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Abstract    BERT  is  a  representative  pre-trained  language
model  that  has  drawn  extensive  attention  for  significant
improvements  in  downstream  Natural  Language  Processing
(NLP) tasks. The complex architecture and massive parameters
bring  BERT  competitive  performance  but  also  result  in  slow
speed  at  model  inference  time.  To  speed  up  BERT  inference,
FastBERT realizes  adaptive  inference with  an acceptable  drop
in  accuracy  based  on  knowledge  distillation  and the  early-exit
technique.  However,  many  factors  may  limit  the  performance
of  FastBERT,  such  as  the  teacher  classifier  that  is  not
knowledgeable  enough,  the  batch  size  shrinkage  and  the
redundant  computation  of  student  classifiers.  To  overcome
these  limitations,  we  propose  a  new  BERT  inference  method
with  GPU-Efficient  Exit  Prediction  (GEEP).  GEEP  leverages
the shared  exit  loss to  simplify  the  training  process  of
FastBERT  from  two  steps  into  only  one  step  and  makes  the
teacher  classifier  more  knowledgeable  by  feeding  diverse
Transformer  outputs  to  the  teacher  classifier.  In  addition,  the
exit  layer  prediction technique  is  proposed  to  utilize  a  GPU
hash table  to  handle  the token-level  exit  layer  distribution and
to sort test samples by predicted exit layers. In this way, GEEP
can  avoid  batch  size  shrinkage  and  redundant  computation  of
student  classifiers.  Experimental  results  on  twelve  public
English  and  Chinese  NLP  datasets  prove  the  effectiveness  of
the  proposed  approach.  The  source  codes  of  GEEP  will  be
released to the public upon paper acceptance.
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 1    Introduction
In recent years, pre-trained language models [1−3] have drawn
extensive  attention  for  their  significant  improvements  in
downstream  Natural  Language  Processing  (NLP)  tasks.
Among these models, BERT [1] is the most representative and
inspires  a  lot  of  follow-up works  in  the  research  community.

The  complex  architecture  design  and  massive  parameters
bring superior performance to pre-trained language models but
often result  in  slow inference speed,  which limits  their  usage
in  real-world  applications.  To  improve  the  usability  of  these
models,  many  approaches  are  proposed  to  accelerate  BERT-
ish  models.  For  example,  knowledge  distillation  [4]  seeks  to
distill  knowledge from a large pre-trained teacher  model  to  a
smaller  yet  effective  student  model.  Early-exit  networks  [5]
comprise a backbone architecture and additional exit heads (or
classifiers)  along  with  the  backbone  model  layers.  In  the
inference  stage,  the  network  adaptively  chooses  an  early-exit
head to yield outputs and circumvents the rest of the model to
achieve a shorter inference time.

Recently, FastBERT [6] is proposed to integrate advantages
of  both  knowledge  distillation  and  early-exit  networks.  As
shown  in Fig. 1(a),  FastBERT  consists  of  a  backbone  and
several  branches.1) The  backbone  is  built  upon  12  layers  of
Transformer  encoders  with  an  additional  teacher  classifier,
while  the  branches  include  11  student-classifiers  to  enable
early outputs. Specifically, the model is trained in preparation
for downstream inference with three steps: (1) pre-training the
backbone or using a pre-trained backbone; (2) backbone fine-
tuning;  and  (3)  freezing  the  backbone  and  performing  a  self-
distillation  stage  to  align  each  student  classifier  with  the
teacher classifier.

ps

During  inference,  a  batch  of  data  flows  through  the
Transformer layers from the bottom to the top and is fed into
the  corresponding  student  classifiers.  The  uncertainty  of  a
student  classifier’s  output  is  computed  by  means  of  the
normalized entropy, shown as follows:
 

Uncertainty(ps) =

N∑
i=1

ps(i) log ps(i)

log
1
N

, (1)

ps Nwhere  is the distribution of output probability, and  is the
number of labeled classes. A sample with a lower uncertainty
score  than  the  pre-determined  threshold  will  yield  an  output
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without  engaging  subsequent  computation.  As  shown  in
Fig. 1(a),  we  suggest  that  FastBERT  may  have  three
deficiencies summarized below:

1.  FastBERT  seeks  to  align  student  classifiers  with  the
teacher  classifier  to  enable  early  exits.  The  student
classifier  only  has  access  to  bottom-layer  features,
while the teacher classifier deals only with the last-layer
features. The difference in feature representations from
different  layers  makes  it  challenging  to  align  student
classifiers with the teacher classifier.

3/12 = 25%
2

2.  We  observe  that  there  exists  a batch  size  shrinkage
problem in early-exit networks that may hurt the model
efficiency.  For  example,  in Fig. 1(a),  Samples  1  and  2
are  easy  samples  that  can  be  predicted  correctly  by
Student Classifier 3. Samples 3 and 4 are hard samples
where  only  the  teacher  classifier  can  generate  outputs
with high confidence. Roughly speaking, the batch size
maintains to be 4 in about  of the time. For
the  rest  of  the  time,  the  actual  batch  size  is .  This
makes it less efficient for batched computation.

3.  FastBERT suffers  from additional  computation  burden
for hard examples such as Samples 3 and 4. In general,
the  computation  of  a  Transformer  block  requires
1809.9M  FLOPS  (Floating-point  operations),  while  a

46.1M ∗11 = 507.1M

student  classifier  needs  46.1M FLOPS.  For  Samples  3
and  4,  FastBERT  incurs  a  redundant  computation  of

 FLOPS  (around  28% additional
computation) from the 11 student classifiers.

To  overcome  these  problems,  we  propose  a  new  BERT
inference method with GPU-Efficient Exit Prediction (GEEP).
First,  we  propose  a shared  exit  loss in  GEEP  to  enable  the
teacher classifier to have access to diverse Transformer layers’
outputs  instead  of  the  last  Transformer  layer.  This  can  help
better  align  student  classifiers  with  the  teacher  classifier.
Furthermore,  by  using  a  GPU  hash  table,  GEEP  efficiently
predicts  the  exit  layer  of  each  test  sample  based  on  the  exit
layer  information  of  train  samples.  During  model  inference,
GEEP groups test  instances with the same exit  layer together
to  avoid batch  size  shrinkage.  In  addition,  we  directly  skip
redundant  student  classifications  for  hard  samples  to  remove
redundant computation of student classifiers. The source code
of GEEP is available in the EasyNLP framework [7,8].

In summary, the main contributions are as follows:

1. We formally propose a novel framework named GEEP
to accelerate BERT inference.

2. GEEP leverages the shared exit loss to make the teacher
classifier  more  suitable  for  student  classifiers  to  learn

 

 
Fig. 1    (a)  FastBERT with  12 transformer  layers  and 11 early  exits.  A batch  of  four  samples  is  fed  into  the  network.  Samples  1  and 2  (easy
samples) exit at Layer 3, While Samples 3 and 4 (hard samples) exit at Layer 12. (b) The shared exit layer in our GEEP method
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from.  In  addition,  GEEP  utilizes  a  GPU  hash  table  to
handle  early-exit  layer  prediction  to  avoid batch  size
shrinkage and  redundant  computation  of  student
classifiers.

3.  Extensive  experiments  on  twelve  datasets  show  the
proposed  GEEP  approach  outperforms  competing
baselines  at  a  large  margin.  It  helps  to  achieve  ~2x
speedup  at  inference  without  sacrificing  much
performance.

The  rest  of  this  paper  is  summarized  as  follows.  Section  2
briefly  overviews  the  related  work.  Our  GEEP  framework  is
elaborated  in  Section  3.  The  experiments  are  presented  in
Section  4.  Finally,  we  draw  the  conclusion  and  discuss  the
future work in Section 5.

 2    Related work
In  this  section,  we  summarize  the  related  work  of  GEEP  on
various  aspects,  including  knowledge  distillation,  early-exit
networks, and hashing techniques for GPU.

 2.1    Knowledge distillation
Deep  neural  networks  have  been  successful  in  both  industry
and  academia  due  to  their  scalability  to  encode  massive  data
and  maneuver  billions  of  model  parameters.  However,  it  is
challenging  to  deploy  these  cumbersome  deep  models  on
devices with limited resources.

Recently,  knowledge  distillation  has  received  increasing
attention  from  researchers  [4]  since  it  realizes  model
compression  and  acceleration  by  learning  a  small  student
model  from  a  large  teacher  model.  Transferring  the
information from a large model into a small  model without a
significant  drop  in  accuracy  is  first  proposed  as  a  model
compression approach by [9].  This approach is later formally
popularized as knowledge distillation by [10].

In  vanilla  knowledge  distillation,  the  knowledge  is
transferred  from  a  teacher  model  into  other  student  models.
For example, [11] transfers knowledge from a 12-layer BERT
into  smaller  and  faster  student  models  with  fewer  layers.  In
comparison,  self-distillation  [6,12]  uses  a  single  model  in
which knowledge from the deeper sections (top layers) of the
network is distilled into its shallow sections (bottom layers).

Self-distillation enables us to set multiple exits on different
sections  or  layers  of  a  cumbersome  model  (i.e.,  BERT).  For
easy  samples,  we  can  early  exit  from  models  to  avoid  huge
computational complexity and massive storage requirements.

 2.2    Early-exit networks
Neural  networks  are  becoming  more  over-parameterized  due
to recent advances in model design [5]. Based on the fact that
not  all  inputs  need  complete  computation  to  yield  confident
outputs,  the  adaptive  inference  is  receiving  attention  as  a
prominent approach for accelerating deep neural networks.

Particularly,  early-exit  networks  do  not  introduce  extra
models  and  provide  dynamic  inference  time  in  a  wide  range
by  adjusting  the  specific  threshold,  carrying  complementary
performance gains to other efficiency optimizations [13].

In  general,  early-exit  networks  comprise  a  backbone
architecture and additional exit heads (or classifiers) along its

depth.  In  inference  mode,  a  sample  flows  through  the
backbone  and  each  exit  sequentially.  If  an  exit  criterion  is
satisfied,  the model  yields output  and circumvents the rest  of
the model. Typical methods employ the softmax of an exit to
quantify the confidence of the network for a given prediction
[6,13]. In the literature, [14] proposes an approach keeping per
class  statistics  at  each  layer.  [15]  calculate  classifiers’ trust
scores  based  on  sample  distances  to  a  calibration  set.  [16]
employ  a  policy  that  aggregates  multiple  exits  on  the  same
output. It  is worth noting that too many redundant early exits
can  yield  an  extreme  computation  load  and  achieve  a  worse
efficiency  than  the  backbone  model.  In  addition,  using  too
many early classifiers can counteract convergence during end-
to-end  training.  HASHEE  [17]  replaces  the  learn-to-exit
modules  with  hash  functions  to  assign  each  token  to  a  fixed
exiting  layer.  However,  HASHEE  does  not  introduce  extra
trainable  parameters  so  that  it  can  not  enhance  the
performance of the teacher classifier.  HASHEE also does not
verify that token-level exit information is transferable from the
training dataset to the test dataset.

 2.3    Hashing techniques for GPU
Hash  tables  are  effective  data  structures  for  manipulating
sparse  data,  with  widespread  usage  in  various  domains.
Emerging  many-core  architectures,  particularly  Graphical
Processing  Units  (GPUs)  are  specifically  designed  for  data-
parallel  computation,  in  which  the  same  operation  is
performed  by  multiple  threads  in  parallel.  To  accommodate
the oncoming shift towards large-scale sparse data processing,
GPU-based  hashing  acknowledges  these  needs  by  utilizing
lock-free shared-memory [18].

Open-addressing is an effective hash method in which a key
is  inserted  into  the  hash  table  by  searching  through  alternate
table  locations  until  a  location  is  found  to  place  the  element
[19].  [20]  develops  an  open-addressing  approach  based  on
multi-level  bounded  linear  probing,  where  the  hash  table  has
multiple levels. When an attempt of probing fails, it moves to
the  next  level  and  uses  a  different  hash  function.  In  cuckoo-
based hashing [21−23],  each key is assigned two locations in
the  hash  table,  as  specified  by  primary  and  secondary  hash
functions.  When  inserting  a  new  key,  its  first  location  is
probed with the primary function. If the slot is empty, then the
key  is  inserted,  and  the  probe  sequence  ends.  Otherwise,  a
collided key already occupies the slot, and the cuckoo eviction
procedure begins.

 3    Methodology
In  this  section,  we  elaborate  the  GEEP  technique  for  BERT
acceleration  in  detail.  Briefly  speaking,  our  GEEP  method
mainly  consists  of  two  components,  namely shared  exit  loss
and exit  layer  prediction.  In  our  work,  we  argue  that  the
performance of student classifiers can be further optimized so
that  we  can  achieve  better  accuracy  with  the  same
consumption  time.  As  there  is  a  trade-off  between speed and
accuracy, we seek to predict faster while maintaining the same
or similar accuracy.

 3.1    Preliminaries
As aforementioned, FastBERT [6] is trained in preparation for
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downstream inference with three steps: backbone pre-training,
backbone  fine-tuning,  and  self-distillation.  The  backbone
model  includes  three  parts:  the  embedding layer,  the  encoder
stacking Transformer layers [24], and the teacher classifier.

s = [w0,w1, ...,wn] nFor an input sentence  with length ,  it  is
first transformed by the embedding layer of the backbone to a
sequence of vector representations:
 

e = Embedding(s). (2)
Next,  the  Transformer  layers  in  the  encoder  perform a  layer-
by-layer feature aggregation:
 

hi = Trans f ormer_i(hi−1), (3)
hi i = 1, ...,L i

h0 = e L
L = 12

where  ( )  represents  the  output  features  at  the th
Transformer layer, and .  is the number of Transformer
layers (we have  for BERT-base).

The  output  of  the  final  Transformer  layer  is  fed  into  the
teacher classifier, which includes three layers:

768 128
1.  a  fully-connected  layer  narrowing  the  dimension  from

 to .
2. a self-attention operation joining a fully-connected layer

without changes in vector size.
so f tmax

N pt
N

3.  a  fully-connected  layer  with  a  function  pro-
jecting vectors to an -class indicator  as in Eq. (4),
where  is the task-specific number of classes:

 

pt = Teacher_Classi f ier(hL), pt ∈ RN×1. (4)
pt

pg

pt i
psi

DKL(psi ||pt) L−1

Finally,  we  use  the  cross-entropy  loss  between  and  the
ground  truth  to  optimize  the  backbone.  In  the self
distillation step, the teacher classifier produces a high-quality
soft-label  for  each  sample.  The th  student  classifier
produces  a  prediction .  The  objective  is  to  minimize  the
KL-Divergence .  As  there  are  student
classifiers in the FastBERT, the total loss is thus defined as:
 

Loss(ps1 , ..., psL−1 , pt) =
L−1∑
i=1

DKL(psi ||pt). (5)

 3.2    The design of shared exit layers
The  fundamental  problem  is  that  there  exists  a  gap  between
the teacher classifier and the student classifiers. For example,
in Fig. 1(b), for the early-exit network in Transformer Layer 3,
Student Classifier 3 seeks to learn knowledge from the teacher
classifier (as shown in the dashed line on the right side of the
figure).  Clearly,  Transformer  Layer  12  and  the  teacher
classifier  only  deal  with  the  last-layer  features  from
Transformer  Layer  11,  while  Transformer  3  and  Student
Classifier  3  only  have  access  to  the  information  from
Transformer  Layer  2.  Since  there  exists  a  gap  between
features from Transformer Layers 2 and 11 [25], it is difficult
for  the  student  classifier  to  produce  probability  distributions
that are similar to the teacher classifier.

To  avoid  this  problem,  we  employ  Transformer  Layer  12
and  the  teacher  classifier  as  the shared  exit.  The  output  of
Transformer Layer 2 is sent to Transformer Layer 12 (the bold
line on the left side of the figure) to force the teacher classifier
to make predictions based on the output of Transformer Layer
2. Then the teacher classifier is able to teach Student Classifier

3  to  make  predictions  based  on  the  output  of  Transformer
Layer  2.  Such mechanism can  be  naturally  extended to  other
Transformer  layers  so  that  we  obtain  a  new  loss  called  the
shared exit loss: 

L−1∑
i=1

CEL(pti , pg), (6)

pg

i
L
pti

where CEL refers  to  the  cross-entropy  loss  and  is  the
ground truth distribution. We construct multiple sub-networks
by  concatenating  Transformer  Layers  1  to ,  Transformer
Layer ,  and  the  teacher  classifier  sequentially.  Then  we
denote  as  the  output  of  the  teacher  classifier  in  sub-
networks.  Equation  (6)  indicates  that  the  teacher  classifier
should consider diverse Transformer outputs to make it easier
for the students to learn from.

To simplify the training process, we combine the backbone
fine-tuning step and the self-distillation step together into one
step. We combine Eq. (5) and Eq. (6) to produce a combined
loss as follows:
 

L−1∑
i=1

CEL(pti , pg)+
L−1∑
i=1

DKL(psi ||pt). (7)

stop_grad

Note that,  during the optimization of  the  KL-Divergence,  the
parameters  of  the  teacher  classifier  should  be  kept  fixed  for
the  students  to  learn  from.  To  achieve  this,  for  the  KL-
divergence  loss,  we  place  a  stop-gradient  ( )
operation on the teacher part, as shown in Eq. (8):
 

L−1∑
i=1

CEL(pti , pg)+
L−1∑
i=1

DKL
(
psi ||stop_grad(pt)

)
. (8)

We  suggest  despite  the  fact  that  Eq.  (8)  increases  the
complexity  of  the  training  process,  which  is  infrequent  and
can be done offline.

It  should  be  noted  that  in  previous  research,  residual
operators  in  the  BERT  architecture  enable  the  final
Transformer  layer  to  virtually  access  the  features  from lower
layers  [26].  However,  in  this  approach,  the final  Transformer
layer  receives  modified  low-level  features  after  self-attention
operations. In contrast, Eq. (8) lets the final Transformer layer
receive  original  features  from  low-level  layers,  which  are
exactly  encountered  by  early  exits  (including  a  low-level
Transformer layer and a student classifier). In addition, cross-
layer feeding features produce gradients through the first term
in Eq. (8), which is not affected by the stop-gradient operation
in the second term.

 3.3    Exit layer prediction

12
11

In  FastBERT,  a  token  (e.g., good)  occurs  in  multiple  input
sequences,  which  may  exit  from  one  of  classifiers  (one
teacher and  students). Modern machine learning approaches
rely on a hypothesis that the training data and the testing data
are independently and identically distributed [27].  We extend
this hypothesis as follows.

Hypothesis  1 The  token-level  exit  layer  distributions  in  the
training data and the testing data are similar.

Based  on  Hypothesis  1,  we  can  roughly  predict  the  exit
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layer  of  samples  in  the  testing  set.  Given  an  input  sequence
“very good”, we calculate the exit scores by summing up exit
layer  distributions  (obtained  from  the  training  dataset)  of
tokens  layer-by-layer.  As  in Fig. 2,  the  input  sequence very
good is  probable  to  exit  from Layer  2  which  has  the  highest
exit score.

j ∈ [1,L]
j
j

Classi f ier_i i ∈ [1,L−1]
Classi f ier_i i = L

Tpredict
Tsort Tin f erence_sorted

After predicting the exit layers of all  samples in the testing
set,  we  sort  samples  by  the  exit  layer.  We  feed  the  sorted
testing set to the model batch by batch. Obviously, samples in
one  batch  have  similar  exit  layers.  Assuming  that  the  first
sample  in  one  batch  has  an  exit  layer ,  we  force  the
model to skip student classifiers below classifier , and let all
samples  in  the  batch  exit  from  student  classifier .  This  can
help  to  skip  some  redundant  exit  computations.  The  pseudo-
code for the inference process is summarized in Algorithm 1,
where  is  the  student  classifier  with ,
and  is  the  teacher  classifier  when .  We
denote the time consumption of Steps 2,3 and 4-13 as ,

 and  respectively. We do not consider the
time consumption  of  Step  1  since  it  can  be  done  offline.  We

Tin f erenceuse  to  express  the  time  consumption  of  regular
inference on the original (unsorted) testing set.

Tin f erence_sorted
Tpredict Tsort

From  the  algorithm,  we  can  see  that  Steps  4  to  13  are
expected  to  avoid batch  size  shrinkage and  computation
of  redundant  student  classifiers.  Therefore,  the  time

 is  reduced.  However,  we  also  introduce  extra
time  consumption  and .  Overall,  if  GEEP
successfully accelerates model inference, we have:
 

Tpredict +Tsort +Tin f erence_sorted < Tin f erence. (9)

Tpredict
db db

25 = 32

To  make  sure  the  speedup  criterion  is  satisfied,  we  reduce
the  time  consumption  of  by  building  a  high-
performance  databank .  In  GEEP,  we implement  in  the
form  of  a  GPU  hash  table  using  CUDA.  We  do  not  employ
neural network approaches since they are time-consuming and
make  the  total  inference  time  longer  than  FastBERT.  As  in
Fig. 3, using a fine-tuned early-exit model to predict a sample
in  the  training  data,  the  sample  may  exit  from  Student
Classifier 4. For each token in the sample, we construct a 32-
bit  key  by  putting  the  layer  at  31  to  27  bits  (the  capacity  is

) and putting the input id at 26 to 0 bits (the input id is
provided by the tokenizer). A location is obtained by hashing
the 32-bit key modulo the size of the hash table.

The  hash  table  contains  a  key  array  and  a  value  array.  We
check the location in the key array. If it is empty, then the 32-
bit key is stored in the key array and the same location in the
value  array  increase  by  1,  i.e.,  working  as  a  counter.  If  the
location is not empty, we search the next consecutive locations
in limited steps until an empty location is found. For a sample
in the testing set, each token is combined with different layers
to  serve as  keys  to  retrieve exit  layer  frequencies  that  can be
normalized  to  a  token-level  exit  layer  distribution.  We
calculate  the exit  scores of  a  sample  by  summing  up  token-
level exit layer distributions.

A  sample  is  expected  to  exit  from  the  layer  such  that  the
layer  has  the  highest exit  score.  We  treat  the  predicted  exit
layer  as  an  adjustable  parameter.  We  will  not  let  the  GEEP
model  exit  from  the  layer  predicted  by “exit  scores”.  In
contrast, we increase or decrease the predicted layer to adjust
the accuracy and inference time of the GEEP model.

In  addition,  we  provide  an  approximate  analysis  of  the
memory consumption of the GPU hash table. In our case, the
hash table occupies:
 

32bit×2×12×50000/0.75 ≈ 6.1MB, (10)
where 2 represents the fact that the key and value both use 32
bits to store, 12 is the layer number of the BERT-base model,
50000  is  the  vocabulary  size  of  the  BERT-base  model,  and
0.75 is  the  load factor  for  the  hash table.  Based on our  well-
designed bit operations, the GPU table is small enough to co-
exist  with  the  pre-trained  model  without  modifying  the
architecture or reducing the batch size.

 4    Experimental results
In  this  section,  we  evaluate  the  performance  of  GEEP  on
various  datasets.  We also  compare  it  against  strong baselines
to prove its superiority.

 4.1    Datasets and experimental settings
To  study  the  effectiveness  of  GEEP  and  make  a  fair

 

 
Fig. 2    Exit  Layer  Distributions  for  Tokens.  (a)  Exit  layer  distribution  of
token good;  (b)  exit  layer  distribution  of  token very;  (c)  the exit  score of
sequence very good
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comparison  against  baselines,  we  report  results  on  twelve
datasets  used  by  FastBERT  [6].  The  six  Chinese  datasets
include five sentence classification tasks (ChnSentiCorp, Book
review,  Shopping  review,  Weibo,  and  THUCNews)  and  a
sentence  matching  task  LCQMC  [28].  The  six  English
datasets  (Ag.News,  Amz.F,  DBpedia,  Yahoo,  Yelp.F,  and
Yelp.P) are sentence classification tasks and were released in
[29].  The  statistics  of  the  data  splits  are  shown  in Table 1.
Considering  the  absence  of  development  sets  in  English
datasets, all development sets in both English and Chinese are
not  used,  and  the  experimental  results  are  obtained  on  the
testing  datasets.  In  the  experiments,  all  results  are  averaged
over five trials.

We compare our GEEP method against these baselines:

● BERT: We use the BERT-base model [1] that includes

12  layers,  768  hidden  dimensions,  12  attention  heads
and  110M  parameters.  For  English  datasets,  we  load
parameters  from BERT-Base,  Uncased.  For  Chinese
datasets,  we  load  parameters  from BERT-Base,
Chinese.

● FastBERT: FastBERT  [6]  integrates  advantages  of
knowledge  distillation  and  early-exit  networks.  We
employ  the  implementation  of  FastBERT  provided  by
the  authors.  As  FastBERT  shows  better  performance
than DistilBERT [11], we do not regard DistilBERT as
a strong baseline here.

In computing-related research, floating-point operations per
second  (FLOPS)  is  a  measure  of  computer  performance,
useful in fields of scientific computations that require floating-
point  calculations.  Many  studies  [30,31]  utilize  FLOPS  to
measure  the  computational  complexity  of  blocks,  layers  and
models of neural networks. Although we can roughly observe
that  larger  FLOPS  result  in  longer  inference  time.  We  argue
that the FLOPS value is not the perfect solution for measuring
model efficiency in some circumstances. Some studies transfer
partial computing load from neural networks to help functions
such  as  calculating  early-exit  criteria  and  filtering  out  easy
samples  [6].  The  time  consumption  of  these  help  functions
will  be  neglected  in  calculating  FLOPS.  Thus,  we  report  the
actual  time consumption to  study the  efficiency of  models  in
our experimental results. We train all models using the Adam
optimizer.  All  experiments  are  conducted  on  a  server  with  8
core, 32G memory and an NVIDIA V100 GPU (16G). GEEP
does  not  depend  on  a  specific  type  of  GPU.  However,  some

 

 
Fig. 3    The GPU Hash Table, with an Example of Its Processing Steps in GEEP.

 

   
Table 1    Data splits of all the datasets

Name #Train #Dev. #Test
ChnSentiCorp 9,600 1,200 1,200
Book review 20,000 10,000 10,000
Shopping review 20,000 10,000 10,000
Weibo 99,988 10,000 10,000
THUCNews 50,000 5,000 10,000
LCQMC 238,766 8,802 12,500
Ag.News 120,000 0 7,600
Amz.F 3,000,000 0 650,000
DBpedia 560,000 0 70,000
Yahoo 1,400,000 0 600,00
Yelp.F 650,000 0 50,000
Yelp.P 560,000 0 38,000
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hardware  properties  may  slightly  improve  the  GEEP
performance: (1) Larger GPU memory will improve the batch
size and speed up the training process of the Shared Exit Loss;
(2)  More  CUDA  cores  manipulating  parallelly  GPU
hashtables  will  result  in  a  shorter  time  for  computing  exit
scores. (3) We are glad to offer a list of the best GEEP settings
for various hardware (e.g., CPU, GPU, TPU) in future work.

 4.2    Detailed performance comparison
To examine the effectiveness of GEEP when a wide range of
speedup  values  are  reached,  we  present  the  comparison
between  GEEP and  baselines  in  terms  of  accuracy,  inference
time, and speedup, as shown in Table 2. Results in bold fonts
mean that our GEEP can have both faster inference speed and
higher  accuracy  at  various  speedup  times  for  the  dataset.
Among the twelve datasets, our GEEP method achieves better
results  than  FastBERT in  nine  datasets  (75% of  all  datasets),
and comparable performance for the rest of the datasets. With
a  minor  performance  drop,  i.e.,  within  1% drop  of  accuracy,
the  proposed  GEEP  manages  to  achieve  1.49x  to  2.36x
speedup  on  average  compared  to  the  original  BERT  model,
while FastBERT has around 1.39x speedup on average. If we
are  allowed  to  have  a  performance  drop  within  3% in
accuracy,  the  GEEP  method  can  achieve  2.35x  to  6.52x
speedup.  In  all,  the  results  show  that  the  proposed  GEEP
method  is  able  to  achieve  a  faster  inference  speed  than
FastBERT  and  BERT  while  maintaining  similar  model
performance in terms of accuracy.

We also present the detailed accuracy-time curves in Fig. 4

where the horizontal axis represents inference time (seconds),
and the vertical  represents  accuracy (%).  Obviously,  a  model
with  better  performance  tends  to  have  a  curve  closer  to  the
upper  part  of  the  figure.  The  results  in  the  first  and  second
rows in Fig. 4 also support the claim that our GEEP method is
effective  in  a  wide  range  of  speedups,  maintaining  better
efficiency  and  effectiveness  compared  to  FastBERT.
Specifically, with a minor performance drop (less than 1% of
accuracy),  GEEP  can  achieve  around  2x  speedup.  For  the
results  in  the  third  row,  the  performance  of  FastBERT  and
GEEP is pretty close. In general, the proposed GEEP achieves
relatively  better  performance  than  FastBERT  as  the  curves
tend to  be  closer  to  the  upper  part  of  the  figure.  Particularly,
the  GEEP  method  has  a  much  better  performance  when  the
speedup rate is high (as shown in the left part of the figures).
This  shows  it  is  helpful  for  scenarios  that  require  high
inference speedup.

 4.3    Verification of Hypothesis 1

d1 d2

Note  that  our  method  is  based  on  Hypothesis  1,  where  we
assume that the token-level exit layer distributions are similar
in training and testing sets. To verify this hypothesis, we first
compute the token-level exit layer distributions ,  for each
token  from training  data  and  testing  data,  respectively.  Next,
we  calculate  the  Jensen-Shannon  Divergence  (JSD)  for  each
token as follows:
 

JS D(d1||d2) =
1
2

KLD(d1||M)+
1
2

KLD(d2||M), (11)
   
Table 2    Comparison of accuracy (A), time (T), and speedup (S) between GEEP and the baselines over all the 12 datasets

ChnSentiCorp Book review Shopping review Weibo THUCNews LCQMC

A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup

BERT 94.50 3.66
1x 87.21 26.62

1x 96.79 26.52
1x 97.75 26.58

1x 96.69 26.56
1x 86.60 33.10

1x

FastBERT

92.00 1.50
2.44x 86.50 20.18

1.32x 96.25 11.90
2.23x 97.79 15.51

1.71x 96.59 11.97
2.22x 83.90 28.23

1.17x

90.58 0.99
3.68x 85.81 14.40

1.85x 96.08 9.64
2.75x 97.80 9.28

2.87x 96.11 6.61
4.02x 79.70 20.38

1.62x

88.92 0.70
5.23x 83.98 7.99

3.33x 95.96 8.10
3.27x 97.74 3.35

7.94x 95.21 3.90
6.81x 73.63 10.12

3.27x

GEEP

92.08 1.07
3.42x 86.52 19.64

1.36x 96.45 11.12
2.39x 97.73 15.36

1.73x 96.55 13.25
2.00x 86.40 19.29

1.72x

91.08 0.81
4.50x 86.28 10.86

2.45x 96.47 8.99
2.95x 97.80 8.94

2.97x 96.26 8.96
2.96x 85.26 11.18

2.96x

89.17 0.56
6.52x 84.09 7.02

3.79x 96.21 6.83
3.88x 97.75 4.66

5.71x 95.19 4.73
5.61x 80.52 5.85

5.66x
Ag.news Amz.F DBpedia Yahoo Yelp.F Yelp.P

A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup

BERT 94.54 20.28
1x 65.53 1717.61

1x 99.31 184.52
1x 77.34 158.28

1x 65.89 131.83
1x 95.97 100.14

1x

FastBERT

94.38 16.00
1.27x 63.34 1470.28

1.17x 99.29 43.85
4.21x 76.52 131.98

1.20x 63.29 114.89
1.15x 95.69 71.91

1.39x

93.88 10.19
1.99x 62.44 1032.32

1.66x 99.24 31.20
5.91x 75.97 105.88

1.49x 62.06 91.73
1.44x 94.99 50.94

1.97x

93.28 5.97
3.40x 61.80 598.32

2.87x 99.14 24.23
7.62x 75.51 63.95

2.48x 60.88 61.81
2.13x 94.13 35.16

2.85x

GEEP

94.52 11.69
1.73x 63.78 1428.94

1.20x 99.27 63.13
2.92x 76.99 119.60

1.32x 65.34 109.92
1.20x 95.82 67.15

1.49x

94.41 6.77
2.99x 63.64 867.25

1.98x 99.24 47.92
3.85x 77.06 93.40

1.69x 65.44 88.39
1.49x 95.44 42.46

2.36x

93.72 3.56
5.70x 62.82 447.34

3.84x 99.18 32.98
5.59x 76.69 54.25

2.92x 64.71 56.07
2.35x 94.97 26.17

3.83x
 

Lei LI et al.    Accelerating BERT inference with GPU-efficient exit prediction 7



M =
1
2

(d1+d2)
[0,1]

where  KLD  is  the  KL-Divergence  and .  The
JSD  score  lies  within  the  range ,  and  a  smaller  JSD
indicates  that  the  two  distributions  are  more  similar.
Furthermore,  we  provide  a “RANDOM” baseline  that  is
calculated as follows:
 ∑50000

i=1
JS D(d3||d4)

50000
,

(12)

50000 d3 d4where  is  a  common  vocabulary  size.  and  are
random probability vectors obtained by:
 

d3 = rand1(12)/S1. (13)
 

d4 = rand2(12)/S2, (14)
Note  that rand1(12)  and rand2(12)  are  the  functions  that
produce  12  random  values  from  the  uniform  distribution
between [0,1]. S1 is the sum of rand1(12) and S2 is the sum of
rand2(12). We then employ Eq. (12) to generate a token-level

exit  layer  distribution.  As  shown  in Table 3,  we  present  the
average of JSD for all tokens in various datasets and compare
it  with  the  RANDOM  baseline.  We  can  observe  that  all
averaged JSD scores obtained from experimental  datasets  are
much  smaller  than  the  baseline  (0.0083).  This  evidence  can
support  Hypothesis  1,  where  the  token-level  exit  layer
distributions  in  the  training  data  and  the  testing  data  are
similar.  Although  Hypothesis  1  is  highly  general  towards
downstream tasks. We also suggest that users should validate
Hypothesis 1 on their own data before deploying GEEP.

 4.4    Inference time analysis
Recall  that  the  GEEP  inference  algorithm  on  testing  sets  is
presented in Algorithm 1. We now present a deep analysis of
the time consumption of different steps during inference. The
time  distributions  w.r.t.  Algorithm  1  are  shown  in Table 4,
where  P,  I,  (s),  (%)  represent  Predict,  Inference,  seconds,
percentage  respectively.  The  time  for  sorting  is  less  than  1%
of the total time, so that is not shown in Table 4. The previous

 

 
Fig. 4    The  Accuracy-time  Curve  of  the  GEEP  and  Baselines  in  All  the  Datasets.Curves  are  made  by  connecting  points  obtained  from
experiments

 

   
Table 3    The average of JSD scores for all tokens in all the datasets

Name JSD
RANDOM 0.0083
ChnSentiCorp 0.0064
Book review 0.0066
Shopping review 0.0040
Weibo 0.0023
THUCNews 0.0031
LCQMC 0.0073
Ag.News 0.0042
Amz.F 0.0040
DBpedia 0.0008
Yahoo 0.0051
Yelp.F 0.0035
Yelp.P 0.0054
 

   
Table 4    The time distribution for the inference algorithm of GEEP

Name P/s P/% I/s I/%
ChnSentiCorp 0.22 39.22 0.34 60.44
Book review 1.83 21.01 6.85 78.85
Shopping review 1.86 39.48 2.83 60.17
Weibo 1.82 39.13 2.82 60.57
THUCNews 1.85 39.04 2.87 60.62
LCQMC 2.29 39.18 3.54 60.61
Ag.News 1.38 38.83 2.17 60.89
Amz.F 121.70 39.23 186.34 60.07
DBpedia 12.90 39.13 19.87 60.24
Yahoo 11.12 39.02 17.16 60.23
Yelp.F 9.32 39.23 14.26 60.01
Yelp.P 7.05 39.31 10.76 59.94
 

8 Front. Comput. Sci., 2024, 18(3): 183308



experimental results in Fig. 4 have already proven that GEEP
consumes less  time in  inference,  compared to  FastBERT and
the original BERT model. From Table 4, we can observe that
time  for  prediction  (i.e.,  producing  exit  scores  by  querying
GPU  hash  tables)  costs  about  40% of  the  total  time.  This
shows that  the  inference  time of  the  proposed  GEEP method
can be  further  reduced with  a  more  efficient  GPU hash  table
implementation, e.g., [23]. We leave it as future work.

 4.5    Ablation study
GEEP  has  two  major  components,  i.e.,  the exit  layer
prediction (ELP) and the shared exit  loss (SEL).  In this  part,
we proceed to present an ablation study of GEEP to examine
the relative importance of ELP and SEL. As shown in Fig. 5,
we  find  that  GEEP  w/o.  ELP  (i.e.,  only  Shared  Exit  Loss)
performs  better  in  higher  speedup  rates  (which  takes  less
time),  while  GEEP  w/o.  SEL  (i.e.,  only  GPU  Hash  Table)
performs  better  in  lower  speedup  rates  (which  takes  more
time). Overall speaking, GEEP achieves better performance on
average,  compared  to  existing  approaches.  In  addition,  the
green  line  represents  GEEP  without  Exit  Layer  Prediction,
which is equivalent to FastBERT trained by Shared Exit Loss,
which still introduces the redundant sub-classifier computation
described  in Fig. 1.  For  similar  accuracy,  it  consumes  more
time than GEEP, and its  curve is  longer on the x-axis,  which
represents inference time.

Figure 6 shows  more  detailed  performances  of  mentioned
models in this paper. Fig. 4 and Fig. 5 are derived from Fig. 6.

 4.6    Discussion for industrial applications
Furthermore, GEEP consists of two components, i.e., SEL and
ELP, that can work independently. For industrial applications,
a user can draw a performance curve similar to Fig. 5 based on

the  industrial  dataset.  Based  on  the  online  serving
requirements, the user can choose the best setting accordingly
(i.e., choosing a setting with the highest accuracy that satisfies
the time consumption requirements).

For  online  serving,  a  high  QPS  (Query  Per  Second)
application  could  obtain  higher  speedup  using  GEEP,
compared to FastBERT. Because we can treat it  as an offline
processing  task  in  a  short  time  window  (e.g.,  1  second).  For
low QPS applications (i.e., data comes in a streaming fashion),
GEEP  performs  comparable  to  or  slightly  better  than
FastBERT. As GEEP pre-computes the exit layer of the tokens
in  the  input,  this  helps  to  decide  which  layer  to  obtain  the
results.  While  FastBERT needs  to  calculate  the  sub-classifier
forwarding  and  the  normalized  cross-entropy  at  each  layer
sequentially, which consumes a bit more time.

 4.7    Cascade mode

5

We  go  through  newer  early  exit  methods  such  as
CascadeBERT  [32],  PABEE  [16],  Early  Exiting  with
Ensemble  [33],  LeeBERT  [34],  and  DeeBERT  [35].  Among
these  work,  Early  Exiting with  Ensemble  [33]  and LeeBERT
[34]  do  not  provide  the  source  code  yet.  CascadeBERT  [32]
reports that it outperforms PABEE [16] and DeeBERT [35] in
almost  all  experiments.  Thus,  we  compare  our  GEEP  with
CascadeBERT  on  three  GLUE  [36]  tasks  including  SST-2,
QNLI,  and  RTE.  CascadeBERT  integrates  a  small  BERT  (2
layers)  and  a  big  BERT  (12  layers)  so  we  build  a  GEEP
(cascade)  model  which  only  consists  of  the  transformer
backbone (with the teacher classifier) and the student classifier
2 in Fig. 1. As shown in Table 5, we report accuracy of BERT,
GEEP (cascade) and CascadeBERT. These models are trained
on the training split for  epochs, and tested on the validation

 

 
Fig. 5    Ablation study of GEEP. Curves are made by connecting points obtained from experiments
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6

2+12 = 14

split  of  corresponding  datasets.  Both  CascadeBERT  and
GEEP (cascade) are adjusted to speed up about  times. Better
accuracy values from CascadeBERT or GEEP (cascade) are in
bold.  We  can  observe  that  GEEP  (cascade)  provides
competitive  performance,  compared  to  CascadeBERT.  In
addition,  GEEP (cascade)  relies  on  fewer  parameters  since  it
includes  12  layers  transformer  but  CascadeBERT  owns

 layers. In future work, we plan to figure out a best
combination  of  cascaded  classifiers  (i.e.,  [2,6,8,12])  for  each
dataset.

 4.8    Accuracy drop and training data size

BERT−SEL

log10 (120,000) ≈ 5.07

Log10(Training Data Size)

Shared Exit Loss proposed in this paper utilizes a paradigm of
shared  parameters,  which  is  a  cost-effective  way  for  model
parameterization.  However,  shared  parameters  do  not  always
work well, especially for tasks dealing with large training data.
In  this  part,  we  try  to  figure  out  the  relation  between  the
accuracy drop and the training data size. As shown in Table 6,
we  give  accuracy  (%)  of  BERT  and  SEL  (i.e.,  BERT  with
Shared  Exit  Loss,  without  Exit  Layer  Prediction)  on  twelve
datasets.  Then  we  can  calculate  the  Accuracy  Drop  =

. The LOG10 column contains the LOG10 value
of  the  training  data  size  for  each  dataset  (see Table 1).  For
example,  the  Ag.News  dataset  includes  120,000  samples  for
training,  and  its  LOG10  value  is .  We
draw  a  point  for  each  dataset  in Fig. 7 whose x-axis  is

 (i.e.,  LOG10  values  in Table 6),

Log10(Training Data Size) 5
100,000

Log10(Training Data Size) 5

and y-axis  is  Accuracy  Drop.  We  draw  a  curve  to  fit  these
points,  and  we observe  that  this  curve  firstly  decreases  when

 is  smaller  than  about  (it  means
the  training  data  contains  about  samples).  When

 is larger than , the curve increases.

 

 
Fig. 6    Detailed performances of mentioned models in this paper

 

   
Table 5    Accuracy of GEEP (cascade) and CascadeBERT on GLUE tasks

Model SST-2/% QNLI/% RTE/%
BERT 90.37 89.60 67.10
CascadeBERT 87.84 84.49 62.09
GEEP (cascade) 86.60 85.74 61.73
 

   
Table 6    Accuracy (%) of BERT and SEL (BERT with shared exit loss)

Dataset BERT/% SEL/% LOG10
ChnSentiCorp 94.50 93.67 3.98
Book review 87.21 86.63 4.30
Shopping review 96.79 96.27 4.30
Weibo 97.75 97.73 4.99
THUCNews 96.69 96.46 4.69
LCQMC 86.60 86.51 5.37
Ag.News 94.54 94.53 5.07
Amz.F 65.53 63.84 6.47
DBpedia 99.31 99.28 5.74
Yahoo 77.34 76.91 6.14
Yelp.F 65.89 65.43 5.81
Yelp.P 95.97 95.91 5.74
 

 

 
Fig. 7    Accuracy drop and Log10(training data size)
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100,000

100,000

100,000

We  offer  a  conjectural  explanation  for  this  curve  that  when
training  data  contains  samples  less  than  and  the
Accuracy Drop is  mainly caused by insufficient  training data
and  reaching  local  optimum  with  poor  generalization.  When
training  data  contains  samples  more  than  and  the
Accuracy Drop is mainly caused by shared parameters which
limit  the  expression  power  of  the  model.  In  conclusion,  we
may  not  need  to  increase  the  parameters  of  the  Shared  Exit
when the training data contains samples less than .

 5    Conclusion
In  this  paper,  we  propose  GEEP  which  integrates  two
approaches  to  enhance  fast  adaptive  inference  of  pre-trained
language  models  such  as  BERT.  The  shared  exit  loss  makes
the  teacher  classifier  in  GEEP  more  knowledgeable,  and  the
exit  layer  prediction  avoids  batch  size  shrinkage  and
redundant  computation.  The  former  improves  model
effectiveness,  and  the  latter  improves  efficiency.  Extensive
experiments show the advantages of the GEEP method against
competitive baselines.

In “Fig. 4, we observe that GEEP (the black cure) introduces
a  drop  in  accuracy,  compared  to  the  original  BERT  (the
rhombus), for datasets, e.g., Yahoo and Amz.F. Thus, we can
confirm  that  multi-task  learning  protocol  of  the  shared  exit
loss, do harm to the model training. In future work, we will try
to enlarge the capacity of the Shared Exit and find an approach
to weight each component in the shared exit loss, for acquiring
the pareto optimality of GEEP which exits from each student
classifier.
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