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Abstract Information on the Internet is fragmented and

presented in different data sources, which makes automatic

knowledge harvesting and understanding formidable for ma-

chines, and even for humans. Knowledge graphs have be-

come prevalent in both of industry and academic circles these

years, to be one of the most efficient and effective knowledge

integration approaches. Techniques for knowledge graph

construction can mine information from either structured,

semi-structured, or even unstructured data sources, and fi-

nally integrate the information into knowledge, represented

in a graph. Furthermore, knowledge graph is able to organize

information in an easy-to-maintain, easy-to-understand and

easy-to-use manner.

In this paper, we give a summarization of techniques

for constructing knowledge graphs. We review the existing

knowledge graph systems developed by both academia and

industry. We discuss in detail about the process of building

knowledge graphs, and survey state-of-the-art techniques for

automatic knowledge graph checking and expansion via log-

ical inferring and reasoning. We also review the issues of

graph data management by introducing the knowledge data

models and graph databases, especially from a NoSQL point

of view. Finally, we overview current knowledge graph sys-

tems and discuss the future research directions.
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1 Introduction

The central task of knowledge engineering is to extract the

useful information from data, then to integrate the piecewise

information into comprehensive, well-organized knowledge.

Knowledge graph provides a general framework to represent

knowledge, based on the mining and analysis of entities and

relationships.

A knowledge graph (KG) is a semantic graph consisting

of vertices (or nodes) and edges. The vertices represent con-

cepts or entities. A concept refers to the general categories

of objects, such as scientist, car, etc. An entity is a physical

object in the real world such as a person (e.g., Micheal Jor-

dan), a location (e.g., New York) and an organization (e.g.,

United Nations). The edges represent the semantic relation-

ships between concepts or entities. Leveraging on KG, the

fragmented, hence partially observed entities and concepts

can be connected together to form a complete and structured

knowledge repository, facilitating the management, retrieval,

usage and understanding of the information it contains.

Knowledge base (KB) [1] is a similar approach to KG,

which refers to an intelligent database for managing, stor-

ing and retrieving complex structured and unstructured infor-

mation. In some cases, there are not many distinctions be-

tween KG and KB. KB emphasizes on the knowledge stored

in databases, while KG focuses more on graphical structures.

They do have a lot of features in common. In this survey, we

use the two concepts interchangeably in the following sec-

tions.

The employment of KGs is a reasonable example in this
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big data era, driven by both the industry requirements and

research motivations from academia. Nowadays, all the ma-

jor search engines, such as Google and Bing, have employed

KGs to provide dedicated answers to the search queries, such

as “wife of Obama” where the query can be answered directly

by entities, instead of a collection of relevant Web documents

which contain a lot of redundant information.

KGs are able to infer the conceptual meanings of queries

and identify user’s tasks in Web search [2], which can lead

to better query suggestions. The knowledge in KGs en-

ables machines to understand natural language text [3] and

semi-structured Web tables [4]. The successful construction

of a KG will bring smart functionality in various applica-

tions. With the existence of a fine-grained, high-quality KG,

the search engine can understand the query such as “wife

of Obama” and immediately retrieve the answer by sim-

ply recognizing “Obama” to be the text mention for the

entity “Barack Obama”, and looking for the name of the

entity which has the relationship “IsWifeOf” with “Barack

Obama”. Besides Web search related applications, the KG

can be served as a data source for building a semantic

database that can be automatically used by computers, like

an online Wikipedia with structured data in a strict for-

mat. It enables smart question answering systems to an-

swer questions raised by human/computer clients in natural

languages/query-like languages.

Furthermore, KGs can be served as a repository of struc-

tured knowledge which supports a large number of applica-

tions related to big data analytics. In e-commerce companies

such as Walmart [5], product search and recommendation can

be supported by product KGs which contain products, sellers,

manufacturers, etc. The development of medicine can be ben-

efited from KGs, where large-scale disease networks can help

to enhance the medical diagnosis1,2) .

In the rest of the paper, we systematically summarize ex-

isting KG systems and analyze the state-of-the-art techniques

in this field. Figure 1 illustrates the framework of a KG Based

on this figure, we can get an overall picture of the field, which

helps us understand the relation between each component and

the entire field.

We organize the rest of the paper as follows. We identify

the process of building a KG as a central task. Specifically,

We review state-of-the-art techniques to extract entities from

various data sources (Section 2). Then, we introduce the

Fig. 1 The framework of KG

1) http://dailymed.nlm.nih.gov
2) http://www.patient.co.uk
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harvest of semantic relations from texts via different ap-

proaches (Section 3). Since the extracted relations from texts

tend to be incomplete and error-prone, we overview infer-

encing and reasoning approaches to further reduce the con-

flicts and improve the coverage of knowledge in Section 4.

We give an overview of various graph database models and

corresponding database products in both industrial and aca-

demic circles in Section 5. An overall comparison of current

KGs is provided in Section 6. We discuss research issues that

need to be addressed in KGs in Section 7. Finally, the con-

clusion is presented in Section 8.

We believe that this article provides various contributions

for the KG research community, analyzing the literature on

the research issues related to KGs.

2 Entity extraction

We discuss how to extract entities from various data sources

in this section first. Since entities in Web pages have several

surface forms, we then survey entity linking methods to link

entity mentions with entities in the KG. The comparison be-

tween various methods is shown in Table 1.

Table 1 Comparison of entity mining methods

Data source Encyclopedia Vertical websites Texts

Methods
Web page

processing

Pattern-based

method
NER

Attributes Yes Yes No

Human annotation No No Yes

Initial seed No No No

Coverage of entities Good Domain specific Depend on texts

Quality of entities High High Medium

2.1 Entity extraction from semi-structured data

Wikipedia is one of the well-known data sources with high

quality. Various extraction methods [6,7] have been proposed

to extract contents for Wikipedia. The taxonomy and in-

foboxes in Wikipedia pages contain structured knowledge

that can be extracted in terms of the given templates.

Besides Wikipedia, a number of high quality vertical web-

sites provide structured/semi-structured forms for entity har-

vesting. As for the template-based forms, the most general

solution is called wrapper induction methods [8,9]. They

learn extraction wrappers from a set of manually labeled

Web pages. However, it is hard to maintain and train a sys-

tem when data comes from multiple web sites. In addition,

there are some methods (unsupervised and semi-supervised

method) [10,11] which do not need labeled training samples.

They automatically produce wrappers from a collection of

similar Web pages.

The template-independent methods [12,13] treat the prob-

lem of entity extraction as a classification task. Finn et al. [13]

identifies the start and end tokens of a single attribute using

a support vector machine. However, it fails to extract multi-

ple entity attributes. [12] proposes 2-dimensional Conditional

Random Field (2D CRF) to extract multiple attributes with

two-dimensional neighborhood dependencies. Sutton et al.

[14] proposes Dynamic Conditional Random Field (DCRF).

They combine the advantages of both conditional random

fields and the dynamic Bayesian network (DBN). The pa-

rameters of the model can be learned through an approximate

inference. Wellner et al. [15] introduce a model to integrate

inference and entity coreference to extract uncertainty entity.

In [16], the data is modeled as hierarchical tree. A proba-

bilistic model called Hierarchical Conditional Random Field

(HCRF) is proposed to jointly optimize entity detection and

attribute labeling. Given features X, and a possible label as-

signment, the goal of web data extraction is to compute max-

imum a posteriori (MAP) probability of y, then the extraction

data from this assignment y∗ in Eq. (1).

y∗ = argmaxp(y|X). (1)

2.2 Entity extraction from unstructured data

Named entity recognition (NER) [17] plays a very important

role in entity extraction. It focuses on identifying and classi-

fying certain types of information elements (e.g., person, or-

ganization, location, etc.) in text, called named entities (NE).

Due to the “long-tailed effect” in Web text, a large number of

NEs cannot be retrieved from structured or semi-structured

data. However, NER is capable of effectively populating the

KG from text.

One of the most popular current NER systems is based on

machine learning (ML) techniques. As for the terms/words

in text, the goal of NER is to train predictive models to clas-

sify them into predefined categories (class labels). The cate-

gories mean different types of entities or the tag “none-of-the-

above”, meaning that the word is not an entity of these cate-

gories. Zhou and Su [18] use a chunk tagger trained based on

hidden markov model (HMM). Finkel et al. [19] propose to

use conditional random field (CRF) to train a sequential NE

labeler. In a sequential labeling system, the BIO (beginning,

inside and outside of an entity) schema is often employed,

where each term is labeled as beginning, inside or outside of

a certain type of entity.
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Other complex ML techniques have been applied. Liu et

al. [20] combine a K-nearest neighbors (KNN) classifier with

a linear CRF model to perform NER for tweets. It solves the

problem of the lack of information in tweets and the unavail-

ability of training data by a semi-supervised framework. A

NER system trained on one domain is hard to be adopted

to other domains due to different writing styles and lexi-

cons. Recently, transfer learning has been studied to reduce

labeling effort across different domains. Pan et al. [21] pro-

pose a transfer learning method, named Transfer Joint Em-

bedding (TJE), for cross-domain multi class classification. In

Ref. [22], Prokofyev employs external sources (e.g., DBLP,

Wikipedia, etc.) to improve the effectiveness of NER.

2.3 Entity linking

An entity can be referred to multiple text mentions in docu-

ments. For example, the text “apple” can mean the concept

Apple (fruit), or Apple Inc. (company) according to the con-

text. The goal of entity linking is to link text mentions to their

representation in the KG. Entity linking is an essential task to

link the textual and structural information together. Specially,

it helps to discover new knowledge and populate KGs.

Given a set of entity mentions M discovered in text and a

set of entities E in KG, the task of entity linking to learn a

function

f : mi → e j, for mi ∈ M and e j ∈ E. (2)

that maps a mention mi to an entity e j. Note that if the entity

mention does not exist in the KG, NIL should be returned for

the unlikable mention [23].

A number of methods have been proposed to cope with

this problem. It is first regarded as a clustering task where en-

tity mentions are clustered together so that each cluster repre-

sents one specific entity. Bagga et al. [24] use a bag-of-word

(BoW) method to represent the context and apply agglom-

erative clustering technique based on vector space model

(VSM). The work has been widely extended. In Ref. [25],

Pedersen et al. employ statistically significant bigram to rep-

resent the context of a text mention. Chen and Martin [26]

add a range of syntactic and semantic features to the feature

vector. The context of an entity has other forms of represen-

tation as well. In Ref. [27], Lasek et al. study BoW represen-

tation, linguistic representation and structured co-occurrence

representation to perform entity linking.

Websites such as Wikipedia have become a rich source

and powerful tool for entity linking. Shen et al. [23] pro-

pose a framework, LINDEN, to link named entities in text

with a KG. It discovers a set of candidate entities Em for a

named entity mention m. In order to rank the candidates of

a given mention m, it introduces four features namely link

probability (LP), semantic associativity (SA), semantic simi-

larity (SS) and global coherence (GC). It generates a feature

vector
−→
Fm(e) = 〈LP(e|m), SA(e), SS (e),GC(e)〉 and learns a

weighted vector −→w corresponding to Fm(e). For each entity

e ∈ Em, the goal of LINDEN is to compute the maximum

score, then we can find the linked entity etop as follows:

etop = argmax
e∈Em

Scorem(e), (3)

where etop is the predicted mapping entity for mention m.

For semi-structured Web list data, Shen et al. [28] propose

a framework LIEGE to link the entities in Web lists with the

knowledge base. Based on the observation that entities men-

tioned in a Web list can have the same conceptual type that

people have in mind, they calculate the link quality for each

candidate mapping entity and then use iterative substitution

algorithm to map entities in the Web list to the KG.

Graph-based methods have been adopted in entity linking.

In Ref. [29], Guo et al. introduce three degree-based mea-

sures of graph connectivity to rank candidate entities by their

importance then assign the most important mention to the tar-

get entity. Han et al. [30] make the assumption that entities in

the same document should be semantically related, and then

perform collective entity linking (CEL) in text. A referent

graph is used to model the interdependence between entity

linking decisions. They also propose a collective inference

algorithm to link entities by exploiting the referent graph.

Probabilistic models can be also employed for this task.

In Ref. [31], a three-step generative model can leverage en-

tity knowledge for entity linking. In this model, entity knowl-

edge is encoded in P(e) (distribution of entities in document),

P(c|e) (distribution of possible contexts of a specific entity)

and P(s|e) (distribution of possible names of a specific en-

tity). Then it links the entity e to a mention m by following

function:

e = argmax
e

P(m, e)
P(m)

∝ argmax
e

P(e)P(s|e)p(c|e). (4)

Entity linking is associated with NER. The entities in texts

must be recognized first by NER, then are linked to an ex-

isting KG. Existing approaches typically perform NER and

EL using a pipelined architecture. However, NER and EL are

tightly coupled. In Ref. [32], Sil and Yates propose NEREL,

a joint model for NER and EL, which takes a large set of

candidate mentions and a large set of candidate entity links,

and ranks the candidate mention-entity pairs together to make
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joint prediction. Similar to NEREL, Liu et al. [33] present a

graphical model to simultaneously conduct NER and named

entity normalization (NEN), the task of transforming NEs in

texts to their unambiguous canonical forms.

3 Relation extraction

The goal of relation extraction (RE) is to gather facts about

entities with high precision and recall. In this part, we fo-

cus on the problem of extracting binary relations. A bi-

nary relation is a triple: 〈sub ject, predicate, ob ject〉, in

which predicate denotes the semantic relationship between

subject and object. For example, we can get the tuple

〈BillGates,work,Microso f t〉 from the sentence “Bill Gates

works at Microsoft”.

In this section, we first introduce traditional supervised

learning methods to extract relation instances. To avoid te-

dious labeling, bootstrapping systems are proposed to itera-

tively perform RE in large text corpora. More recently, deep

learning techniques have improved the performance of RE.

We introduce the advances in these areas. After that, we dis-

cuss a new framework, open relation extraction (ORE), which

can identify relation tuples without any human supervision.

We also address the problem of high-order RE, but it is not

our focus in this paper. The high-level comparison of RE

methods are shown in Table 2.

3.1 Relation classification

The RE task is generally regraded as a binary classification

problem. The problem can be formalized as follows: for a

sentence

w1w2 · · · e1 · · ·wi · · · e2 · · ·wn−1wn, (5)

where e1 and e2 are two named entities and wi denotes other

words and a pre-defined relation R, the learning algorithm

tries to learn a function f :

f (S ) =

⎧
⎪⎪⎨
⎪⎪⎩

+1, if e1 and e2 are related by relation R;

0, otherwise,
(6)

where f is a binary classifier (e.g., Naives Bayes [34], Voted

Perceptron [35], Log-linear [36], Maximum Entropy Model

[37], etc.). S is a set of features extracted from the sentence or

a structured representation of the sentence such as a labeled

sequence and parse trees.

According to the nature of input of the classifier train-

ing, supervised approaches for relation extraction are further

divided into feature based extraction and kernel based ex-

traction. The process of supervised approaches is shown in

Fig. 2.

Fig. 2 The supervised approaches of relation classification

3.1.1 Feature-based extraction

Feature-based extraction in textual analysis heavily relies

on NLP techniques including part-of-speech (POS) tagging,

named entity recognition (NER), syntax parsing and depen-

dency parsing. There are several sets of features used for RE

shown as follows. More literatures on textual features can be

found in [38].

• Word features: headwords of entities, words or bigrams

in left, middle and right of the two entities, number of

entities between the two entities, number of words sep-

arating the two entities, etc.

• Entity features: types of named entities (e.g., person,

location) and their concatenation, mention levels (e.g.,

name, nominal, or pronoun), etc.

• Parse features: syntactic chunk sequence, path between

the two entities in a parse tree, dependency path, etc.

Table 2 Comparison of binary relation extraction methods

Approach Classification Pattern-based Deep learning Open RE

Learning method Supervised Semi-supervised Supervised Unsupervised

Feature space Textual features Textual patterns High dimensional features Textual features

Human labeling Yes No Yes No

Initial seed No Yes No No

Predefined relation Yes Yes Yes No

Precision High Medium High Low

Recall Low Medium Medium High
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3.1.2 Kernel-based extraction

Kernel-based methods are widely used in the ML commu-

nity. One example is the string kernel [39], which compares

text documents by the substrings they contain. In the RE task,

we can extend the string kernel to complex structures such as

word sequences and parse trees for RE.

In Bunescu and Mooney’s work [40], a kernel is defined

as the sum of the similarity of left, middle and right contexts.

Each word is augmented with its POS tag, generalized POS

tag, chunk tag (e.g., Noun Phrases, Verb Phrases, etc) and en-

tity type (Person, Organization, none). For two sentences S 1

and S 2, the similarity function is:

sim(S 1, S 2) = K(le f t1, le f t2) + K(mid1,mid2) +

K(right1, right2), (7)

where K(·, ·) is the kernel function for two sub-sentences.

Kernel methods can be applied in complex tree structures.

Zelenko et al. [41] introduce kernels defined over shallow

parse trees and devise it in conjunction with SVM and voted

perceptron (VP) algorithm. Shallow parsing only identifies

its key elements rather than the full interpretation of a sen-

tence. A node in the parsing tree is defined as a set of at-

tributes {a1,a2,. . . }, and each node necessarily has attributes

with names “Type” and “Role”. Given two related examples

P1 and P2, the kernel function is defined as follows:

K(P1, P2)

=

⎧
⎪⎪⎨
⎪⎪⎩

0, if t(P1.p, P2.p) = 0;

k(P1.p, P2.p) + Kc(P1.c, P2.c), otherwise,
(8)

where Pi.p and Pi.c represent the parent and child nodes of

Pi respectively. k(P1.p, P2.p) ∈ {0, 1} is a similarity function

between nodes Pi.p and P2.p. Kc(P1.c, P2.c) is a similarity

function of the subtrees.

Culotta and Sorensen [42] extend previous tree kernels

with richer structured features to estimate the similarity be-

tween the dependency trees. In Ref. [43], Bunescu and

Mooney design a generalization of subsequence kernels

which uses three types of subsequence patterns for RE.

In conclusion, supervised methods have been widely stud-

ied. It performs well and results in high precision, but it is

formidable to extend to new relation types due to lack of

training data. Also, textual NLP analysis like POS tagging,

syntax parsing and dependency parsing is a necessity and this

step is prone to error.

3.2 Pattern-based relation extraction

Supervised learning methods require a large number of

human-labeled training data, which is quite tedious and not

feasible for large-scale Web RE. A major trend for extract-

ing relation instances of interest is to use textual patterns.

Textual pattern analysis for RE dates back to Hearst patterns

[44]. Hearst patterns are hand-crafted, hyponymic, lexico-

Syntactic patterns between two or more noun phrases. In the

pattern

NP0 such as {NP1,NP2, . . . , (and|or)} NPn, (9)

we can infer the rule

for all NPi, 1 � i � n, hyponym(NPi,NP0), (10)

where NPi is a noun phrase identified by a POS tagger. Al-

though Hearst patterns are effective and enjoy relatively high

precision, patterns for a given relation are defined by hand.

Also it suffers from low recall since manually defining all

patterns are not possible and there are no unified patterns for

some relations.

Pattern-based RE systems employ a bootstrapping ap-

proach to iteratively discover relation instances and patterns.

It uses seeds to directly learn to populate a relation. Basic

procedure for extracting relation instances for relation R is

shown as follows: first, we gather a set of seed pairs that

have relation R. Then, we scan the corpus to find sentences

with these pairs. Patterns can be generated by looking at the

context between or around the pair. By pattern matching tech-

niques, we can generate more relations instances. The process

is performed iteratively until certain convergence criteria is

reached, e.g., no new relation instances can be found. Since

only a few seed tuples or a few high-precision patterns are

needed instead of a large training set, the system can run in a

semi-supervised or unsupervised way (or weakly supervised

learning).

In dual iterative pattern expansion (DIPRE) [45], Brin ex-

ploits the duality between sets of patterns and relations to

grow the target relation starting from a small sample (seed).

The system uses seed examples and web crawlers to find

all documents containing the pair. It generalizes matched

sentences in the documents into wild card expressions like

〈longest-common-suffix of prefix strings, .*?, middle, .*?,

longest-common-prefix of suffix strings〉.
The project Snowball [46], similar to DIPRE, also initial-

izes its bootstrapping system by a set of seeds, then it finds

segments in context where the two target entities occur close

to each other to generates patterns. A Snowball pattern is a 5-

tuple 〈le f t, tag1,middle, tag2, right〉where tag1 and tag2 are

NE tags and le f t, middle and right are weighted feature vec-

tors. The weights for every term are defined as the normalized
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frequency of the word appeared in a given position. The sim-

ilarity distance between two 5-tuples tp = 〈lp, t1,mp, t2, rp〉
and ts = 〈ls, t′1,ms, t′2, rs〉 is defined in Eq. (11):

Match(tp, ts)

=

⎧
⎪⎪⎨
⎪⎪⎩

lp · ls + mp · ms + rp · rs, if the tags match;

0, otherwise.
(11)

It groups tuples into classes through a simple single-pass

clustering algorithm. Finally it adopts those generalized pat-

terns to populate new candidate tuples. The main components

of snowball are shown in Fig. 3.

Fig. 3 The framework of snowball

The KnowItAll system [47] takes the advantage of search

engines to perform autonomous, domain-independent extrac-

tion. It is a bootstrapping system which consists of two main

components: Extractor and Assessor. It starts the bootstrap-

ping system by a set of hand written patterns based on a

NP (Noun Phrase) chunker, which are more general than

Hearst patterns, to generate extraction rules and “discrimi-

nator” phrases. Such typical patterns include

NP1 is the NP2 of NP3, (12)

the NP1 of NP2 is NP3, (13)

where NPi represents a noun phrase. It utilizes the Extrac-

tor component to extract the candidate facts from Web pages

returned from search engines. It automatically estimates the

plausibility of those candidate facts using pointwise mutual

information (PMI) statistics. The Assessor component treats

those statistics as features of a classifier to predict whether

these extraction results are correct or not.

In Ref. [48], Nakashole et al. present a scalable system

PROSPERA to achieve knowledge harvesting with high pre-

cision, high recall and scalability. There are three phases in

the PROSPERA system: 1) Pattern gathering, mainly aimed

at gathering relation patterns from sentences. 2) Pattern anal-

ysis, which analyzes the basic patterns from previous step and

to generate the lifted patterns which characterize the original

patterns’ important features. It replaces the basic patterns’

words with their POS tags. Then, it calculates the support

and confidence of a lifted pattern. 3) Reasoning, to improve

precision, it uses a series of manually specified constraints to

prune false positive facts.

In conclusion, relation bootstrapping systems require

fewer human supervision and continue to enjoy popularity

in information extraction. However, the biggest challenge is

to achieve both high precision and high recall at the same

time. Strict patterns with strong rules and constraints ensure

high precision while neglecting recall. The opposite approach

yields high recall and low precision. To construct KGs auto-

matically, achieving both is necessary, which is the recent

research focus.

3.3 Open relation extraction

Traditional RE systems using supervised or semi-supervised

methods take a relation name and a handful of seeds or a set

of training data as inputs. The relation types are predefined

by designers or domain experts, which is formidable to scale

to Web RE over massive, heterogeneous corpora. Banko et al.

[49] introduces a system TextRunner. It makes a single pass

over corpus and extracts a large number of relation instances

without any human inputs. It uses a self-supervised learner,

a classifier that can label candidate extractions as trustwor-

thy or not. It scans the corpus and computes a probability of

a relation tuple being correct using the probabilistic model

[50].

Although open RE systems can accumulate a massive body

of knowledge automatically, due to the lack of human su-

pervision, two types of errors are frequently occur: inco-

herent extractions and uninformative extractions [51]. Inco-

herent extractions are extracted relation phrases that have

no meaningful interpretation. Uninformative extractions are

extractions that omit critical information. To cope with this

problem, syntactic and lexical constraints are added to yield

richer and more informative relations. Etzioni et al. [52] pro-

pose the second generation of open RE, where patterns are

treated as features to identify arguments given a sentence and

a relation phrase pair.

Open RE aims at finding all relation instances from Web

data instead of the limited predefined relations. It provides a

framework to mine all relation facts from the Web. However,

this type of approaches unavoidably have several disadvan-

tages. All verbs between nouns or noun phrases have a prob-

ability to be identified as a relation, while it is not the case in

the real world. The flexibility results make it difficult to per-

form inference in KGs. Also, it still suffers from the low pre-

cision problem, which makes it less appealing in real-world
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applications.

3.4 Word embedding-based relation extraction

Word embedding is a collection of techniques for natural lan-

guage processing where words or phrases are mapped to vec-

tors in a low-dimensional space. Techniques to generate these

maps include deep learning, matrix factorization and topic

modeling, etc.

In open relation extraction (ORE), the relations are de-

tected from an explicit space, for instance clustering [49]. In-

stead of clustering, [53] uses matrix factorization techniques

to map entities into an implicit space. This work proposes

non-negative matrix factorization (NNMF) and boolean ma-

trix factorization (BMF) to discover the relations between en-

tities after mapping entities into a low-dimensional space.

With rapid development of deep learning techniques, com-

plex and deep models on text mining and natural language

processing can be employed to extract knowledge more accu-

rately. The fundamental concept of such deep learning tech-

niques is to compute distributed representations of words,

also known as word embeddings [54]. Neural-based represen-

tation learning methods encode KGs with low-dimensional

vector representations of both entities and relations, which

can be further used to extract unknown related facts [55]. Ja-

son Weston et al. propose a weakly supervised approach for

relation extraction from free text which is trained to jointly

use information from the text and from existing knowledge

[56]. Relation mentions, entities and relations in this method

are all embedded into a common low-dimensional vector

space. A ranking-based embedding framework is used to train

the model. For a triple (h, r, t), the model learns the plausibil-

ity of the triple by generalizing from the KG. Mo Yu et al.

propose a new method to jointly learn features embeddings

and a tensor-based classifier for relation extraction task [57].

In the approach, the number of parameters is dramatically re-

duced since features are only represented as low-dimensional

embeddings.

3.5 High-order relation formation

Most of the relations considered in this survey are binary re-

lations. There exist higher-order relations as well. An n-ary

relation can be defined as an n-tuple 〈e1, e2, . . . , en〉 where

all ei are entities w.r.t the certain relation. For instance,

from a sentence “Satya Nadella is the CEO of Microsoft.”,

we can extract an instance (S atyaNadella,CEO,Microso f t)

of a ternary relation T = (people, job, company). Al-

though it is not straightforward to adapt to higher-order

relations using methods we present in this survey, we

can factor higher-order relations into a set of binary re-

lations. As a result, the previously mentioned relations

can be factorized into hasPosition(S atyaNadella,CEO) and

worksIn(S atyaNadella,Microso f t).

McDonald et al. [58] construct higher-order relations by

combining binary relations. Binary relations are first ex-

tracted via a classifier. Entities which have relations are con-

nected into a entity graph, then higher-order relations can be

extracted by finding maximal cliques in the graph.

4 Knowledge graph reasoning and inference

Because of the data extracted from the web contains noise,

facts (i.e., entities and relations) tend to be incomplete and

error-prone. As a result, there is a genuine need to improve

the coverage and to reduce the conflicts in automatically con-

structed KGs.

In this section, we review three major classes of ap-

proaches that are able to efficiently populate the KG as fol-

lows:

• Rule learning using logical inference;

• Graph-based inference and learning algorithms;

• Entity and relation embedding based inference;

• Statistical relational learning (SRL) [59] approaches,

such as Markov Logic Networks (MLN).

4.1 Logical inference

There exist rules between relations in KGs. Rules are based

on literals, which are statements that have placeholders for

entities, e.g., bornInCitycity(x, y), cityInCountry(y, z) and

cityInCountry(y, z). Rules can be expressed via Horn clauses

[60]. Horn clauses are disjunction of literals containing at

most one positive literal. For example, The rule among these

literals can be expressed as

¬bornInCity(x, y) ∨ ¬cityInCountry(y, z);

∨bornInCountry(x, z),
(14)

which is logically equivalent to the following rule:

bornInCity(x, y) ∧ cityInCountry(y, z)→;

bornInCountry(x, z).
(15)

Rules have certain properties in different KGs. Rules

can reveal inconsistencies between relation instances al-

ready in KGs. It is simple to prove that relation instances
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bornInCity(Bob, S hanghai) and cityInCountry(S hanghai,

China) have a conflict with bornInCountry(Bob,US ). Rules

can be soft or hard in different settings. Soft rules can be vi-

olated in some degree while hard rules must always be hold.

For soft rules, they can be weighted to handle uncertain or

probabilistic data [61].

The first-order learning system emerged even before KGs

in the AI community, e.g., GOLEM [62] and FOIL [63]. It

constructs first-order Horn clauses (rules) from data exam-

ples. The system takes positive and negative examples as in-

put and then learns a set of Horn clauses that fit the data well.

The learned rules can be used to infer new relation instances

from ones that already exist in KGs. These rules can also be

served as consistency constraints to prune false relation in-

stances.

NELL [64] employs a variant of FOIL named N-FOIL [65]

as the rule learner. It learns probabilistic Horn clauses in a

“separate-and-conquer” manner. To improve its scalability, it

assumes the consequent predicate is functional. For instance,

each Person is born at most in one City. It also uses a “re-

lational pathfinding” [66] strategy to produce general rules.

The conditional probability P(conclusion|preconditions) of

each N-FOIL rule is estimated using a multinomial distribu-

tion with a Dirichlet prior.

SOFIE [61] is the first system that integrates logical con-

sistency reasoning with information extraction (IE). It casts

known facts, hypotheses for new facts, word-to-entity map-

pings, patterns and constraints into logical clauses. It assigns

weights to clauses that are derived from statistical evidence in

the data. It aims at finding true clauses such that a maximum

number of constraints is satisfied and casts the problem into a

weighted maximum satisfiability problem (Weighted MAX-

SAT). It can be solved by customizing MAX-SAT solvers.

4.2 Graph learning and inference

To improve the converge, various algorithms have been pro-

posed to directly perform inference on the graph to generate

new relation instances.

Several graph algorithms related to random walks can be

used in inferencing. One popular measure is random walk

with restart (RWR) [67]. Lao et al. propose the path rank-

ing algorithm (PRA) [68] for relational retrieval. It learns to

rank graph nodes y relative to a query node x in the graph.

Each node x together with any other node y is treated as a

training query. For a relation R, if the pair x and y is known

to satisfy R(x, y), then it is labeled as a positive example; oth-

erwise, it is a negative example. Lao et al. [65] apply this

approach to perform learning and inference tasks in a large-

scale knowledge base using “Data-Driven Path Finding”. For

a large-scale KG, sampling methods are required to generate

a subset of relation tuples to perform scalable learning and in-

ference, various sampling methods can be performed such as

particle filtering [69] and low-variance sampling (LVS) [70].

Gardner et al. [71] further use latent syntactic cues for infer-

encing, which outperforms the previous PRA approach.

Related to PRA, Wang et al. propose using personalized

PageRank (ProPR) [72] for graph inferencing. It is an ex-

tension to “stochastic logic programs (SLPs)” [73]. The ran-

domized traversal of G is defined by a probabilistic choice at

each node. Each edge is associated with a feature vector with

their respective weights and each node has an edge pointed

to the start node inspired by RWR. Parameters are learned

via stochastic gradient descent (SGD), which can be easily

adapted to parallel learning tasks [74].

4.3 Entity and relation embedding based inference

The goal of knowledge graph completion is to perform link

prediction between entities. However, techniques for the tra-

ditional link prediction is not capable for knowledge graph

completion because: 1) vertices in KGs are entities associ-

ated with different types and attributes; 2) edges in KGs are

relations of different types; 3) for KG completion, we need to

determine if there is a relation between two entites or not, as

well as the relation type if it exists. There are some existing

works to study the KG completion based on the entity and

relation embedding techniques.

Neural tensor network (NTN) [75] is one of the most pop-

ular models, which provides a more powerful way to present

relational information than a standard neural network layer.

It models with a bilinear tensor layer that directly relates the

two entity vectors across multiple dimensions. For a triple

(h, r, t), NTN defines a score function for graph embedding

as follows:

fr(h, t) = u⊥r g
(
h⊥Mrt + Mr,1h + Mr,2t + br

)
, (16)

where ur is a relation-specific linear layer, g() is the tanh op-

eration, Mr is a 3-way tensor, and M1,r and M2,r are weight

matrices. Recursive neural tensor network (RNTN) [76] is a

recursive version of NTN. RNTN takes phrases of any length

as inputs, and represents a phrase through word vectors and

a parse tree and then compute vectors for higher nodes in the

tree using the same tensor-based composition function. How-

ever, the high complexities of both NTN and RNTN may pre-

vent them from efficient applying on large-scale KG embed-

dings.
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TransE learns vector embeddings for both entities and rela-

tions [77]. It translates entity h into entity t via using relation

r when (h, r, t) holds. This indicates that t should be the near-

est neighbor of h + r if (h, r, t) holds. Hence TransE defines

the score function as follows:

fr(h, t) = ‖h + r − t‖22. (17)

The score is low if (h, r, t) holds, and high otherwise. How-

ever, TransE is not capable of modeling 1-to-N, N-to-1 and

N-to-N relations.

To model 1-to-N, N-to-1 and N-to-N relations, TransH [78]

is proposed to embed a KG in a continuous vector space. It al-

lows an entity to have distinct representations when involved

in different relations. For a triple (h, r, t), the entity embed-

dings h and t are first projected to the hyperplane of wr as the

normal vector, denoted as h⊥ and t⊥. Hence, the score func-

tion is defined as

fr(h, t) = ‖h⊥ + r − t⊥‖22. (18)

However, both TransE and TransH assume embeddings of en-

tities and relations being in the same low-dimensional space.

In practice, an entity may have multiple aspects, and various

relations exist in different aspects.

TransR is proposed to model entities and relations in dif-

ferent spaces in terms of different aspects of entities. It builds

entity and relation embeddings in separate entity space and

relation spaces [79]. For each relation r, a projection matrix

Mr ∈ Rk×d may project entities from entity space to relation

space. With the mapping matrix, the projected vectors of en-

tities are defined as hr = hMr and tr = tMr . Hence the score

function can be defined as

fr(h, t) = ‖hr + r − tr‖22. (19)

In this way, TransR represents entities and relations in differ-

ent semantic space bridged by relation specific matrices. Fur-

thermore, the dimensions of entity and relation embeddings

are not necessarily identical.

Besides TransE, TransH and TransR, there are also many

other methods following the KG embedding associated with

the different score functions, such as unstructured model

(UM) [80], structured embedding (SE) [81], single layer

model (SLM) [75], and latent factor model (LFM) [82].

In summary, the study of deep learning for relation extrac-

tion is gaining popularity in academic circles. Methods based

on word embedding provide a framework to represent entity

and relation instances in a high dimensional space so that

the hidden correlation of entities and relations can be found

in the high dimensional space. These approaches have high

precision in knowledge extraction and improve the recall by

discovering relations that cannot be captured by traditional

methods.

4.4 Statistical relational learning

Statistical relational learning (SRL) [59] involves models that

can represent both uncertainty and relational structure at the

same time. It provides a general framework to perform learn-

ing and inferencing tasks in a machine learning approach.

Among these models, Markov logic network (MLN) proves

to be most versatile in relation learning [83]. Without losing

the completeness, we review other models that are frequently

appeared in the literature as well.

4.4.1 Markov logic network

First-order rules put a set of hard constraints on data in KGs.

Even if there exists one relation instance that violates the

rules, it has zero probability. However, it is often the case

that conflicts and uncertainty appear in unreliable data source,

e.g., Web data. To soften these constraints, the MLN [84] has

been proposed. An MLN is a simple representation which

combines probabilistic graphical models and first-order logic.

It has a weight attached to each formula (rule), indicating how

strong the formula is. Thus instances with violation of con-

straints are less probable, but not completely impossible.

In the Markov Logic framework, an MLN can be viewed as

a template for constructing Markov networks. Each literal can

be interpreted as a random variable. The literals in clauses are

represented as probabilistic dependencies between random

variables. Random variables and their dependencies form a

Markov random field (MRF) [85]. The inference task in KGs

can be performed in MRF corresponding to MLN. Due to the

NP-hardness of inferencing in MRF, various algorithms can

be employed for joint inference such as Markov chain monte

carlo (MCMC) methods [86] (e.g., Gibbs sampling [87]), be-

lief propagation [88], etc.

In the literature, StatSnowball [89] employs general dis-

criminative MLNs such as logistic regression (LR) and condi-

tional random fields (CRF) [90] to be the statistical models. It

uses l1-regularized feature selection method to discover pat-

terns and identify relations. The weights of generated patterns

can be automatically inferred from the MLN model.

4.4.2 Probabilistic models with constraints

Unlike MLNs, Chang et al. [91] propose constraints condi-

tional models (CCM) that separate the probabilistic and the
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declarative aspects of the model. It allows the probabilistic

portion of the model to represent an arbitrary conditional dis-

tribution without modeling the probability of input variables.

On the other hand, prior knowledge can be encoded in the

form of constraints. It has been applied to tasks such as IE

and semantic role labeling (SRL). Carlson et al. [92] integrate

constraints into semi-supervised learning algorithms. The key

idea is coupling multiple functions to constrain learning prob-

lems and iteratively training classifiers in a self-supervised

manner. Any candidates violating mutual exclusion and type

checking constraints should be filtered.

5 Knowledge graph storage and management

Due to the wide spread of graph data models and graph algo-

rithms, as well as the different application scenarios for graph

data, a wide range of database models, systems and query lan-

guages have been defined for graph databases. Rather than

having a unified model for all graph databases, each graph

database, or each type of graph databases is designed for

a specific kind of tasks. Also, no standard data definition

and manipulation language has been introduced for graph

databases. Most databases implement their own APIs for data

management instead of the standard SQL.

In this section, we give an overview of various graph

database models and corresponding database products in both

industrial and academic communities.

5.1 Relational database

Although traditional RDBMS is formidable to be employed

for big graph management, it is extremely fast in querying,

inserting, deleting, and updating information in database ta-

bles. Because there is no golden standard for graph data stor-

age, relational databases are still increasingly used. Among

these, a number of graph databases are implemented on the

top of existing RDBMS.

G-store [93] is a storage prototype for large vertex-labeled

graphs. It is equipped with a built-in query engine that has the

functionality of various graph algorithms, such as depth-first

traversal, reachability testing, shortest path search and short-

est path tree search. It is on the top of PostgreSQL [94], an

object-relational database system.

Filament3) is a project for storing and managing graph data

structures and provides a graph persistence framework and

associated toolkits. It has the functionality of supporting SQL

through JDBC for querying graph data. It uses a fluent traver-

sal model that can navigate the stored graph in large chunks.

5.2 Key/Value pairs

The key/value store proves to be vital in the world of NoSQL

database systems. The application of key/value stores greatly

improve the scalability of the graph databases. It is easy

to deploy key/value storage systems in distributed clusters

as a scale-out architecture. Another advantage is that the

key/value model simplifies the traditional relational model

and allows more flexibility in data types.

Trinity [95] is a general purpose distributed graph database

system developed by Microsoft Research. It provides in-

memory key/value store over a cluster of machines. It has

the features of both low-latency online query processing and

high-throughput offline analytics on large scale graphs with

billions of nodes.

VertexDB4) is a high performance graph database using

key/value disk storage. In VertexDB, nodes are folders of

key/value pairs and keys are stored in lexical ordering for

fast retrieval. Currently, its implementation is built based on

TokyoCabinet [96] (a key/value disk store), libevent and Yajl

in C.

CouchDB [97] is open-source key-value store of the

Apache CouchDB project. It supports a sophisticated repli-

cation mechanism on massive graph data. Mondal et al. [98]

implement a distributed graph data management based on

CouchDB, which supports graph partition over large dynamic

graphs.

CloudGraph5) is a .NET graph database that uses graphs

and key/value pairs to store graph data. It is disk- and

memory-based system with the features of hot backup, plug-

gable storage and resource-balancing. It is fully transactional

and has a traversal framework with graph query language

(GQL).

5.3 Triple store

The unified framework for representing information in the

Web is the resource description framework (RDF)6) . The

store of RDF is based on W3C RDF and SPARQL standards.

In RDF, each directed and labeled edge is represented by a

triple: 〈subject, predicate, object〉. predicate is the label for

the relation from the subject vertex to the object vertex. An

3) http://filament.sourceforge.net
4) http://www.dekorte.com/projects/opensource/vertexdb
5) http://www.cloudgraph.com
6) http://www.w3.org/RDF
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RDF graph can be viewed as a (potentially huge) set of such

triples, and each component of a triple is a RDF term which

is consist of three types: internationalized resource identifier

(IRI), literal and blank nodes. In a triple, a subject is an IRI or

a blank node; a predicate must be an IRI and an object is an

IRI, a literal or a blank node. A number of graph databases

focus on storing RDF triples for storage. These techniques

can be utilized for knowledge data storage and management.

AllegroGraph [99] is a close source, high-performance,

persistent RDF graph database used to store triples. It

uses SPARQL, the W3C standard RDF query language, to

query RDF data. It also has the reasoning function through

RDFS++ Reasoning as the reasoner and Prolog as the alter-

native. AllegroGraph has various applications as well, e.g.,

geospatial and temporal reasoning, social network analysis,

etc.

Neo4j [100] is a open source, embedded, disk-based graph

database implemented in Java. It is highly scalable and fully

supports the properties of atomicity, consistency, isolation

and durability (ACID). As a network-oriented database, it can

extend to several clusters to process billions of nodes in par-

allel. Neo4j has been applied in mission-critical applications.

DEX [101] is also a high-performance, scalable graph

DBMS implemented in Java and C++. In DEX, A DEX graph

is a labeled directed attributed multigraph (LDAM), making

it suitable for storage of complex graph structures. The trans-

actions in DEX support aCiD, meaning full consistency and

durability support with partial isolation and atomicity.

Sones7) is an object-orientated graph DBMS in a dis-

tributed environment. It is suitable for managing a large

amount of highly connected semi-structured data. The system

has its own query language based on SQL and other complex

queries on the graph as well.

HyperGraphDB [102] is a general purpose, open source

data storage based on “directed hypergraphs”. It is an embed-

ded, transactional graph database for large scale knowledge

storage. It provides a universal data model for applications

such as bioinformatics and natural language processing.

5.4 Map/Reduce and distributed storage

The Map/Reduce paradigm can be employed to process

large graph efficiently and effectively in a parallel comput-

ing manner. Rather than using triple store, this class of graph

databases focus on partitioning large number of nodes to dif-

ferent machines. Each machine only needs to do a relatively

small size of computation using Map/Reduce.

One Map/Reduce platform that is worth mentioning is

Hadoop8). Hadoop allows for distributed processing of mas-

sive data sets across computer clusters. It offers reliable

and scalable computation for offline data processing but is

not readily suitable for graphs. Inspired by the Map/Reduce

framework, Malewicz et al. [103] propose Pregel. In this sys-

tem, programs are treated as a sequence of iterations called

supersteps. In each superstep, each vertex can receive mes-

sages sent in the previous iteration, compute a certain func-

tion in parallel and send to other vertices. There are other

graph database implementations on top of Pregel, including

Phoebus9) and Giraph10), in order to take advantage of the

Map/Reduce framework.

Besides the Hadoop’s Map/Reduce framework, there are

other graph databases using distributed storage as well. In-

finiteGraph [104] is a distributed-oriented system that com-

bines the strengths of persisting and traversing complex rela-

tionships requiring multiple hops.

In conclusion, there are various graph databases nowa-

days available or under development, most of which are

application-driven. Since there is no standard graph data

model, database system or query language, the choice of

graph databases is based on its applications.

6 Knowledge graph system overview

In previous sections, we have described KGs and the tech-

niques behind them. In this section, we first give summaries

of influential KGs. Then we do a detailed comparison be-

tween these projects.

6.1 Summaries of knowledge graphs

• CYC

CYC [105], started in 1984, was to codify millions

of pieces of knowledge that composes human common

sense in machine-usable form. The CYC knowledge

base contains over one million human-defined assertions,

rules and common sense ideas, formulated in the lan-

guage CYCL, which is based on predicate calculus. At

the present time, the CYC KB contains over five hun-

dred thousand terms, including about seventeen thousand

types of relations, and about seven million assertions re-

7) http://github.com/sones/sones
8) http://hadoop.apache.org
9) https://github.com/xslogic/phoebus
10) https://github.com/apache/giraph
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lating these terms. New assertions are continually added

to the KB through a combination of automated and man-

ual means. The CYC inference engine applies logical

rules to the knowledge base and derived answers from a

knowledge base.

• ConceptNet

ConceptNet [106] is created by open mind common sense

(OMCS) project. The goal is to build and utilize a large

commonsense knowledge base from the contributions of

many thousands of people across the Web. Since 1999, it

has accumulated more than a million English facts from

over 15 000 contributors and knowledge bases in other

languages. A semantic network builds from this corpus

is called ConceptNet, which is used for natural language

processing, understanding and commonsense reasoning.

• WordNet

WordNet [107] was initially conceived as a lexical

database for machine translation. Currently, WordNet is

used as a semantic network and as an ontology. It con-

tains 117 000 synsets, which are groups of synonyms

corresponding to a concept. These synsets connect with

each other through several semantic relations. WordNet

has also been extended to a multi-lingual version, Multi-

WordNet [108].

• HowNet

HowNet [109] is a commonsense knowledge base which

unveils inter-conceptual relations and inter-attribute rela-

tions of concepts in the form of Chinese and their English

equivalents. There is an important concept in HowNet:

sememe, which is the smallest basic semantic unit that

cannot be reduced further, such as “human being”. Cur-

rently, there are over 800 sememes in HowNet. These se-

memes are extracted through the examination of about 6

000 Chinese characters.

• FrameNet

The FrameNet [110] project is to build a lexical database

for English. It contains more than 10 000 word senses,

most of which have annotated examples that show the

meaning and usage of the entry. The project also provides

more than 170 000 manually annotated sentences, which

are served as a training dataset for NLP tasks, such as

sentiment analysis, machine translation, information ex-

traction, etc.

• KnowItAll

KnowItAll [47] is an information extraction system

which performs unsupervised, domain-independent ex-

traction tasks from the Web. It uses the search engine to

perform extraction from massive Web data, which outper-

forms previous systems in the tasks of pattern learning,

subclass extraction and list extraction.

• NELL

Never-ending language learner (NELL) [64] is a knowl-

edge base implemented by the ReadTheWeb Project. It

keeps populating a growing knowledge base of structured

facts. Given an initial ontology containing 123 categories

and 55 relations, it is able to extract 242 453 beliefs

with an estimated precision of 74% in 67 days. So far,

NELL has accumulated over 50 million candidate beliefs

by reading the Web.

• TextRunner

TextRunner [49] is an information extraction system. In

contrast to traditional information extraction, it does not

need human-labeled training data or relation seeds. It

can read any text from any domain on the Web, extracts

meaningful information and stores in a knowledge base

for querying. Currently, TextRunner has successfully ex-

tracted over 500 million assertions from 100 million Web

pages.

• Probase

Probase [111] is a probabilistic knowledge base con-

sisting of about 2.7 million concepts. The concepts are

extracted from a corpus of 1.68 billion Web pages. To

model inconsistent and uncertain data, it uses probabilis-

tic models to build a probabilistic taxonomy. The goal of

Probase is to understand human communication in text

using common-sense knowledge or general knowledge.

• Freebase

Freebase [112] is a graph-shaped database of structured

general human knowledge. It is a stable, practical plat-

form for collecting knowledge by crowd sourcing. The

current data in stored Freebase consists of millions of

concepts (topics) and tens of millions of relationships be-

tween those topics.

• DBpedia

DBpedia [7] is a multi-lingual knowledge base in which

the structured contents are extracted from Wikipedia. The

structural knowledge in DBpedia is accumulated using

crowd-sourced techniques. DBpedia contains 24.9 mil-

lion things in 119 languages, including 4.0 million in En-

glish.

• Kylin/KOG

Kylin/KOG [113–115] is an autonomous computer sys-
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tem that builds a rich ontology by combining Wikipedia

infoboxes and WordNet. Each infobox is treated as a class

and it is simultaneously mapped to WordNet nodes. It also

maps attributes between related classes. Kylin/KOG is an

application of Markov logic network (MLN) and other

learning techniques.

• YAGO/YAGO2

YAGO/YAGO2 [6,116,117] is a huge semantic knowl-

edge base in which the knowledge is extracted from

Wikipedia and other sources. In 2014, it contains more

than 10 million entities (e.g., persons, cites, organiza-

tions, etc.) and more than 120 million facts about these

entities.

• Google knowledge graph

Google knowledge graph (GKG) [18] is a knowledge

base used by Google to add semantic search functional-

ity to its search engine. Google’s search engine provides

structural information about the topic inferred from user’s

query using GKG. The KG has compiled more than 3.5

billion facts over 500 million objects or entities.

• Satori

Satori is a KG developed by Microsoft to support Bing

search. The knowledge in Satori comes from websites

such as social network websites (e.g., LinkedIn), infor-

mation providers (e.g., Vitals), etc.

• Facebook graph search

Facebook graph search [119] provides semantic search

service by Facebook. It combines data acquired from over

one billion users and external data to provide user-specific

search results. Users can search for pages, people, places,

check-ins, etc. using natural languages.

• EntityCube / Renlifang

Renlifang [89] is a entity relationship search engine in

Chinese. The entities and relationships are mined from

Chinese web pages using StatSnowball [89]. The English

version of Renlifang is EntityCube.

• OpenCalais

OpenCalais11) automatically creates rich semantic meta-

data for the Web content. Using NLP, ML and other meth-

ods, it analyzes the document and finds entities in it. Be-

sides classic entity identification, it returns the facts and

events hidden within the text as well.

• Sogou Zhilifang

Zhilifang12) is the first Chinese KG used in search en-

gine that powered by Sogou13). Currently, the number of

entities is over 100 million and the number of relations

between entities is over one million.

• Baidu Zhixin

Baidu Zhixin14) is the KG that provides semantic search

functionality for Baidu search engine15). It is an infor-

mation integration search system centralized in different

industries. It uses data mining techniques to search for

answers based on data on the Internet.

6.2 Comparison

We compare and evaluate these KGs in an unified framework.

Furthermore, we hope to discover potential supplement and

enhancement to existing works. We first compare KGs in-

volved in this article item by item on the basis of several im-

portant features characterizing the systems. Table 3 summa-

rizes the comparison results.

The first column (Project) denotes the KG names. The lan-

guage of KGs are English by default. For exceptional cases,

we use C as abbreviation for Chinese and M for multi-

languages. The second column (Affiliation) denotes the de-

velopment teams or organizations. They are mostly large In-

ternet companies, or notable research teams. The third col-

umn (Year) represents the development time of the systems,

which are arranged in ascending order.

The fourth column (KGs content) denotes the contents in-

side KG systems. We can compare the data scale clearly. The

fifth column (Data source) describes where the data is from.

The sixth column (Data object) defines what kind of

knowledge is to be acquired, which mainly includes fact, on-

tology and lexical. We use ontology to represent KGs that

contain ontological information, fact to represent KGs that

contain factual information and lexical to represent KGs that

contain lexical information. It is obvious that a KG can have

multiple data types. For example, YAGO combines an ontol-

ogy derived from WordNet and facts from Wikipedia.

The seventh column is KG storage. It is used to describe

the data storage format, including RDF, XML, OWL, XML,

JSON, etc. The eighth and ninth columns are Entity Extrac-

tion and Relation Extraction, respectively. They directly de-

scribe the knowledge harvesting methods of KGs.

11) http://www.opencalais.com
12) http://roll.sohu.com/20121122/n358347929.shtml
13) http://www.sogou.com
14) http://tech.163.com/13/1023/08/9BRUO0UV000915BF.html
15) http://www.baidu.com
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Table 3 Comparison of KGs

Project Affiliation Year KGs content Data source

CYC Cycorp 1984 120K+ concepts Human-defined

WordNet(M) PU 1985 117K synsets Expert-authored

FrameNet(M) UC Berkeley 1997 10 000 word senses and 170 000 annotated sen-
tences

Human-defined

ConceptNet MIT 1999 1.6M assertions OMCS

HowNet Keenage 2000 800 sememes Modern Chinese dictionary

KnowItAll UW 2005 54 753 facts Web pages

TextRunner UW 2007 500M assertions 117M+Web pages

Freebase Metaweb 2007 22M+ entities Crowdsourced

DBpedia DBpedia 2007 320 classes, 0.7M Wiki types, 3.6M entities,
247 M triples

Wikipedia

YAGO/YAGO2 MPII 2007 10M+ entities, 120M+ facts Wikipedia, WordNet

Kylin/KOG UW 2008 Classified documents and sentences Wikipedia infoboxes and WordNet

OpenCalais Calais 2008 Semantic metadata Web Pages

Satori MS 2009 400M entities Bing search streams

NELL CMU 2010 123 categories and 55 relations 500M Web pages

Probase MSRA 2011 2.7M concepts 1.68B Web pages

EntityCube/Renlifang(C) MSRA 2011 Entity-Relation Graph Billions of public Web pages

Google Knowledge Graph(M) Google 2012 570M+ objects, 18B facts CIA World Factbook, Freebase, Wikipedia

Sogou Zhilifang(C) Sogou 2012 100M+ entities, 1M+ relations Web pages

Baidu Zhixin(C) Baidu 2012 N/A Web pages

Facebook Graph Search Facebook 2013 User’s network of friends, Bing’s search engine 700TB post and comment data from Face-
book blog

Project Data object KG storage Entity extraction Relation extraction

CYC Ontology, Facts CycL Human-defined Human-defined

WordNet(M) Ontology, Facts OWL/RDF Human-defined Human-defined

FrameNet(M) Ontology, Facts XML/OWL Human-defined Human-defined

ConceptNet 700K Facts JSON Template-based Infobox of Wiki

HowNet 6,000 Chinese characters Named sememes Template-based Pattern-based

KnowItAll XML Pattern/Wrapper/Rule Feature-based classification

TextRunner Facts RDF Pattern/Wrapper Feature-based

Freebase Ontology, Facts RDF Crowdsourced Crowdsourced

DBpedia Ontology, Facts RDF Template-based Infobox of Wiki

YAGO/YAGO2 Ontology, Facts RDF Template-based/Rule Pattern-based/Rule

Kylin/KOG Ontology, Facts RDF Pattern/Wrapper/Rule CRF-based classification

OpenCalais N/A OWL/RDF Template-based Pattern-based

Satori Ontology, Facts RDF Search log/Feature-based Pattern-based

NELL Ontology, Facts TSV File Pattern-based Kernel/Feature-based

Probase Is-A pair RDF Hearst-pattern/Search log Pattern-based

EntityCube/Renlifang(C) Facts RDF Feature-based Pattern-based

Google knowledge graph(M) Ontology, Facts RDF Triple Crowdsourced Crowdsourced

Sogou Zhilifang(C) Ontology, Facts N/A Search log/Vertical website Pattern-based/Feature-based

Baidu Zhixin(C) Ontology, Facts N/A Pattern/Vertical website/Search log Feature-based

Facebook graph search Facts GraphML Template-based Pattern-based

In Table 3, we can observe that: 1) the sizes of knowl-

edge graphs have become larger and larger; 2) recently, al-

most all of big Internet companies in the world provide the

services based on the knowledge graph techniques. These

changes benefit from the explosion in the data volume and

the progress in the techniques.

7 Discussion

Although the construction of large-scale KGs has been exten-

sively studied in both academic (e.g., YAGO [116], DBPedia

[7]) and industry circles (e.g., Google Knowledge Graph, Mi-

crosoft’s Satori), there remains a lots of research issues that



70 Front. Comput. Sci., 2018, 12(1): 55–74

still need to be addressed. We discuss some of the issues as

follows.

7.1 Web data cleansing

Unlike data sources such as Wikipedia that contain high-

quality data but with limited size, the Web provides an un-

precedented amount of data for knowledge extraction. How-

ever, one challenge of constructing KGs from the Web is to

generate high-quality knowledge from noisy Web data. The

cleansing of Web data can greatly improve the data accuracy.

For example, leveraging probabilistic approaches to select

values for the attributes that are the most likely correct.

7.2 Temporal and spatial knowledge extraction

The correctness of some facts in KGs is preserved only un-

der some temporal and spatial constraints. For instance, the

president of the United States may change over time. Free-

base allows users to add beginning and end dates to attributes

of entities. YAGO2 [6] integrates knowledge from WordNet,

Wikipedia and GeoNames to annotate facts with temporal

and spatial information. In future research, it is vital to study

how to extract these facts from the Web automatically.

7.3 Knowledge graph construction for different languages

The techniques of KG construction are strongly related to the

processing of natural language itself. Methods for KG con-

struction in English cannot be directly applied to KG in other

languages. Here, we take Chinese as an example. Currently,

most projects introduced in this paper focus on constructing

English KGs while several challenges remain for Chinese KG

construction [120]. Data sources in Chinese are still limited

due to the lack of knowledge repositories (e.g., Freebase),

low quality of Wikipedia in Chinese and the difficulty in inte-

grating knowledge from heterogeneous data sources. Estab-

lishing classes and their semantic relations are formidable in

Chinese. Extraction rules and patterns that work well for the

English language do not work in Chinese. Thus, much re-

search work should be devoted to mapping entities to their

corresponding classes and building the entire taxonomy. Ex-

pressions in Chinese language are quite flexible, which re-

sults in increased difficulty in building large-scale Chinese

entity and relation extraction systems. The advancement in

this field will enrich current Chinese KGs.

7.4 Knowledge graph construction in specific domains

A majority of existing approaches for knowledge extraction

from the Web are based on Web data redundancy. For exam-

ple, a lot of relation extraction systems mine relational facts

by discovering patterns that are frequently expressed in Web

text, such as Snowball [46], StatSnowball [89], etc. These

projects focus on harvesting a vast amount of general knowl-

edge. However, when it comes to a specific domain, the Web

documents related to the domain are relatively sparse, which

makes it difficult to use pattern-based methods. Therefore, it

is important to research how to extract entities and relations

for a specific domain.

7.5 Knowledge fusion from existing knowledge graphs

In this paper, we survey different fact extraction methods and

different KGs. To construct a KG system with larger scale,

we can combine facts extracted from different methods and

facts from existing KGs together. In this way, the problem of

knowledge fusion calls for future research. To specify, facts

from different data sources and systems should have different

levels of “correctness” that need to be estimated. Knowledge

extracted from plain text has lower probability to be correct

than that directly derived from Freebase. After the assign-

ment of “correctness” of these facts, a general framework

should be developed to fuse these facts and integrate them

into a unified system.

8 Conclusion

In this survey, we have provided an analysis of state-of-the-

art techniques in the fields of KGs. In more details, we have

discussed the main challenges in constructing, managing and

storing KGs and approaches to deal with these issues.

The building of a KG is the central topic in this survey. To

study this topic in detail, we have described methods for min-

ing entities from different data sources and relation extraction

methods in different paradigms. We have also presented sev-

eral techniques to improve the quality of data in KGs, includ-

ing logical reasoning and inference. We analyze the storage

and management of graph data in KGs and survey existing

KG systems from different aspects.

To conclude, in recent years, KGs have emerged as one

of the most important systems for knowledge representation,

organization and understanding. A large number of research

issues, applications and products related to KGs have been

proposed. Nevertheless, there are still many challenges and

opportunities in the field of KGs.
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