. The raw input features are the log of FBank features
(dimension = 80). Since the vocabulary size of Aishell-1 is
about 6K, the output layer dominates the size and computa-
tion, which is sensitive to quantization. Hence, we keep the
output layer as float32 (FP32) realization. We fine-tune all
ASR models for 3000 steps with the mini-batch size as 128
and use the polynomial decay of the learning rate initialized
with lr = 0.005. During fine-tuning, RSQ is applied with
β = 0.25 set in the MSE loss function in Eq. 7.

For comparison, we also realize the KL algorithm in [28]
for PTQ. The fine-tuned ASR models without RSQ are quan-
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Model Op. Type Quant. Method WER
ConvDFSMN-b∗ FP32 Wino. - 8.80%

INT8 GEMM PTQ 8.89%
INT8 Wino. PTQ 8.94%

ConvDFSMN-b INT8 Wino. RSQ† 8.76%
INT8 Wino. RSQ 8.73%

ConvDFSMN-s∗ FP32 Wino. - 10.54%
INT8 GEMM PTQ 10.62%
INT8 Wino. PTQ 10.68%

ConvDFSMN-s INT8 Wino. RSQ† 10.53%
INT8 Wino. RSQ 10.52%

Wav2letter∗ FP32 Wino. - 13.78%
INT8 GEMM PTQ 13.84%
INT8 Wino. PTQ 13.87%

Wav2letter INT8 Wino. RSQ† 13.73%
INT8 Wino. RSQ 13.71%

Table 2. Accuracy on Aishell-1 test set. Models with (*) are
fine-tuned without RSQ. RSQ with (†) means the MSE loss
is not used. Output layers are kept non-quantized. Conv1D
with k = 1 or s > 1 is realized as normal INT8 GEMM.

Model Op. Type Latency SR SR‡
ConvDFSMN-b FP32 Wino. 63.5 - -

INT8 GEMM 59.1 1.07× 1.14×
INT8 Wino. 56.9 1.12× 1.23×

ConvDFSMN-s FP32 Wino. 53.4 - -
INT8 GEMM 50.7 1.05× 1.12×
INT8 Wino. 48.6 1.10× 1.24×

Wav2letter FP32 Wino. 87.2 - -
INT8 GEMM 63.2 1.38× 1.69×
INT8 Wino. 59.1 1.48× 1.92×

Table 3. Evaluation of end-to-end inference latency (unit:
ms). Speedup ratio (SR) with (‡) means the one without the
time cost of the output layer.

tized as normal INT8 GEMM or INT8 Winograd by PTQ.
Meanwhile, the KL algorithm is applied for initializing the
quantization scales of RSQ.

The inference latency of proposed models is profiled on
the K20 Pro mobile phone with ARMv7 ISA (4 threads) and
the batch size equals to 1. The input sequence length of acous-
tic features is fixed as 600, which equals to the audio signal
of 6 seconds for real-time factor (RTF) measurement.

4.2. Experimental Results

We present the experimental results in detail. The three ASR
models are also experimented with different operator realiza-
tions and quantization methods for ablation study.
Prediction Accuracy. We take the Word Error Rate (WER)
as the evaluation metric. As demonstrated in Table 2, the
WER of ConvDFSMN is lower than Wav2letter, which in-
dicates the superiority of the ConvDFSMN model for mobile
application. Even the ConvDFSMN-s model (with 12.37M
parameters) achieves 10.5% WER on Aishell, which is lower
than the result of Wav2letter (with 17.32M parameters).

In addition, the quantized ASR models fine-tuned with
RSQ achieve better prediction performance than models

Model Kernel Shape INT8 GEMM INT8 Wino.
ConvDFSMN (3, 128, 512) 0.601 0.536 (1.12×)

(3, 128, 768) 0.898 0.788 (1.14×)
(3, 128, 1024) 0.881 0.710 (1.24×)
(15, 128, 128) 0.540 0.491 (1.10×)

Wav2letter (9, 256, 512) 3.42 2.75 (1.24×)
(13, 512, 512) 9.70 8.27 (1.17×)
(15, 512, 512) 9.29 7.13 (1.30×)

Table 4. Latency (unit: ms) of Conv1D operators with INT8
GEMM or INT8 Winograd realization. The input sequence
length of listed Conv1D operations is 150.

quantized with PTQ. Thus, the advantages of integrating
the RSQ method into fine-tuning are two-folds: i) the quan-
tization flow is simplified by omitting the extra PTQ with
the calibration-set; and ii) RSQ can act as the regularizer to
improve the prediction performance after quantization.
Inference Latency. In terms of inference latency, as shown
in Table 3, compared with the normal INT8 GEMM, the
neural networks gain further speedup with INT8 Winograd.
To quantify the acceleration, we can see that the maxi-
mum speedup of end-to-end inference of Wav2letter is about
1.48× = 87.2/59.1, while the speedup ignoring the output
layer is about 1.92× = (87.2 − 28.5)/(59.1 − 28.5), indi-
cating the valuable benefit of INT8 Winograd acceleration.
We further analyze model accuracy and inference latency at
the same time. As shown in Table 2, PTQ results with INT8
Winograd are less accurate but faster than INT8 GEMM, thus
fine-tuning with RSQ is necessary to keep prediction perfor-
mance while achieving acceleration with INT8 Winograd.
Analysis of INT8 Winograd Operators. To further verify
the acceleration of INT8 Winograd operators in detail, Table 4
gives the runtime cost of Conv1D operators used in ConvDF-
SMN and Wav2letter. From the results, we can see that the
INT8 Winograd has positive effects on the inference acceler-
ation for all used kernel sizes. However, the actual speedup
of INT8 Winograd is constrained by the ratio of computation
to memory access. Hence, Conv1D with 15×1 kernel size in
ConvDFSMN achieves 1.1× speedup, of which the theoreti-
cal speedup is 1.5×. In the future, we will further study how
to approach the theoretical speedup by better implementations
of the inference process of Conv1D blocks.

5. CONCLUSION

To facilitate real-time voice interaction on mobile devices, an
quantized Winograd optimization framework for ASR mod-
els is presented for better inference speed, which consists of
range-scaled quantization (RSQ) training and INT8 Winograd
realization. Based on the experimental results and theoret-
ical analysis, we show that the designed Conv1D equipped
ASR models can be effectively quantized and efficiently ac-
celerated with the proposed method, indicating a significant
potential for industrial applications.
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