
Accelerating BERT inference with GPU-efficient exit prediction

Lei LI1, Chengyu WANG2, Minghui QIU2, Cen CHEN (✉)1, Ming GAO1,3, Aoying ZHOU1

1 Shanghai Engineering Research Center of Big Data Management, School of Data Science and Engineering, East China
Normal University, Shanghai 200062, China

2 Alibaba Group, Hangzhou 311121, China
3 KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai 200062, China

 Higher Education Press 2024

Abstract BERT is a representative pre-trained language
model that has drawn extensive attention for significant
improvements in downstream Natural Language Processing
(NLP) tasks. The complex architecture and massive parameters
bring BERT competitive performance but also result in slow
speed at model inference time. To speed up BERT inference,
FastBERT realizes adaptive inference with an acceptable drop
in accuracy based on knowledge distillation and the early-exit
technique. However, many factors may limit the performance
of FastBERT, such as the teacher classifier that is not
knowledgeable enough, the batch size shrinkage and the
redundant computation of student classifiers. To overcome
these limitations, we propose a new BERT inference method
with GPU-Efficient Exit Prediction (GEEP). GEEP leverages
the shared exit loss to simplify the training process of
FastBERT from two steps into only one step and makes the
teacher classifier more knowledgeable by feeding diverse
Transformer outputs to the teacher classifier. In addition, the
exit layer prediction technique is proposed to utilize a GPU
hash table to handle the token-level exit layer distribution and
to sort test samples by predicted exit layers. In this way, GEEP
can avoid batch size shrinkage and redundant computation of
student classifiers. Experimental results on twelve public
English and Chinese NLP datasets prove the effectiveness of
the proposed approach. The source codes of GEEP will be
released to the public upon paper acceptance.

Keywords BERT, FastBERT, inference acceleration, model
distillation, early exit, text classification

 1 Introduction
In recent years, pre-trained language models [1−3] have drawn
extensive attention for their significant improvements in
downstream Natural Language Processing (NLP) tasks.
Among these models, BERT [1] is the most representative and
inspires a lot of follow-up works in the research community.

The complex architecture design and massive parameters
bring superior performance to pre-trained language models but
often result in slow inference speed, which limits their usage
in real-world applications. To improve the usability of these
models, many approaches are proposed to accelerate BERT-
ish models. For example, knowledge distillation [4] seeks to
distill knowledge from a large pre-trained teacher model to a
smaller yet effective student model. Early-exit networks [5]
comprise a backbone architecture and additional exit heads (or
classifiers) along with the backbone model layers. In the
inference stage, the network adaptively chooses an early-exit
head to yield outputs and circumvents the rest of the model to
achieve a shorter inference time.

Recently, FastBERT [6] is proposed to integrate advantages
of both knowledge distillation and early-exit networks. As
shown in Fig. 1(a), FastBERT consists of a backbone and
several branches.1) The backbone is built upon 12 layers of
Transformer encoders with an additional teacher classifier,
while the branches include 11 student-classifiers to enable
early outputs. Specifically, the model is trained in preparation
for downstream inference with three steps: (1) pre-training the
backbone or using a pre-trained backbone; (2) backbone fine-
tuning; and (3) freezing the backbone and performing a self-
distillation stage to align each student classifier with the
teacher classifier.

ps

During inference, a batch of data flows through the
Transformer layers from the bottom to the top and is fed into
the corresponding student classifiers. The uncertainty of a
student classifier’s output is computed by means of the
normalized entropy, shown as follows:

Uncertainty(ps) =

N∑
i=1

ps(i) log ps(i)

log
1
N

, (1)

ps Nwhere is the distribution of output probability, and is the
number of labeled classes. A sample with a lower uncertainty
score than the pre-determined threshold will yield an output

Received June 7, 2022; accepted November 30, 2022

E-mail: cenchen@dase.ecnu.edu.cn

Front. Comput. Sci., 2024, 18(3): 183308
https://doi.org/10.1007/s11704-022-2341-9

RESEARCH ARTICLE

1) The statistical computation in this work is primarily based on the base version of the BERT model unless otherwise specified.

https://doi.org/10.1007/s11704-022-2341-9

without engaging subsequent computation. As shown in
Fig. 1(a), we suggest that FastBERT may have three
deficiencies summarized below:

1. FastBERT seeks to align student classifiers with the
teacher classifier to enable early exits. The student
classifier only has access to bottom-layer features,
while the teacher classifier deals only with the last-layer
features. The difference in feature representations from
different layers makes it challenging to align student
classifiers with the teacher classifier.

3/12 = 25%
2

2. We observe that there exists a batch size shrinkage
problem in early-exit networks that may hurt the model
efficiency. For example, in Fig. 1(a), Samples 1 and 2
are easy samples that can be predicted correctly by
Student Classifier 3. Samples 3 and 4 are hard samples
where only the teacher classifier can generate outputs
with high confidence. Roughly speaking, the batch size
maintains to be 4 in about of the time. For
the rest of the time, the actual batch size is . This
makes it less efficient for batched computation.

3. FastBERT suffers from additional computation burden
for hard examples such as Samples 3 and 4. In general,
the computation of a Transformer block requires
1809.9M FLOPS (Floating-point operations), while a

46.1M ∗11 = 507.1M

student classifier needs 46.1M FLOPS. For Samples 3
and 4, FastBERT incurs a redundant computation of

 FLOPS (around 28% additional
computation) from the 11 student classifiers.

To overcome these problems, we propose a new BERT
inference method with GPU-Efficient Exit Prediction (GEEP).
First, we propose a shared exit loss in GEEP to enable the
teacher classifier to have access to diverse Transformer layers’
outputs instead of the last Transformer layer. This can help
better align student classifiers with the teacher classifier.
Furthermore, by using a GPU hash table, GEEP efficiently
predicts the exit layer of each test sample based on the exit
layer information of train samples. During model inference,
GEEP groups test instances with the same exit layer together
to avoid batch size shrinkage. In addition, we directly skip
redundant student classifications for hard samples to remove
redundant computation of student classifiers. The source code
of GEEP is available in the EasyNLP framework [7,8].

In summary, the main contributions are as follows:

1. We formally propose a novel framework named GEEP
to accelerate BERT inference.

2. GEEP leverages the shared exit loss to make the teacher
classifier more suitable for student classifiers to learn

Fig. 1 (a) FastBERT with 12 transformer layers and 11 early exits. A batch of four samples is fed into the network. Samples 1 and 2 (easy
samples) exit at Layer 3, While Samples 3 and 4 (hard samples) exit at Layer 12. (b) The shared exit layer in our GEEP method

2 Front. Comput. Sci., 2024, 18(3): 183308

from. In addition, GEEP utilizes a GPU hash table to
handle early-exit layer prediction to avoid batch size
shrinkage and redundant computation of student
classifiers.

3. Extensive experiments on twelve datasets show the
proposed GEEP approach outperforms competing
baselines at a large margin. It helps to achieve ~2x
speedup at inference without sacrificing much
performance.

The rest of this paper is summarized as follows. Section 2
briefly overviews the related work. Our GEEP framework is
elaborated in Section 3. The experiments are presented in
Section 4. Finally, we draw the conclusion and discuss the
future work in Section 5.

 2 Related work
In this section, we summarize the related work of GEEP on
various aspects, including knowledge distillation, early-exit
networks, and hashing techniques for GPU.

 2.1 Knowledge distillation
Deep neural networks have been successful in both industry
and academia due to their scalability to encode massive data
and maneuver billions of model parameters. However, it is
challenging to deploy these cumbersome deep models on
devices with limited resources.

Recently, knowledge distillation has received increasing
attention from researchers [4] since it realizes model
compression and acceleration by learning a small student
model from a large teacher model. Transferring the
information from a large model into a small model without a
significant drop in accuracy is first proposed as a model
compression approach by [9]. This approach is later formally
popularized as knowledge distillation by [10].

In vanilla knowledge distillation, the knowledge is
transferred from a teacher model into other student models.
For example, [11] transfers knowledge from a 12-layer BERT
into smaller and faster student models with fewer layers. In
comparison, self-distillation [6,12] uses a single model in
which knowledge from the deeper sections (top layers) of the
network is distilled into its shallow sections (bottom layers).

Self-distillation enables us to set multiple exits on different
sections or layers of a cumbersome model (i.e., BERT). For
easy samples, we can early exit from models to avoid huge
computational complexity and massive storage requirements.

 2.2 Early-exit networks
Neural networks are becoming more over-parameterized due
to recent advances in model design [5]. Based on the fact that
not all inputs need complete computation to yield confident
outputs, the adaptive inference is receiving attention as a
prominent approach for accelerating deep neural networks.

Particularly, early-exit networks do not introduce extra
models and provide dynamic inference time in a wide range
by adjusting the specific threshold, carrying complementary
performance gains to other efficiency optimizations [13].

In general, early-exit networks comprise a backbone
architecture and additional exit heads (or classifiers) along its

depth. In inference mode, a sample flows through the
backbone and each exit sequentially. If an exit criterion is
satisfied, the model yields output and circumvents the rest of
the model. Typical methods employ the softmax of an exit to
quantify the confidence of the network for a given prediction
[6,13]. In the literature, [14] proposes an approach keeping per
class statistics at each layer. [15] calculate classifiers’ trust
scores based on sample distances to a calibration set. [16]
employ a policy that aggregates multiple exits on the same
output. It is worth noting that too many redundant early exits
can yield an extreme computation load and achieve a worse
efficiency than the backbone model. In addition, using too
many early classifiers can counteract convergence during end-
to-end training. HASHEE [17] replaces the learn-to-exit
modules with hash functions to assign each token to a fixed
exiting layer. However, HASHEE does not introduce extra
trainable parameters so that it can not enhance the
performance of the teacher classifier. HASHEE also does not
verify that token-level exit information is transferable from the
training dataset to the test dataset.

 2.3 Hashing techniques for GPU
Hash tables are effective data structures for manipulating
sparse data, with widespread usage in various domains.
Emerging many-core architectures, particularly Graphical
Processing Units (GPUs) are specifically designed for data-
parallel computation, in which the same operation is
performed by multiple threads in parallel. To accommodate
the oncoming shift towards large-scale sparse data processing,
GPU-based hashing acknowledges these needs by utilizing
lock-free shared-memory [18].

Open-addressing is an effective hash method in which a key
is inserted into the hash table by searching through alternate
table locations until a location is found to place the element
[19]. [20] develops an open-addressing approach based on
multi-level bounded linear probing, where the hash table has
multiple levels. When an attempt of probing fails, it moves to
the next level and uses a different hash function. In cuckoo-
based hashing [21−23], each key is assigned two locations in
the hash table, as specified by primary and secondary hash
functions. When inserting a new key, its first location is
probed with the primary function. If the slot is empty, then the
key is inserted, and the probe sequence ends. Otherwise, a
collided key already occupies the slot, and the cuckoo eviction
procedure begins.

 3 Methodology
In this section, we elaborate the GEEP technique for BERT
acceleration in detail. Briefly speaking, our GEEP method
mainly consists of two components, namely shared exit loss
and exit layer prediction. In our work, we argue that the
performance of student classifiers can be further optimized so
that we can achieve better accuracy with the same
consumption time. As there is a trade-off between speed and
accuracy, we seek to predict faster while maintaining the same
or similar accuracy.

 3.1 Preliminaries
As aforementioned, FastBERT [6] is trained in preparation for

Lei LI et al. Accelerating BERT inference with GPU-efficient exit prediction 3

downstream inference with three steps: backbone pre-training,
backbone fine-tuning, and self-distillation. The backbone
model includes three parts: the embedding layer, the encoder
stacking Transformer layers [24], and the teacher classifier.

s = [w0,w1, ...,wn] nFor an input sentence with length , it is
first transformed by the embedding layer of the backbone to a
sequence of vector representations:

e = Embedding(s). (2)
Next, the Transformer layers in the encoder perform a layer-
by-layer feature aggregation:

hi = Trans f ormer_i(hi−1), (3)
hi i = 1, ...,L i

h0 = e L
L = 12

where () represents the output features at the th
Transformer layer, and . is the number of Transformer
layers (we have for BERT-base).

The output of the final Transformer layer is fed into the
teacher classifier, which includes three layers:

768 128
1. a fully-connected layer narrowing the dimension from

 to .
2. a self-attention operation joining a fully-connected layer

without changes in vector size.
so f tmax

N pt
N

3. a fully-connected layer with a function pro-
jecting vectors to an -class indicator as in Eq. (4),
where is the task-specific number of classes:

pt = Teacher_Classi f ier(hL), pt ∈ RN×1. (4)
pt

pg

pt i
psi

DKL(psi ||pt) L−1

Finally, we use the cross-entropy loss between and the
ground truth to optimize the backbone. In the self
distillation step, the teacher classifier produces a high-quality
soft-label for each sample. The th student classifier
produces a prediction . The objective is to minimize the
KL-Divergence . As there are student
classifiers in the FastBERT, the total loss is thus defined as:

Loss(ps1 , ..., psL−1 , pt) =
L−1∑
i=1

DKL(psi ||pt). (5)

 3.2 The design of shared exit layers
The fundamental problem is that there exists a gap between
the teacher classifier and the student classifiers. For example,
in Fig. 1(b), for the early-exit network in Transformer Layer 3,
Student Classifier 3 seeks to learn knowledge from the teacher
classifier (as shown in the dashed line on the right side of the
figure). Clearly, Transformer Layer 12 and the teacher
classifier only deal with the last-layer features from
Transformer Layer 11, while Transformer 3 and Student
Classifier 3 only have access to the information from
Transformer Layer 2. Since there exists a gap between
features from Transformer Layers 2 and 11 [25], it is difficult
for the student classifier to produce probability distributions
that are similar to the teacher classifier.

To avoid this problem, we employ Transformer Layer 12
and the teacher classifier as the shared exit. The output of
Transformer Layer 2 is sent to Transformer Layer 12 (the bold
line on the left side of the figure) to force the teacher classifier
to make predictions based on the output of Transformer Layer
2. Then the teacher classifier is able to teach Student Classifier

3 to make predictions based on the output of Transformer
Layer 2. Such mechanism can be naturally extended to other
Transformer layers so that we obtain a new loss called the
shared exit loss:

L−1∑
i=1

CEL(pti , pg), (6)

pg

i
L
pti

where CEL refers to the cross-entropy loss and is the
ground truth distribution. We construct multiple sub-networks
by concatenating Transformer Layers 1 to , Transformer
Layer , and the teacher classifier sequentially. Then we
denote as the output of the teacher classifier in sub-
networks. Equation (6) indicates that the teacher classifier
should consider diverse Transformer outputs to make it easier
for the students to learn from.

To simplify the training process, we combine the backbone
fine-tuning step and the self-distillation step together into one
step. We combine Eq. (5) and Eq. (6) to produce a combined
loss as follows:

L−1∑
i=1

CEL(pti , pg)+
L−1∑
i=1

DKL(psi ||pt). (7)

stop_grad

Note that, during the optimization of the KL-Divergence, the
parameters of the teacher classifier should be kept fixed for
the students to learn from. To achieve this, for the KL-
divergence loss, we place a stop-gradient ()
operation on the teacher part, as shown in Eq. (8):

L−1∑
i=1

CEL(pti , pg)+
L−1∑
i=1

DKL
(
psi ||stop_grad(pt)

)
. (8)

We suggest despite the fact that Eq. (8) increases the
complexity of the training process, which is infrequent and
can be done offline.

It should be noted that in previous research, residual
operators in the BERT architecture enable the final
Transformer layer to virtually access the features from lower
layers [26]. However, in this approach, the final Transformer
layer receives modified low-level features after self-attention
operations. In contrast, Eq. (8) lets the final Transformer layer
receive original features from low-level layers, which are
exactly encountered by early exits (including a low-level
Transformer layer and a student classifier). In addition, cross-
layer feeding features produce gradients through the first term
in Eq. (8), which is not affected by the stop-gradient operation
in the second term.

 3.3 Exit layer prediction

12
11

In FastBERT, a token (e.g., good) occurs in multiple input
sequences, which may exit from one of classifiers (one
teacher and students). Modern machine learning approaches
rely on a hypothesis that the training data and the testing data
are independently and identically distributed [27]. We extend
this hypothesis as follows.

Hypothesis 1 The token-level exit layer distributions in the
training data and the testing data are similar.

Based on Hypothesis 1, we can roughly predict the exit

4 Front. Comput. Sci., 2024, 18(3): 183308

layer of samples in the testing set. Given an input sequence
“very good”, we calculate the exit scores by summing up exit
layer distributions (obtained from the training dataset) of
tokens layer-by-layer. As in Fig. 2, the input sequence very
good is probable to exit from Layer 2 which has the highest
exit score.

j ∈ [1,L]
j
j

Classi f ier_i i ∈ [1,L−1]
Classi f ier_i i = L

Tpredict
Tsort Tin f erence_sorted

After predicting the exit layers of all samples in the testing
set, we sort samples by the exit layer. We feed the sorted
testing set to the model batch by batch. Obviously, samples in
one batch have similar exit layers. Assuming that the first
sample in one batch has an exit layer , we force the
model to skip student classifiers below classifier , and let all
samples in the batch exit from student classifier . This can
help to skip some redundant exit computations. The pseudo-
code for the inference process is summarized in Algorithm 1,
where is the student classifier with ,
and is the teacher classifier when . We
denote the time consumption of Steps 2,3 and 4-13 as ,

 and respectively. We do not consider the
time consumption of Step 1 since it can be done offline. We

Tin f erenceuse to express the time consumption of regular
inference on the original (unsorted) testing set.

Tin f erence_sorted
Tpredict Tsort

From the algorithm, we can see that Steps 4 to 13 are
expected to avoid batch size shrinkage and computation
of redundant student classifiers. Therefore, the time

 is reduced. However, we also introduce extra
time consumption and . Overall, if GEEP
successfully accelerates model inference, we have:

Tpredict +Tsort +Tin f erence_sorted < Tin f erence. (9)

Tpredict
db db

25 = 32

To make sure the speedup criterion is satisfied, we reduce
the time consumption of by building a high-
performance databank . In GEEP, we implement in the
form of a GPU hash table using CUDA. We do not employ
neural network approaches since they are time-consuming and
make the total inference time longer than FastBERT. As in
Fig. 3, using a fine-tuned early-exit model to predict a sample
in the training data, the sample may exit from Student
Classifier 4. For each token in the sample, we construct a 32-
bit key by putting the layer at 31 to 27 bits (the capacity is

) and putting the input id at 26 to 0 bits (the input id is
provided by the tokenizer). A location is obtained by hashing
the 32-bit key modulo the size of the hash table.

The hash table contains a key array and a value array. We
check the location in the key array. If it is empty, then the 32-
bit key is stored in the key array and the same location in the
value array increase by 1, i.e., working as a counter. If the
location is not empty, we search the next consecutive locations
in limited steps until an empty location is found. For a sample
in the testing set, each token is combined with different layers
to serve as keys to retrieve exit layer frequencies that can be
normalized to a token-level exit layer distribution. We
calculate the exit scores of a sample by summing up token-
level exit layer distributions.

A sample is expected to exit from the layer such that the
layer has the highest exit score. We treat the predicted exit
layer as an adjustable parameter. We will not let the GEEP
model exit from the layer predicted by “exit scores”. In
contrast, we increase or decrease the predicted layer to adjust
the accuracy and inference time of the GEEP model.

In addition, we provide an approximate analysis of the
memory consumption of the GPU hash table. In our case, the
hash table occupies:

32bit×2×12×50000/0.75 ≈ 6.1MB, (10)
where 2 represents the fact that the key and value both use 32
bits to store, 12 is the layer number of the BERT-base model,
50000 is the vocabulary size of the BERT-base model, and
0.75 is the load factor for the hash table. Based on our well-
designed bit operations, the GPU table is small enough to co-
exist with the pre-trained model without modifying the
architecture or reducing the batch size.

 4 Experimental results
In this section, we evaluate the performance of GEEP on
various datasets. We also compare it against strong baselines
to prove its superiority.

 4.1 Datasets and experimental settings
To study the effectiveness of GEEP and make a fair

Fig. 2 Exit Layer Distributions for Tokens. (a) Exit layer distribution of
token good; (b) exit layer distribution of token very; (c) the exit score of
sequence very good

Lei LI et al. Accelerating BERT inference with GPU-efficient exit prediction 5

comparison against baselines, we report results on twelve
datasets used by FastBERT [6]. The six Chinese datasets
include five sentence classification tasks (ChnSentiCorp, Book
review, Shopping review, Weibo, and THUCNews) and a
sentence matching task LCQMC [28]. The six English
datasets (Ag.News, Amz.F, DBpedia, Yahoo, Yelp.F, and
Yelp.P) are sentence classification tasks and were released in
[29]. The statistics of the data splits are shown in Table 1.
Considering the absence of development sets in English
datasets, all development sets in both English and Chinese are
not used, and the experimental results are obtained on the
testing datasets. In the experiments, all results are averaged
over five trials.

We compare our GEEP method against these baselines:

● BERT: We use the BERT-base model [1] that includes

12 layers, 768 hidden dimensions, 12 attention heads
and 110M parameters. For English datasets, we load
parameters from BERT-Base, Uncased. For Chinese
datasets, we load parameters from BERT-Base,
Chinese.

● FastBERT: FastBERT [6] integrates advantages of
knowledge distillation and early-exit networks. We
employ the implementation of FastBERT provided by
the authors. As FastBERT shows better performance
than DistilBERT [11], we do not regard DistilBERT as
a strong baseline here.

In computing-related research, floating-point operations per
second (FLOPS) is a measure of computer performance,
useful in fields of scientific computations that require floating-
point calculations. Many studies [30,31] utilize FLOPS to
measure the computational complexity of blocks, layers and
models of neural networks. Although we can roughly observe
that larger FLOPS result in longer inference time. We argue
that the FLOPS value is not the perfect solution for measuring
model efficiency in some circumstances. Some studies transfer
partial computing load from neural networks to help functions
such as calculating early-exit criteria and filtering out easy
samples [6]. The time consumption of these help functions
will be neglected in calculating FLOPS. Thus, we report the
actual time consumption to study the efficiency of models in
our experimental results. We train all models using the Adam
optimizer. All experiments are conducted on a server with 8
core, 32G memory and an NVIDIA V100 GPU (16G). GEEP
does not depend on a specific type of GPU. However, some

Fig. 3 The GPU Hash Table, with an Example of Its Processing Steps in GEEP.

Table 1 Data splits of all the datasets

Name #Train #Dev. #Test
ChnSentiCorp 9,600 1,200 1,200
Book review 20,000 10,000 10,000
Shopping review 20,000 10,000 10,000
Weibo 99,988 10,000 10,000
THUCNews 50,000 5,000 10,000
LCQMC 238,766 8,802 12,500
Ag.News 120,000 0 7,600
Amz.F 3,000,000 0 650,000
DBpedia 560,000 0 70,000
Yahoo 1,400,000 0 600,00
Yelp.F 650,000 0 50,000
Yelp.P 560,000 0 38,000

6 Front. Comput. Sci., 2024, 18(3): 183308

hardware properties may slightly improve the GEEP
performance: (1) Larger GPU memory will improve the batch
size and speed up the training process of the Shared Exit Loss;
(2) More CUDA cores manipulating parallelly GPU
hashtables will result in a shorter time for computing exit
scores. (3) We are glad to offer a list of the best GEEP settings
for various hardware (e.g., CPU, GPU, TPU) in future work.

 4.2 Detailed performance comparison
To examine the effectiveness of GEEP when a wide range of
speedup values are reached, we present the comparison
between GEEP and baselines in terms of accuracy, inference
time, and speedup, as shown in Table 2. Results in bold fonts
mean that our GEEP can have both faster inference speed and
higher accuracy at various speedup times for the dataset.
Among the twelve datasets, our GEEP method achieves better
results than FastBERT in nine datasets (75% of all datasets),
and comparable performance for the rest of the datasets. With
a minor performance drop, i.e., within 1% drop of accuracy,
the proposed GEEP manages to achieve 1.49x to 2.36x
speedup on average compared to the original BERT model,
while FastBERT has around 1.39x speedup on average. If we
are allowed to have a performance drop within 3% in
accuracy, the GEEP method can achieve 2.35x to 6.52x
speedup. In all, the results show that the proposed GEEP
method is able to achieve a faster inference speed than
FastBERT and BERT while maintaining similar model
performance in terms of accuracy.

We also present the detailed accuracy-time curves in Fig. 4

where the horizontal axis represents inference time (seconds),
and the vertical represents accuracy (%). Obviously, a model
with better performance tends to have a curve closer to the
upper part of the figure. The results in the first and second
rows in Fig. 4 also support the claim that our GEEP method is
effective in a wide range of speedups, maintaining better
efficiency and effectiveness compared to FastBERT.
Specifically, with a minor performance drop (less than 1% of
accuracy), GEEP can achieve around 2x speedup. For the
results in the third row, the performance of FastBERT and
GEEP is pretty close. In general, the proposed GEEP achieves
relatively better performance than FastBERT as the curves
tend to be closer to the upper part of the figure. Particularly,
the GEEP method has a much better performance when the
speedup rate is high (as shown in the left part of the figures).
This shows it is helpful for scenarios that require high
inference speedup.

 4.3 Verification of Hypothesis 1

d1 d2

Note that our method is based on Hypothesis 1, where we
assume that the token-level exit layer distributions are similar
in training and testing sets. To verify this hypothesis, we first
compute the token-level exit layer distributions , for each
token from training data and testing data, respectively. Next,
we calculate the Jensen-Shannon Divergence (JSD) for each
token as follows:

JS D(d1||d2) =
1
2

KLD(d1||M)+
1
2

KLD(d2||M), (11)

Table 2 Comparison of accuracy (A), time (T), and speedup (S) between GEEP and the baselines over all the 12 datasets

ChnSentiCorp Book review Shopping review Weibo THUCNews LCQMC

A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup

BERT 94.50 3.66
1x 87.21 26.62

1x 96.79 26.52
1x 97.75 26.58

1x 96.69 26.56
1x 86.60 33.10

1x

FastBERT

92.00 1.50
2.44x 86.50 20.18

1.32x 96.25 11.90
2.23x 97.79 15.51

1.71x 96.59 11.97
2.22x 83.90 28.23

1.17x

90.58 0.99
3.68x 85.81 14.40

1.85x 96.08 9.64
2.75x 97.80 9.28

2.87x 96.11 6.61
4.02x 79.70 20.38

1.62x

88.92 0.70
5.23x 83.98 7.99

3.33x 95.96 8.10
3.27x 97.74 3.35

7.94x 95.21 3.90
6.81x 73.63 10.12

3.27x

GEEP

92.08 1.07
3.42x 86.52 19.64

1.36x 96.45 11.12
2.39x 97.73 15.36

1.73x 96.55 13.25
2.00x 86.40 19.29

1.72x

91.08 0.81
4.50x 86.28 10.86

2.45x 96.47 8.99
2.95x 97.80 8.94

2.97x 96.26 8.96
2.96x 85.26 11.18

2.96x

89.17 0.56
6.52x 84.09 7.02

3.79x 96.21 6.83
3.88x 97.75 4.66

5.71x 95.19 4.73
5.61x 80.52 5.85

5.66x
Ag.news Amz.F DBpedia Yahoo Yelp.F Yelp.P

A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup A/% T/s
Speedup A/% T/s

Speedup

BERT 94.54 20.28
1x 65.53 1717.61

1x 99.31 184.52
1x 77.34 158.28

1x 65.89 131.83
1x 95.97 100.14

1x

FastBERT

94.38 16.00
1.27x 63.34 1470.28

1.17x 99.29 43.85
4.21x 76.52 131.98

1.20x 63.29 114.89
1.15x 95.69 71.91

1.39x

93.88 10.19
1.99x 62.44 1032.32

1.66x 99.24 31.20
5.91x 75.97 105.88

1.49x 62.06 91.73
1.44x 94.99 50.94

1.97x

93.28 5.97
3.40x 61.80 598.32

2.87x 99.14 24.23
7.62x 75.51 63.95

2.48x 60.88 61.81
2.13x 94.13 35.16

2.85x

GEEP

94.52 11.69
1.73x 63.78 1428.94

1.20x 99.27 63.13
2.92x 76.99 119.60

1.32x 65.34 109.92
1.20x 95.82 67.15

1.49x

94.41 6.77
2.99x 63.64 867.25

1.98x 99.24 47.92
3.85x 77.06 93.40

1.69x 65.44 88.39
1.49x 95.44 42.46

2.36x

93.72 3.56
5.70x 62.82 447.34

3.84x 99.18 32.98
5.59x 76.69 54.25

2.92x 64.71 56.07
2.35x 94.97 26.17

3.83x

Lei LI et al. Accelerating BERT inference with GPU-efficient exit prediction 7

M =
1
2

(d1+d2)
[0,1]

where KLD is the KL-Divergence and . The
JSD score lies within the range , and a smaller JSD
indicates that the two distributions are more similar.
Furthermore, we provide a “RANDOM” baseline that is
calculated as follows:
 ∑50000

i=1
JS D(d3||d4)

50000
,

(12)

50000 d3 d4where is a common vocabulary size. and are
random probability vectors obtained by:

d3 = rand1(12)/S1. (13)

d4 = rand2(12)/S2, (14)
Note that rand1(12) and rand2(12) are the functions that
produce 12 random values from the uniform distribution
between [0,1]. S1 is the sum of rand1(12) and S2 is the sum of
rand2(12). We then employ Eq. (12) to generate a token-level

exit layer distribution. As shown in Table 3, we present the
average of JSD for all tokens in various datasets and compare
it with the RANDOM baseline. We can observe that all
averaged JSD scores obtained from experimental datasets are
much smaller than the baseline (0.0083). This evidence can
support Hypothesis 1, where the token-level exit layer
distributions in the training data and the testing data are
similar. Although Hypothesis 1 is highly general towards
downstream tasks. We also suggest that users should validate
Hypothesis 1 on their own data before deploying GEEP.

 4.4 Inference time analysis
Recall that the GEEP inference algorithm on testing sets is
presented in Algorithm 1. We now present a deep analysis of
the time consumption of different steps during inference. The
time distributions w.r.t. Algorithm 1 are shown in Table 4,
where P, I, (s), (%) represent Predict, Inference, seconds,
percentage respectively. The time for sorting is less than 1%
of the total time, so that is not shown in Table 4. The previous

Fig. 4 The Accuracy-time Curve of the GEEP and Baselines in All the Datasets.Curves are made by connecting points obtained from
experiments

Table 3 The average of JSD scores for all tokens in all the datasets

Name JSD
RANDOM 0.0083
ChnSentiCorp 0.0064
Book review 0.0066
Shopping review 0.0040
Weibo 0.0023
THUCNews 0.0031
LCQMC 0.0073
Ag.News 0.0042
Amz.F 0.0040
DBpedia 0.0008
Yahoo 0.0051
Yelp.F 0.0035
Yelp.P 0.0054

Table 4 The time distribution for the inference algorithm of GEEP

Name P/s P/% I/s I/%
ChnSentiCorp 0.22 39.22 0.34 60.44
Book review 1.83 21.01 6.85 78.85
Shopping review 1.86 39.48 2.83 60.17
Weibo 1.82 39.13 2.82 60.57
THUCNews 1.85 39.04 2.87 60.62
LCQMC 2.29 39.18 3.54 60.61
Ag.News 1.38 38.83 2.17 60.89
Amz.F 121.70 39.23 186.34 60.07
DBpedia 12.90 39.13 19.87 60.24
Yahoo 11.12 39.02 17.16 60.23
Yelp.F 9.32 39.23 14.26 60.01
Yelp.P 7.05 39.31 10.76 59.94

8 Front. Comput. Sci., 2024, 18(3): 183308

experimental results in Fig. 4 have already proven that GEEP
consumes less time in inference, compared to FastBERT and
the original BERT model. From Table 4, we can observe that
time for prediction (i.e., producing exit scores by querying
GPU hash tables) costs about 40% of the total time. This
shows that the inference time of the proposed GEEP method
can be further reduced with a more efficient GPU hash table
implementation, e.g., [23]. We leave it as future work.

 4.5 Ablation study
GEEP has two major components, i.e., the exit layer
prediction (ELP) and the shared exit loss (SEL). In this part,
we proceed to present an ablation study of GEEP to examine
the relative importance of ELP and SEL. As shown in Fig. 5,
we find that GEEP w/o. ELP (i.e., only Shared Exit Loss)
performs better in higher speedup rates (which takes less
time), while GEEP w/o. SEL (i.e., only GPU Hash Table)
performs better in lower speedup rates (which takes more
time). Overall speaking, GEEP achieves better performance on
average, compared to existing approaches. In addition, the
green line represents GEEP without Exit Layer Prediction,
which is equivalent to FastBERT trained by Shared Exit Loss,
which still introduces the redundant sub-classifier computation
described in Fig. 1. For similar accuracy, it consumes more
time than GEEP, and its curve is longer on the x-axis, which
represents inference time.

Figure 6 shows more detailed performances of mentioned
models in this paper. Fig. 4 and Fig. 5 are derived from Fig. 6.

 4.6 Discussion for industrial applications
Furthermore, GEEP consists of two components, i.e., SEL and
ELP, that can work independently. For industrial applications,
a user can draw a performance curve similar to Fig. 5 based on

the industrial dataset. Based on the online serving
requirements, the user can choose the best setting accordingly
(i.e., choosing a setting with the highest accuracy that satisfies
the time consumption requirements).

For online serving, a high QPS (Query Per Second)
application could obtain higher speedup using GEEP,
compared to FastBERT. Because we can treat it as an offline
processing task in a short time window (e.g., 1 second). For
low QPS applications (i.e., data comes in a streaming fashion),
GEEP performs comparable to or slightly better than
FastBERT. As GEEP pre-computes the exit layer of the tokens
in the input, this helps to decide which layer to obtain the
results. While FastBERT needs to calculate the sub-classifier
forwarding and the normalized cross-entropy at each layer
sequentially, which consumes a bit more time.

 4.7 Cascade mode

5

We go through newer early exit methods such as
CascadeBERT [32], PABEE [16], Early Exiting with
Ensemble [33], LeeBERT [34], and DeeBERT [35]. Among
these work, Early Exiting with Ensemble [33] and LeeBERT
[34] do not provide the source code yet. CascadeBERT [32]
reports that it outperforms PABEE [16] and DeeBERT [35] in
almost all experiments. Thus, we compare our GEEP with
CascadeBERT on three GLUE [36] tasks including SST-2,
QNLI, and RTE. CascadeBERT integrates a small BERT (2
layers) and a big BERT (12 layers) so we build a GEEP
(cascade) model which only consists of the transformer
backbone (with the teacher classifier) and the student classifier
2 in Fig. 1. As shown in Table 5, we report accuracy of BERT,
GEEP (cascade) and CascadeBERT. These models are trained
on the training split for epochs, and tested on the validation

Fig. 5 Ablation study of GEEP. Curves are made by connecting points obtained from experiments

Lei LI et al. Accelerating BERT inference with GPU-efficient exit prediction 9

6

2+12 = 14

split of corresponding datasets. Both CascadeBERT and
GEEP (cascade) are adjusted to speed up about times. Better
accuracy values from CascadeBERT or GEEP (cascade) are in
bold. We can observe that GEEP (cascade) provides
competitive performance, compared to CascadeBERT. In
addition, GEEP (cascade) relies on fewer parameters since it
includes 12 layers transformer but CascadeBERT owns

 layers. In future work, we plan to figure out a best
combination of cascaded classifiers (i.e., [2,6,8,12]) for each
dataset.

 4.8 Accuracy drop and training data size

BERT−SEL

log10 (120,000) ≈ 5.07

Log10(Training Data Size)

Shared Exit Loss proposed in this paper utilizes a paradigm of
shared parameters, which is a cost-effective way for model
parameterization. However, shared parameters do not always
work well, especially for tasks dealing with large training data.
In this part, we try to figure out the relation between the
accuracy drop and the training data size. As shown in Table 6,
we give accuracy (%) of BERT and SEL (i.e., BERT with
Shared Exit Loss, without Exit Layer Prediction) on twelve
datasets. Then we can calculate the Accuracy Drop =

. The LOG10 column contains the LOG10 value
of the training data size for each dataset (see Table 1). For
example, the Ag.News dataset includes 120,000 samples for
training, and its LOG10 value is . We
draw a point for each dataset in Fig. 7 whose x-axis is

 (i.e., LOG10 values in Table 6),

Log10(Training Data Size) 5
100,000

Log10(Training Data Size) 5

and y-axis is Accuracy Drop. We draw a curve to fit these
points, and we observe that this curve firstly decreases when

 is smaller than about (it means
the training data contains about samples). When

 is larger than , the curve increases.

Fig. 6 Detailed performances of mentioned models in this paper

Table 5 Accuracy of GEEP (cascade) and CascadeBERT on GLUE tasks

Model SST-2/% QNLI/% RTE/%
BERT 90.37 89.60 67.10
CascadeBERT 87.84 84.49 62.09
GEEP (cascade) 86.60 85.74 61.73

Table 6 Accuracy (%) of BERT and SEL (BERT with shared exit loss)

Dataset BERT/% SEL/% LOG10
ChnSentiCorp 94.50 93.67 3.98
Book review 87.21 86.63 4.30
Shopping review 96.79 96.27 4.30
Weibo 97.75 97.73 4.99
THUCNews 96.69 96.46 4.69
LCQMC 86.60 86.51 5.37
Ag.News 94.54 94.53 5.07
Amz.F 65.53 63.84 6.47
DBpedia 99.31 99.28 5.74
Yahoo 77.34 76.91 6.14
Yelp.F 65.89 65.43 5.81
Yelp.P 95.97 95.91 5.74

Fig. 7 Accuracy drop and Log10(training data size)

10 Front. Comput. Sci., 2024, 18(3): 183308

100,000

100,000

100,000

We offer a conjectural explanation for this curve that when
training data contains samples less than and the
Accuracy Drop is mainly caused by insufficient training data
and reaching local optimum with poor generalization. When
training data contains samples more than and the
Accuracy Drop is mainly caused by shared parameters which
limit the expression power of the model. In conclusion, we
may not need to increase the parameters of the Shared Exit
when the training data contains samples less than .

 5 Conclusion
In this paper, we propose GEEP which integrates two
approaches to enhance fast adaptive inference of pre-trained
language models such as BERT. The shared exit loss makes
the teacher classifier in GEEP more knowledgeable, and the
exit layer prediction avoids batch size shrinkage and
redundant computation. The former improves model
effectiveness, and the latter improves efficiency. Extensive
experiments show the advantages of the GEEP method against
competitive baselines.

In “Fig. 4, we observe that GEEP (the black cure) introduces
a drop in accuracy, compared to the original BERT (the
rhombus), for datasets, e.g., Yahoo and Amz.F. Thus, we can
confirm that multi-task learning protocol of the shared exit
loss, do harm to the model training. In future work, we will try
to enlarge the capacity of the Shared Exit and find an approach
to weight each component in the shared exit loss, for acquiring
the pareto optimality of GEEP which exits from each student
classifier.

Acknowledgements This work has been supported by the National Natural
Science Foundation of China (Grant Nos. U1911203, 61877018, 61977025,
62202170), and Alibaba Group through the Alibaba Innovation Research
Program.

References
 Devlin J, Chang M W, Lee K, Toutanova K. BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings
of 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers). 2019, 4171−4186

1.

 Radford A, Narasimhan K. Improving language understanding by
generative pre-training. See
cs.ubc.ca/~amuham01/LING530/papers/radford2018improving.pdf
website. 2018

2.

 Yang Z, Dai Z, Yang Y, Carbonell J G, Salakhutdinov R, Le Q. XLNet:
generalized autoregressive pretraining for language understanding. In:
Proceedings of the 33rd International Conference on Neural Information
Processing Systems. 2019, 517

3.

 Gou J, Yu B, Maybank S J, Tao D. Knowledge distillation: a survey.
International Journal of Computer Vision, 2021, 129(6): 1789–1819

4.

 Laskaridis S, Kouris A, Lane N D. Adaptive inference through early-
exit networks: design, challenges and directions. In: Proceedings of the
5th International Workshop on Embedded and Mobile Deep Learning.
2021, 1−6

5.

 Liu W, Zhou P, Wang Z, Zhao Z, Deng H, Ju Q. FastBERT: a self-
distilling BERT with adaptive inference time. In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics.
2020, 6035−6044

6.

 Wang C, Qiu M, Zhang T, Liu T, Li L, Wang J, Wang M, Huang J, Lin
W. EasyNLP: A comprehensive and easy-to-use toolkit for natural
language processing. 2022, arXiv preprint arXiv: 2205.00258

7.

 Wang C, Qiu M, Huang J. Building natural language processing
applications with EasyNLP. In: Proceedings of the 31st ACM

8.

International Conference on Information & Knowledge Management.
2022, 5100−5101
 Buciluă C, Caruana R, Niculescu-Mizil A. Model compression. In:
Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2006, 535−541

9.

 Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural
network. 2015, arXiv preprint arXiv: 1503.02531

10.

 Sanh V, Debut L, Chaumond J, Wolf T. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. 2019, arXiv preprint
arXiv: 1910.01108

11.

 Zhang L, Song J, Gao A, Chen J, Bao C, Ma K. Be your own teacher:
Improve the performance of convolutional neural networks via self
distillation. In: Proceedings of 2019 IEEE/CVF International
Conference on Computer Vision (ICCV). 2019, 3712−3721

12.

 Berestizshevsky K, Even G. Dynamically sacrificing accuracy for
reduced computation: Cascaded inference based on softmax confidence.
In: Proceedings of the Artificial Neural Networks and Machine
Learning-ICANN 2019: Deep Learning: the 28th International
Conference on Artificial Neural Networks. 2019, 306−320

13.

 Gormez A, Koyuncu E. Class means as an early exit decision
mechanism. 2021, arXiv preprint arXiv: 2103.01148v1

14.

 Jiang H, Kim B, Guan M Y, Gupta M. To trust or not to trust a
classifier. In: Proceedings of the 32nd International Conference on
Neural Information Processing Systems. 2018, 5546−5557

15.

 Zhou W, Xu C, Ge T, McAuley J J, Xu K, Wei F. BERT loses patience:
fast and robust inference with early exit. In: Proceedings of the
Conference on Neural Information Processing Systems. 2020,
18330−18341

16.

 Sun T, Liu X, Zhu W, Geng Z, Wu L, He Y, Ni Y, Xie G, Huang X,
Qiu X. A simple hash-based early exiting approach for language
understanding and generation. In: Proceedings of Findings of the
Association for Computational Linguistics: ACL 2022. 2022,
2409−2421

17.

 Lessley B, Childs H. Data-parallel hashing techniques for GPU
architectures. IEEE Transactions on Parallel and Distributed Systems,
2020, 31(1): 237–250

18.

 Cormen T H, Leiserson C E, Rivest R L, Stein C. Introduction to
Algorithms. 3rd ed. Massachusetts: The MIT Press, 2009

19.

 Bordawekar R. Evaluation of parallel hashing techniques. In:
Proceedings (Findings) of the GPU Technology Conference. See on-
demand.gputechconf.com/gtc/2014/presentations/S4507-evaluation-of-
parallel-hashing-techniques.pdf website. 2014, 1−27

20.

 Pagh R, Rodler F F. Cuckoo hashing. Journal of Algorithms, 2004,
51(2): 122–144

21.

 Breslow A D, Jayasena N S. Morton filters: faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity.
Proceedings of the VLDB Endowment, 2018, 11(9): 1041–1055

22.

 Alipourfard O, Moshref M, Zhou Y, Yang T, Yu M. A comparison of
performance and accuracy of measurement algorithms in software. In:
Proceedings of the Symposium on SDN Research. 2018, 18

23.

 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N,
Kaiser Ł, Polosukhin I. Attention is all you need. In: Proceedings of the
31st International Conference on Neural Information Processing
Systems. 2017, 6000−6010

24.

 Voita E, Sennrich R, Titov I. The bottom-up evolution of
representations in the transformer: A study with machine translation and
language modeling objectives. In: Proceedings of 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP). 2019, 4396−4406

25.

 Xiong R, Yang Y, He D, Zheng K, Zheng S, Xing C, Zhang H, Lan Y,
Wang L, Liu T. On layer normalization in the transformer architecture.
In: Proceedings of the 37th International Conference on Machine
Learning. 2020, 10524−10533

26.

 Cover T M, Thomas J A. Elements of Information Theory. 2nd ed.
Hoboken: John Wiley & Sons, Inc., 2006, 57−58

27.

 Liu X, Chen Q, Deng C, Zeng H, Chen J, Li D, Tang B. LCQMC: A
large-scale Chinese question matching corpus. In: Proceedings of the
27th International Conference on Computational Linguistics. 2018,
1952−1962

28.

 Zhang X, Zhao J, LeCun Y. Character-level convolutional networks for
text classification. In: Proceedings of the 28th International Conference
on Neural Information Processing Systems. 2015, 649−657

29.

Lei LI et al. Accelerating BERT inference with GPU-efficient exit prediction 11

 Jiao X, Yin Y, Shang L, Jiang X, Chen X, Li L, Wang F, Liu Q.
TinyBERT: distilling BERT for natural language understanding. In:
Proceedings of Findings of the Association for Computational
Linguistics: EMNLP 2020. 2020, 4163−4174

30.

 Chen X, He B, Hui K, Sun L, Sun Y. Simplified tinyBERT: Knowledge
distillation for document retrieval. In: Proceedings of the 43rd European
Conference on Information Retrieval. 2021, 241−248

31.

 Li L, Lin Y, Chen D, Ren S, Li P, Zhou J, Sun X. CascadeBERT:
Accelerating inference of pre-trained language models via calibrated
complete models cascade. In: Proceedings of Findings of the
Association for Computational Linguistics: EMNLP 2021. 2021,
475−486

32.

 Sun T, Zhou Y, Liu X, Zhang X, Jiang H, Cao Z, Huang X, Qiu X.
Early exiting with ensemble internal classifiers. 2021, arXiv preprint
arXiv: 2105.13792

33.

 Zhu W. LeeBERT: Learned Early Exit for BERT with cross-level
optimization. In: Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long
Papers). 2021, 2968−2980

34.

 Ji X, Tang R, Lee J, Yu Y, Lin J. DeeBERT: dynamic early exiting for
accelerating BERT inference. In: Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 2020,
2246−2251

35.

 Wang A, Singh A, Michael J, Hill F, Levy O, Bowman S. GLUE: A
multi-task benchmark and analysis platform for natural language
understanding. In: Proceedings of 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.
2018, 353−355

36.

Lei Li received his master degree in computer
technology from Yunnan University, China in
2019. He is a PhD candidate in software
engineering at East China Normal University,
China, under the supervision of Professor Ming
Gao. He is interested in Natural Language
Processing and efficient model inference.

Chengyu Wang is an algorithm expert at Alibaba
Group. He has obtained his PhD degree from East
China Normal University (ECNU), China.
Currently, he works on deep learning algorithms
on various topics for Alibaba Cloud Machine
Learning Platform of AI (PAI), and builds NLP
toolkits named EasyTransfer and EasyNLP for

Alibaba Cloud. He has published 70+ research papers in international
conferences and journals, such as ACL, KDD, WWW, SIGIR,
AAAI, TKDE, and WSDM.

Minghui Qiu held a PhD degree from School of
Information Systems, Singapore Management
University, Singapore, under the supervision of
Associate Prof. Jing Jiang and Prof. Ee-peng Lim.
From 2013 to 2014, he visited Language Techno-
logies Institute, Carnegie Mellon University,
USA, working with Noah Smith and Alex Smola.

In the summer of 2014, he worked as an intern at Google Inc.,
Mountain View, CA, with Amr Ahmed and Yuan Wang. Recently,
he is a senior algorithm expert in Alibaba cloud, working on deep
learning and transfer learning for many NLP tasks, including
paraphrastic sentence/doc embedding, neural conversation models,
and sequence labeling. He is responsible for building the NLP and
transfer learning toolkit named EasyNLP for Alibaba Cloud, suppor-
ting 10+ business units and 20+ applications in Alibaba Group.

Cen Chen is currently a tenure-track Associate
Professor at East China Normal University, China.
Before that, she worked as an algorithm expert at
Ant Group from Aug 2017 to Aug 2021 (selected
as Alistar 2017). She obtained a PhD degree from
Singapore Management University under the
supervision of Professor Lau Hoong Chuin and

Associate Professor Cheng Shihfen from Jan 2013 to Jun 2017. From
Aug 2015 to June 2016, she visited the Robotics Institute, Carnegie
Mellon University, USA, working with Professor Stephen F. Smith
and Dr. Zack Rubinstein. Her research focuses on analyzing,
modeling, and designing of intelligent systems for supporting
business and/or financial decisionmaking. Recent works include
federated learning, transfer learning, and retrieval-based QA.

Ming Gao is working as a professor at School of
Data Science and Engineering (DASE), East
China Normal University, China. Prior to joining
ECNU, he worked with Prof. Ee-Peng Lim as a
Postdoctoral Fellow at Social Network Mining
Research Group in School of Information System,
Singapore Management University, Singapore.

Before that, he started his PhD program in 2008 at Fudan University,
China. From Aug. 2010 to Feb. His main research interests are
knowledge graph, knowledge engineering, user profiling, social
mining, and uncertain data management.

Aoying Zhou is a professor on computer science
at East China Normal University (ECNU), China,
where he is heading the School of Data Science
and Engineering. Before joining ECNU in 2008,
he worked for Fudan University at the Computer
Science Department for 15 years. He is the winner
of the National Science Fund for Distinguished

Young Scholars supported by NSFC. He is now acting as a vice
director of ACM SIGMOD China and Database Technology
Committee of China Computer Federation. He is serving as a
member of the editorial boards of the VLDB Journal, the WWW
Journal, and so on. His research interests include data management,
in-memory cluster computing, big data benchmarking, and
performance optimization.

12 Front. Comput. Sci., 2024, 18(3): 183308

	1 Introduction
	2 Related work
	2.1 Knowledge distillation
	2.2 Early-exit networks
	2.3 Hashing techniques for GPU

	3 Methodology
	3.1 Preliminaries
	3.2 The design of shared exit layers
	3.3 Exit layer prediction

	4 Experimental results
	4.1 Datasets and experimental settings
	4.2 Detailed performance comparison
	4.3 Verification of Hypothesis 1
	4.4 Inference time analysis
	4.5 Ablation study
	4.6 Discussion for industrial applications
	4.7 Cascade mode
	4.8 Accuracy drop and training data size

	5 Conclusion
	References

