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Abstract. Split learning enables collaborative deep learning model
training while preserving data privacy and model security by avoid-
ing direct sharing of raw data and model details (i.e., server and
clients only hold partial sub-networks and exchange intermediate
computations). However, existing research has mainly focused on ex-
amining its reliability for privacy protection, with little investigation
into model security. Specifically, by exploring full models, attackers
can launch adversarial attacks, and split learning can mitigate this
severe threat by only disclosing part of models to untrusted servers.
This paper aims to evaluate the robustness of split learning against
adversarial attacks, particularly in the most challenging setting where
untrusted servers only have access to the intermediate layers of the
model. Existing adversarial attacks mostly focus on the centralized
setting instead of the collaborative setting, thus, to better evaluate
the robustness of split learning, we develop a tailored attack called
SLADV , which comprises two stages: 1) shadow model training that
addresses the issue of lacking part of the model and 2) local adver-
sarial attack that produces adversarial examples to evaluate. The first
stage only requires a few unlabeled non-IID data, and, in the sec-
ond stage, SLADV perturbs the intermediate output of natural sam-
ples to craft the adversarial ones. The overall cost of the proposed
attack process is relatively low, yet the empirical attack effective-
ness is significantly high, demonstrating the surprising vulnerability
of split learning to adversarial attacks.

1 Introduction

Split Learning (SL) emerges as a promising distributed learning
paradigm for addressing the privacy issue in conventional centraliza-
tion training [5]. This learning paradigm enables collaborative model
training by splitting the whole network into sub-networks that are
computed by different participants (i.e., clients and a server). It alle-
viates the privacy issue by keeping the sensitive raw data locally at
the client side and only exchanging intermediate computations with
the server. In the training process, the server bears most of the in-
volved computational costs, making split learning lightweight and
scalable for clients with limited computing resources.

Figure 1(a) presents the vanilla split learning [19], where a full
model is split into two sub-networks: input layers and server layers.
Clients train the input layers up to a specific cut layer, and the re-
sulting outputs are sent to the server. The server then completes the
rest of the forward process with the server layers without accessing
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Figure 1: Sketch map of split learning: (a) vanilla split learning and
(b) split learning with the U-shaped configuration.

clients’ private raw data. The back-propagation process is also per-
formed in a similar fashion. However, vanilla split learning requires
clients to expose labels to the server, which may compromise label
privacy. To mitigate this concern, an improved version of vanilla SL
is presented in Figure 1(b), i.e., split learning with the U-shaped con-
figuration [19], which further divides and transfers a few layers at the
end of the full model (i.e., output layers) back to clients, eliminating
the need for label sharing.

One of the most heated research topics of split learning is its trust-
worthiness and a sizable body of work focuses on examining whether
split learning can truly protect privacy [14, 3]. However, there is a
lack of research on discussing model security in split learning, which
also is an important aspect of trustworthiness. In detail, attackers can
manipulate models by employing adversarial attacks [15], which
generates adversarial examples by imposing human-imperceptible
adversarial noises into natural samples. Fortunately, launching ad-
versarial attacks typically requires full access to target models, mak-
ing them less dangerous in the conventional centralized learning
paradigm. In centralized learning, the trainer centralizes data across
different places into one data center. Untrusted individuals rarely are
involved in the training process, thereby the models are not likely
to be disclosed. In contrast, for split learning, the server may be un-
trusted while part of the model is delivered to the server [14, 3]. As
a result, a key question naturally arises: can split learning maintain
model security? To address this, to our best knowledge, this paper
conducts the first systematic empirical study on the vulnerability of
split learning against adversarial attacks.

In this paper, we focus on examining the vulnerability of split
learning with the U-shaped configuration for three reasons. First, this
type of split learning is more favorable since it allows protection for
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both data and labels. Second, launching attacks in this setting is more
challenging because the available resources for the server are greatly
limited compared to vanilla split learning. Third, the attacks devel-
oped for this type of split learning are more generic and can be seam-
lessly applied to vanilla split learning. Thus, for simplicity, in the re-
mainder of this paper, we use split learning to denote split learning
with the U-shaped configuration (Figure 1(b)).

Existing adversarial attacks are mainly developed in centralized
settings, which cannot fully exploit the characteristics of split learn-
ing [8]. To address this issue, we first present a practical attack sce-
nario that aligns well with split learning and then develop a novel
yet effective adversarial attack called SLADV . Adversarial attacks
typically adopt input gradients as maliciously-designed noises [23].
Common adversarial attacks [8] assume either full access to the tar-
get model (i.e., white-box adversarial attacks) or pre-training a simi-
lar proxy model as a surrogate of the target model (i.e., transfer-based
adversarial attacks). Our proposed SLADV follows the latter type of
attack, as it is more practical than the former type.

Our proposed SLADV consists of two stages: shadow model train-
ing and local adversarial attack. In shadow model training, by lever-
aging the characteristics of split learning, SLADV only needs to train
shadow input layers instead of a complete model. The training of
shadow input layers requires only a few hundred to a few thousand
samples, which do not necessarily have to be identical to the distri-
bution of the target model’s training data. In contrast, the training
of proxy models in common transfer-based attacks needs to collect
a large amount of data that is identically distributed with the train-
ing set of the target model. Additionally, the training in SLADV does
not necessitate labeled data, eliminating the need for labeling data in
common transfer-based attacks, which can be labor-intensive. In lo-
cal adversarial attack stage, the concatenation of shadow input layers
and server layers serves as the proxy model to produce adversarial
examples. Extensive experiments show that SLADV achieves com-
petitive attack performance at a significantly lower cost compared
to common transfer-based attacks. In all, we believe this study sheds
light on the vulnerability of split learning to adversarial attacks, alerts
clients to potential model security issues, and may inspire further de-
fenses in this area. Our contributions are four-fold:

• To our best knowledge, we are the first to identify the poten-
tial threat in split learning, i.e., the vulnerability of split learning
against adversarial attacks, and, have conducted a seminal inves-
tigation into this threat.

• By delving into the bottom of split learning, we have designed
a highly practical attack scenario with limited attack resources.
Within this scenario, we developed a novel yet effective attack
method named SLADV that fully exploits the characteristics of
split learning.

• We have performed an in-depth theoretical analysis of the pro-
posed SLADV attack and demonstrated its theoretical effective-
ness under mild conditions.

• Extensive experiments have been conducted to examine the ro-
bustness of split learning against adversarial attacks, revealing the
severe vulnerability of split learning and the effectiveness of our
proposed SLADV .

2 Related Work

2.1 Model Security and Adversarial Attacks

Although DNNs achieve impressive performance over many com-
plicated tasks, the internal operating mechanism of DNNs is still

opaque to humans and this feature can be maliciously explored to
launch adversarial attacks against DNNs [11]. Adversarial attacks
impose little noises along model vulnerable directions into natural
samples to craft adversarial examples. A lot of studies empirically
show the remarkable vulnerability of DNNs against adversarial ex-
amples [8, 2]. Generally, if DNNs are allowed to be fully accessible,
known as the white-box scenario, the input gradient directions are
considered as the model vulnerable direction [6, 10], i.e., taking gra-
dients of loss function w.r.t. natural samples as adversarial noises. In
the conventional training paradigm, it is not likely for trained mod-
els to be disclosed to untrusted ones. Therefore, launching attacks in
the black-box scenario is more appealing for real-world applications.
Black-box attacks largely depend on the transferability of adversar-
ial examples, i.e., adversarial examples locally crafted on a proxy
model sometimes can also fool another unknown model. Further-
more, transfer-based black-box attacks particularly follow the fol-
lowing two stages [8, 12]: 1) collecting a sufficient amount of data
together with their labels and train a proxy model from scratch, 2)
locally crafting adversarial examples. For the first stage, obtaining
a similar training dataset of the target model is difficult in the real
world. Although [20] proposed data-free proxy model training meth-
ods, the methods are limited due to the prohibitive cost of extensively
querying the target model. Our work proposes an effective attack
method with limited attack resources.

2.2 Data Privacy and Split Learning

Data sharing is one of the primary challenges in collaboratively train-
ing DNNs [18]. Split learning allows the training of an effective DNN
without sharing any raw data [5, 22]. In split learning, a full model is
split into multiple parts, each of which is trained by a different par-
ticipant. Split learning caters to practical needs for many scenarios
such as IoT settings [5] and thus is ubiquitous. Split learning, how-
ever, typically involves an untrusted server [14, 3]. As shown in Fig-
ure 1(b), the full model Fθ(·) is split into three parts, i.e., input layers
Fθ1(·), server layers Fθ2(·), and output layers Fθ3(·). Wherein, in-
put layers and output layers remain in clients, and server layers are
located in the server. In each iteration, clients send the output of input
layers into server layers. Next, the output of server layers is passed to
output layers. Clients locally compute loss and generate the gradients
from output layers that propagate back to server layers and input lay-
ers. Several recent studies [14, 3] show that the server is capable of
stealing both data and labels. Yet, to our knowledge, no related work
focuses on the model security in split learning, which is our research
goal to fill the gap.

3 Threat Model

Before developing our attack, we present the threat model used in this
paper, including attacker’s goal, attacker’s knowledge, and attacker’s
capability, which defines the available resource and constraints for
attacks to be performed.

3.1 Attack Model

In split learning, multiple clients collaboratively train a model with
the assistance of a server. Following previous works [14], we assume
the server to be a malicious attacker who may intentionally exploit
the training process to pursue self-interest. To be specific, in split
learning, after training process finishes, the server delivers server
layers to clients and clients concatenate input layers, server layers,
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and output layers into a complete model [1]. The complete model is
then deployed into real-world applications such as medical diagnosis
systems [1]. If the attacker can launch adversarial attacks to manip-
ulate medical diagnosis systems, the attacker can fraudulently obtain
government subsidies, insurance compensation, etc.

As white-box attacks necessitate full access to the target model and
the server lacks access to input layers and output layers, the server
can only resort to transfer-based adversarial attacks against the tar-
get model. Our aim is to investigate the feasibility of a successful
transfer-based adversarial attack in such scenario even for a highly
constrained attacker.

3.2 Attacker’s Goal

The overall goal of the attacker is to launch transfer-based adversarial
attacks against the target model. Specifically, the attacker aims to de-
ceive the target model into making false or less confident predictions
for given samples, in order to achieve personal gains.

3.3 Attacker’s Knowledge

For the sake of the practicality of our attack, the attacker is consid-
ered to possess fairly restricted knowledge. First, the attacker only
possesses knowledge of the output generated by the input layers, as
its role in split learning is solely that of a transmitter. This entails
that the server cannot obtain any information pertaining to the input
or output layers, including their architecture and parameters. Second,
in our SL setting, the attacker possesses only a vague understanding
of the current task, rather than either complete or no knowledge. For
instance, if the current task involves distinguishing between images
of cats and dogs, the server may be able to deduce that it is an image-
based task by analyzing the architecture of the server layers. How-
ever, the server is unlikely to be able to determine specific details
about the task, such as the precise label space (e.g., cats and dogs),
as the raw labeled data is not accessible to the attacker.

Note that, in common transfer-based adversarial attacks, attackers
are typically assumed to possess prior knowledge of the label space
of the target model in advance, enabling them to collect correspond-
ing data associated with the label space to train a proxy model with
high similarity. Conversely, our attacker only possesses knowledge
of the type of current task, i.e., an image-based task, but lacks access
to the label space. This constraint makes it unclear which images
should be collected, significantly increasing the difficulty of launch-
ing attacks. Nevertheless, the restricted attacker’s knowledge serves
a highly practical purpose in our split learning context.

3.4 Attacker’s Capability

The attacker’s capabilities in this stage adhere to the principle of
avoiding behaviors that violate split learning’s training rules, as such
behaviors would be easily detected by clients. As a result, we per-
mit the following attacker’s capabilities: 1) arbitrary modifications
of the input and output of server layers, which is undetectable by
clients, 2) data collection for training a proxy model with potentially
dissimilar data distribution to the target model’s training data1, and
3) utilization of split learning’s characteristics, such as input layer
outputs, to train a proxy model during the training process without
alerting clients. Notably, in existing transfer-based attacks, the proxy
model’s training is often delayed until the target model’s training is

1 This aligns with real-world scenarios, where the attacker is assumed to have
fairly limited knowledge.

Algorithm 1 Shadow Model Training

Input: Fθ1 : input layers; Fθ2 : server layers; Fθ3 : output layers; Fθ′1 :
shadow input layers; D1: dataset owned by clients; D2: dataset
owned by the attacker (server); T : the total number of itera-
tions; α: the hyperparameters to adjust the similarity magnitude;
L(·, ·): a loss function.

Output: Fθ1 , Fθ2 , Fθ3 , Fθ′1 : the trained models.
1: for each iteration i = 0 to T do

2: Clients sample x, y from D1, compute o1 = Fθ1(x), and
send o1 to the server.

3: The server computes o2 = Fθ2(o1) and delivers o2 to
clients.

4: The server sample x′ from D2 and computes similarity loss
Lsim = ||Fθ′1(x

′)− o1||2.
5: Clients compute loss L(Fθ3(o2), y) and implement backpro-

gation algorithm to send gradient
∂L(Fθ3

(o2),y)

∂o2
to the server.

6: The server computes g1 =
∂L(Fθ3

(o2),y)

∂o2

∂o2
∂o1

and g2 =
∂Lsim
∂o1

.
7: The server fuses gradients g = g1 +αg2 and returns g to the

clients.
8: Clients and the server update model parameters based on gra-

dients.
9: end for

Figure 2: The sketch map of the shadow model training stage. We use
shadow layers to substitute input layers. The resultant combination
of shadow input layers and server layers serves as the proxy model.
We leverage similarity loss to promote the similarity between input
and shadow input layers for better attack effectiveness.

complete. In contrast, in our case, the proxy model is trained together
with the target model to exploit the characteristics of split learning.

4 Approach

We elaborate on shadow model training and local adversarial attack
of SLADV in Sections 4.1 and 4.2, respectively. Algorithms 1 and 2
outline the two stages. Figure 2 illustrates the overall idea of shadow
model training stage. Section 5 gives theoretical analysis on SLADV .
Finally, Section 4.3 compares the difference between SLADV and
common-used transfer-based attacks.

4.1 Shadow Model Training

SLADV trains a proxy model to launch attacks. In split learning,
the server holds server layers, which can be maliciously exploited
by attackers to reduce the cost of launching attacks. In response, a
straightforward idea is to train shadow input layers and shadow out-
put layers (compatible with server layers) and then concatenate them
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with server layers to form a proxy model. However, attackers are un-
able to query ground-truth labels for the collected data, making it
impossible to train the output layers without supervised signals. Fur-
thermore, even if the labels of the collected data are available, the
label space of the collected data may differ from the label space of
the target model. This gap implies a low similarity between the proxy
model and the target model, resulting in low attack success rates. To
overcome this issue, we attempt to discard the shadow output lay-
ers. As a result, crafting adversarial examples can only rely on the
shadow input layers and server layers. However, with the absence of
an output layer, SLADV cannot generate adversarial examples by di-
rectly reducing the predicted probability of the corresponding label
obtained from the proxy model. We defer the solution to this problem
to Section 4.2.

In split learning, clients send outputs of input layers to the server.
Intuitively, a simple idea is to adopt the outputs of input layers as
supervised signals for shadow input layers. In each iteration, an extra
difference loss item, L2-norm, is introduced, which measures the dif-
ference between the outputs of input layers and shadow input layers
associated with their respective data. In this way, shadow input lay-
ers can be trained. It is stressed that this way does not alert clients.
Because the extra difference loss item is computed by the server,
and, in each backpropagation process, the server just fuses the gra-
dients of the original loss and gradients of the extra difference loss.
The original loss denotes the loss used to train models over the task,
e.g., cross-entropy loss. The fused gradients are returned to clients.
Clients cannot detect gradient tampering by only observing the re-
turned gradients. Formally, by denoting clients’ and the server’s data
as D1 and D2, a forward process can be formally expressed as fol-
lows.

Clients transmit locally-computed output o1 of input layers Fθ1 to
the server: o1 = Fθ1(x), x ∼ D1. With o1, the server returns the
output o2 of server layers Fθ2 associated with o1 and compute the
extra difference loss Lsim to train shadow input layers:

o2 = Fθ2(o1),

Lsim = ||Fθ′1(x
′)− o1||2, x′ ∼ D2.

Afterwards, clients complete the rest of forward process, i.e., com-
puting the final outputs of the model and the original loss:

loss = L(Fθ3(o2), y).

The back-propagation process is sequentially implemented in the
following steps:

• Clients update θ3 by ∂loss
θ3

and send ∂loss
o3

back to the server;
• The server updates θ2 and θ′1 by ∂loss

∂o2

∂o2
θ2

and Lsim
θ′1

respectively,

and sends ∂loss
∂o2

∂o2
∂o1

+ α ∂Lsim
o1

back to the clients, where α is
similarity constraints;

• Clients update θ1 by ( ∂loss
∂o2

∂o2
∂o1

+ α ∂Lsim
o1

) ∂o1
θ1

.

Besides exploiting the difference between the outputs of input lay-
ers and shadow input layers as supervised signals, an alternative is
to utilize the difference of outputs of server layers with respect to
clients’ data and the attacker’s data. However, the latter usually per-
forms worse than the former. In particular, it is well-known that
the extracted features of the model transmit from general to spe-
cific along with the model depth [7, 16]. In light of the observation,
due to the non-negligible data distribution divergence between clients
and the server, forcefully aligning outputs of server layers probably
causes collapse in model performance. In contrast, it makes more

Algorithm 2 Local Adversarial Attack

Input: Fθ′1 : shadow input layers; Fθ2 : server layers. x: samples; K:
the total number of iterations; ε: perturbation budget.

Output: x+ δ: the crafted adversarial examples.
1: Initialize the adversarial noises δ for x.
2: for each iteration i = 1 to K do

3: Compute o2 = Fθ2(Fθ′1(x)) and o′2 = Fθ2(Fθ′1(x+ δ)).

4: Compute loss Lattack(o2, o
′
2) =

o2·o′2
||o2||2||o′2||2

.

5: Optimize δ based on L(o2, o
′
2).

6: Clip δ based on perturbation budget ε.
7: end for

sense to align the output of input layers since input layers typically
extract features shared across different kinds of data. We also validate
this point in experiments (Section 6.5).

4.2 Local Adversarial Attack

After shadow model training, the trained shadow input layers serve
as a substitute for input layers. We combine shadow input layers and
server layers as the proxy model. The problem here is that the proxy
model lacks output layers, indicating that common techniques for
crafting adversarial examples in transfer-based attacks cannot be di-
rectly implanted into our case as these methods require prediction
probability. Therefore, instead of decreasing the prediction probabil-
ity, SLADV crafts adversarial examples by perturbing the intermedi-
ate outputs. Intuitively, since output layers make predictions based
on the outputs of the server layers, it is possible to trick the target
model by changing the outputs of the server layers. Furthermore, if
shadow input layers and input layers are similar enough, such noises
that induce considerable shifts in outputs of the combination of the
shadow input layers and server layers also are likely to produce con-
sistent influences on outputs of the combination of the input layers
and server layers. Section 5 formally demonstrates the effectiveness
of the above idea under some mild regularization conditions.

In practice, SLADV implements this idea by optimizing noises that
reduce the cosine similarity between the intermediate outputs of per-
turbed and unperturbed samples. Mathematically, by initializing δ as
zero vectors, SLADV iteratively optimizes δ for K times based on
following steps:

• Compute the output of server layers with respect to original and
corresponding adversarial samples: o2 = Fθ2(Fθ′1(x)), o

′
2 =

Fθ2(Fθ′1(x+ δ)).
• Compute loss function that measures the similarity between o2

and o′2: Lattack(o2, o
′
2) =

o2·o′2
||o2||2||o′2||2

.

• Update δ by δ = Clipε{δ−β
∂Lattack(o2,o

′
2)

∂δ
}, where β is update

step size, ε is given perturbation budget, and Clipε{·} draws input
into ε-ball (usually ∞-norm) if input beyond perturbation budget.

4.3 Detailed Comparison between SLADV and
Commonly-used Transfer-based Attacks

Unlike commonly-used transfer-based attacks that focus on central-
ized training settings [8, 2], SLADV instead pays more attention to
decentralized settings, i.e., split learning, which is more suitable in
resource-restricted settings [5].

In the proxy model training stage, aside from more loose needs
for datasets, SLADV enjoys two extra advantages over commonly-
used transfer-based attacks. i) Attackers are assumed to own less in-
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formation about the task performed by the target model, which is
more practical as shown in Section 3.3. ii) SLADV is an immediate
attack since the proxy and target models are trained together, sug-
gesting that SLADV can launch attacks whenever the target model is
deployed.

In the way of crafting adversarial examples, SLADV promotes the
output of server layers w.r.t. crafted adversarial examples to have a
large shift, rather than decreasing logits. Moreover, experimental re-
sults (Section 6) show that such method still can achieve competitive
attack performance.

5 Theoretical Analysis

Section 5.1 suggests that local adversarial attack is effective when
the input layers and shadow layers are similar. Additionally, Section
5.2 demonstrates that adding an extra loss term (i.e., L2-norm) can
increase the similarity between the input layers and shadow layers.

5.1 The Effectiveness of Shadow Model Training

In the following analysis, we set ||δ|| ≤ ε where ε is a small positive
constant to make Taylor expansion established. By adding δ into x,
for the combination of shadow input layers and server layers, the
output can be approximately estimated as follows:

Fθ′1(x+ δ) = Fθ′1(x) +∇xFθ′1(x)
T · δ = o′1 +∇xFθ′1(x)

T · δ,
Fθ2(Fθ′1(x+ δ)) = Fθ2(o

′
1) +∇o′1Fθ2(o

′
1)

T · Fθ′1(x)
T · δ,

(1)

where o′1 denotes the output of the shadow input layers. Similarly,
for the combination of input layers and server layers, there is:

Fθ2(Fθ1(x+ δ)) = Fθ2(o1) +∇o1Fθ2(o1)
T · Fθ1(x)

T · δ. (2)

SLADV minimizes the cosine distance to craft δ as follows:

δ = argmin
δ

Fθ2(Fθ′1(x)) · Fθ2(Fθ′1(x+ δ))

= argmin
δ

Fθ2(o
′
1) · (Fθ2(o

′
1) +∇o′1Fθ2(o

′
1)

T · Fθ′1(x)
T · δ),

s.t., ||δ|| ≤ ε, ||Fθ2(Fθ′1(x))|| = ||Fθ2(Fθ′1(x+ δ))|| = 1.

(3)

The best solution of δ for the above optimization task is:

δ = −C · Fθ′1(x) · ∇o′1Fθ2(o
′
1),

C =
ε

||Fθ′1(x) · ∇o′1Fθ2(o
′
1)||

.
(4)

Then, by substituting the best solution of δ into Equation 2, it is
observed that the influence of δ for input layers and server layers:

Fθ2(Fθ1(x+ δ)) = Fθ2(o1) +∇o1Fθ2(o1)
T · Fθ1(x)

T · δ
= Fθ2(o1)− C · ∇o1Fθ2(o1)

T · Fθ1(x)
T · Fθ′1(x) · ∇o′1Fθ2(o

′
1).

(5)

The finding here is that if the inner dot between Fθ1(x) ·
∇o1Fθ2(o1) and Fθ′1(x) · ∇o′1Fθ2(o

′
1) is positive, δ can produce

similar effects. Specifically, when directions of the two items are to-
tally same, δ induces identical effects. However, there is no evidence
to show the positive of the inner dot. To solve this problem, Lsim is
added to increase the similarity between shadow input layers and in-
put layers and we here demonstrate that Lsim can promote direction
consistency between the two gradient items.

We first demonstrate ∇xFθ1(x) = ∇xFθ′1(x), ∀x if Fθ1(x) =
Fθ′1(x). According to Lagrange mean value theorem, there is:

(Fθ1(x1)− Fθ1(x2))(x− y)−1 = ∇ξ1Fθ1(ξ1), x1 ≤ ξ1 ≤ x2,

(Fθ′1(x1)− Fθ′1(x2))(x− y)−1 = ∇ξ2Fθ′1(ξ2), x1 ≤ ξ2 ≤ x2.

(6)

Due to Fθ1(x) = Fθ′1(x), ∀x, we have:

(∇x1Fθ1(x1)−∇x2Fθ1(x2))(x− y)−1

= (∇x1Fθ′1(x1)−∇x2Fθ′1(x2))(x− y)−1,

∇ξ1Fθ1(ξ1) = ∇ξ2Fθ′1(ξ2).

(7)

Let x2 → x1, there is:

x1 = ξ1 = ξ2,∇x1F (θ1)(x1) = ∇x1F (θ̂1)(x1). (8)

Furthermore, o1 = o′1 because of Fθ1(x) = Fθ′1(x). Therefore, if
shadow input layers and input layers output identically for all inputs,
the directions of the two items aforementioned are same, which in-
spire us to add Lsim.

Now, we relieve the condition Fθ1(x) = Fθ′1(x), ∀x. Let the max-
imum distance between Fθ1(·) and Fθ′1(·) equals to d over its input
space, i.e. d = maxx ||Fθ1(x)− Fθ′1(x)||, ∀x. Then, there is:

||∇Fθ1(x)−∇Fθ′1(x)||
≈ ||(Fθ1(x+ δ)− Fθ1(x))δ

−1 − (Fθ′1(x+ δ)− Fθ′1(x))δ
−1||

= ||(Fθ1(x+ δ)− Fθ1(x)− Fθ′1(x+ δ) + Fθ′1(x))δ
−1||

≤ 1

||δ|| (||Fθ1(x+ δ)− Fθ′1(x+ δ)||+ ||Fθ1(x)− Fθ′1(x)||)

=
2d

||δ|| .
(9)

As such, decreasing the distance of outputs of shadow input layers
and input layers for same inputs still can enhance their gradient sim-
ilarity.

5.2 The Effectiveness of Local Adversarial Attack

The overall goal of this part is to study whether or not the samples
perturbed by adding noises δ can fool the target model. The target
model is a combination of input layers, server layers, and output lay-
ers, and we discuss the impact of noises crafted by shadow input lay-
ers and server layers for the outputs of input layers and server layers
before. Therefore, the overall goal can be converted into the impact
of the intermediate output changes −C · ∇o1Fθ2(o1)

T · Fθ1(x)
T ·

Fθ′1(x) ·∇o′1Fθ2(o
′
1) to output layers. For the simplicity of symbols,

−C · ∇o1Fθ2(o1)
T · Fθ1(x)

T · Fθ′1(x) · ∇o′1Fθ2(o
′
1) is denoted by

Δ. We analyze the influence of Δ to loss function L(·) (the larger
the loss function, the worse the target model performance):

L(Fθ3(o2 +Δ), y) = L(Fθ3(o2), y) +∇o2L(Fθ3(o2), y)
TΔ.

(10)
To maximize the above loss function, the directions of Δ should be
aligned with ∇o2L(Fθ3(o2), y) as possible.

As shown in [4, 17], the final part of DNNs usually exhibits high
linearity, especially for the last fully-connected layer. Based on this,
we can make the following approximation:

L(Fθ3(0), y) = L(Fθ3(o2), y)+∇o2L(Fθ3(o2), y)(0−o2). (11)
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Table 1: Accuracy drop (%) of the target model trained over CIFAR-
10 with 40,000 instances. The proxy model is trained over four dif-
ferent data distributions and varying numbers of data instances.

# Instances SVHN CIFAR-10 CIFAR-100 TinyImageNet

128 14.07 16.31 20.31 15.47
256 27.86 29.43 30.31 25.16

1024 29.19 31.42 30.99 27.38
2048 29.60 31.65 33.21 28.31
4096 27.84 29.86 35.22 34.77
8192 28.28 30.20 34.29 33.15

Table 2: Attack performance of three attacks against the target model
over CIFAR-10 measured by accuracy drop (%).

# Instances VR SSA SLADV

1024 19.15 20.88 31.42
2048 22.48 24.60 31.65
4096 23.71 25.43 29.86

Table 3: Impact of parameter α. With a fixed dataset size of 4096, we
use different α to train proxy models in four different data distribu-
tions to implement SLADV against the target model.

α SVHN CIFAR-10 CIFAR-100 TinyImageNet

0 10.87 12.58 15.15 14.79
0.01 15.02 16.77 20.53 20.46
0.1 21.58 21.33 26.45 25.04
1 27.84 29.86 35.22 34.77

10 28.28 30.52 38.01 35.88
100 29.51 31.08 41.58 37.11

Notice that, output layers for full-zero inputs also output zeros and
then the loss L(Fθ3(0), y) is huge. Besides, the target model is gen-
erally trained well, implying L(Fθ3(o2), y) being small. Thus, there
is ∇o2L(Fθ3(o2), y)

T o2 < 0.
Furthermore, the best solution for δ is to minimize the cosine di-

rection, thereby the inner product between Δ and ô2 = Fθ2(Fθ1(x))
being negative. Moreover, o2 and ô2 probably are close with the aid
of Lsim shown in Part 1 and we assume oT2 · ô2 > 0. Therefore, there
is oT2 Δ < 0 and ∇o2L(Fθ3(o2), y)

TΔ > 0. In short, if shadow in-
put layers and input layers are similar, the noises crafted by SLADV
can decrease the performance of the target model.

6 Experimental Evaluation

6.1 Setup

According to existing works [8], three factors (i.e., the difference
in architecture, training data distribution, and the numbers of train-
ing instances between the proxy and target models) are empirically
demonstrated as being significant to attack effectiveness, while the
leaving ones are usually trivial. We primarily explore the robustness
of split learning by varying these important factors (see Section 6.2
and Section 6.5) while keeping the trivial ones fixed at commonly-
used values throughout evaluations [14].
Collaborative settings. A typical setting is considered here, where
10 clients collaboratively train a shared model under the coordination
of the server. Four state-of-the-art model architectures are selected
for evaluation, i.e., MobileNet, DenseNet, ResNet18, and Efficient-
Net. The models are sequentially split into three parts to be allocated
to clients and the server. Moreover, the ResNet18 architecture serves

Table 4: The impact of similarity constraints α of SLADV in terms of
the accuracy of the target model.

α SVHN CIFAR-10 CIFAR-100 TinyImageNet

0 81.47 81.25 80.36 80.47
0.01 81.81 80.58 82.03 80.47
0.1 78.91 80.25 79.35 80.25
1 78.45 78.12 78.23 78.01
10 76.00 76.34 76.23 76.79
100 75.33 75.67 77.34 75.89

as the default architecture of the shared model and we discuss the
impact of architecture in Section 6.5. ResNet18 composes of 17 con-
volutional layers tailed with a fully-connected layer and input layers,
server layers, and output layers hold 2, 15, and 1 layers. Moreover,
similar to [14], we suppose that clients solve a benchmark image
classification task of CIFAR-10 to evaluate and the attacker’s data is
randomly extracted from SVHN, CIFAR-10, CIFAR-100, and Tiny-
ImageNet datasets. 80% of the training data in CIFAR-10 are evenly
distributed to clients for training with a momentum optimizer with
learning rate of 0.01 for 3000 iterations. In this stage, the server
trains shadow input layers with similarity constraint α of 1 and an
SGD optimizer with learning rate of 0.01. Since the server (Section
3.3) is assumed to have some knowledge about the AI domain and
can infer the rough type of the current task, the default architecture
of the shadow input model is set to two plain convolutional layers
with skip connections.
Attack settings. In the attack stage, the server exploits the concate-
nation of the trained shadow input model and server layers as the
proxy model. We implement Algorithm 2 with perturbation budget
of 0.3, step size of 0.3, and K of 1 (small iterations can make cheaper
attacks) to craft adversarial examples against the target model.
Metric. We assess the effectiveness of SLADV using accuracy drop,
which is defined as the difference between the accuracy of the model
in the presence of natural samples and adversarial samples, over the
test set of CIFAR-10. Higher accuracy drop indicates better attack
performance.

6.2 The Impact of Data

The training data of the proxy model is of crucial importance for
attack effectiveness. Generally, attack effectiveness grows with an
increase in the number of available data and a decrease in the diver-
gence between the data distributions of the target and proxy models.
This is because attack effectiveness heavily depends on the similar-
ity of learned features between proxy and target models [7]. A small
volume of data makes it difficult to identify discriminative features
while significant divergence in data distribution implies the under-
lying discriminative features behind these data are distinct. Table 1
reports the results by altering the data number and data distribution
of the attacker. For SVHN, CIFAR-100, and TinyImageNet, we ran-
domly extract data from the training dataset as the attacker’s data.
For CIFAR-10, we randomly sample the remaining training dataset
(different from the data used for training the global model).
Data volume. The attack effectiveness considerably raises at the start
of increasing data volume until it peaks at around 2000 to 4000, af-
ter which attack effectiveness tends to fluctuate moderately. Surpris-
ingly, we find that even with a tiny amount of data, SLADV can still
achieve a non-trivial performance. Taking CIFAR-100 as an exam-
ple, SLADV produces a 20% accuracy drop in the target model by
using 128 Non-IID data instances, highlighting the extreme vulnera-
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Table 5: The attack effectiveness of SLADV with different sizes of the shadow input layers and input layers.

Layer Depth SVHN CIFAR-10 CIFAR-100 TinyImageNet

Single Multi Diff Single Multi Diff Single Multi Diff Single Multi Diff

1 27.84 27.84 0.00 29.86 29.86 0.00 35.22 35.22 0.00 34.77 34.77 0.00
2 23.68 23.94 0.26 25.74 26.19 0.45 34.98 35.10 0.12 32.77 32.99 0.21
3 18.55 20.48 1.93 21.79 22.90 1.11 32.11 33.76 1.66 28.56 30.20 1.64
4 13.59 17.68 4.09 15.89 18.56 2.67 27.47 30.30 2.83 24.35 27.62 3.28

Table 6: The impact of the target model architectures. The proxy
model is trained over four datasets with 4096 instances).

ResNet EfficientNet DenseNet MobileNet

SVHN 27.84 18.80 30.63 32.97
CIFAR-10 29.86 28.28 39.56 38.45
CIFAR-100 35.22 30.75 44.37 45.83

TinyImageNet 34.77 31.64 39.23 38.90
Avg. 31.92 27.37 38.45 39.04

bility of split learning against adversarial attacks.
Data distribution. Compared to data volume, the impact of data dis-
tribution indicates more striking observations. To begin with, intu-
itively, the best attack effectiveness should be achieved when the at-
tacker’s data is similar to the training data of the target model, i.e.,
CIFAR-10. However, Table 1 shows the attack effectiveness of em-
ploying different datasets as training data for the shadow input layers
as follows: CIFAR100 > CIFAR10 > TinyImageNet >> SVHN.
This phenomenon can be explained by the fact that early layers pri-
marily capture low-level features [7], which are shared among these
datasets despite the divergence in their high-level features. Notably,
the attack effectiveness using SVHN is slightly lower than that of the
other datasets. We speculate this is because SVHN is a digital image
dataset, and consequently, its low-level feature distribution differs
from animal or plant images (CIFAR-10, CIFAR-100, and TinyIm-
ageNet). In summary, the quality requirement of the training data
distribution for shadow input layers to launch adversarial attacks is
lower than we thought.

6.3 Comparison to State-of-the-art Attacks

We compare the attack performance of SLADV with two state-of-
the-art transfer-based attacks, namely VR [21] and SSA [13]. For
VR and SSA, we train a proxy model of the same architecture of
the target model in CIFAR-10 with various sizes of training sets (the
same training dataset of SLADV) and then craft adversarial examples
using the hyperparameters suggested in their original paper. Table
2 reports the attack effectiveness of the three attacks. Wherein, the
attack performance of SLADV surpasses both baselines by a large
margin, regardless of the dataset size. In addition, the proxy model
training of VR and SSA uses labels. Therefore, SLADV is a more
powerful and cost-effective attack than baselines.

6.4 The Impact of Similarity Constraints

Section 5 presents theoretical evidence that adding similarity con-
straints α for input and shadow input layers can improve attack ef-
fectiveness, which is further verified in this section. Table 3 reports
the attack effectiveness of SLADV over varying magnitudes of simi-
larity constraints. As shown in Table 3, increasing the magnitude of
similarity constraints substantially strengthens the attack effective-
ness, demonstrating consistency with our theoretical analysis.

However, we emphasize that increasing the magnitude of similar-
ity constraints also has a negative side. Specifically, Table 4 shows
the accuracy of the shared model over the test set at different values
of similarity constraints. As can be seen, larger similarity constraints
lead to greater loss in model performance.

6.5 The Impact of Model

The impact of input layer depth. By holding shadow input layers
fixed while incrementally increasing input layer depth, we study the
impact of the depth of the input layers on the attack effectiveness of
SLADV . Table 5 reports the attack effectiveness for the shared model
with input layers of different depths, where we use Single to denote
the fixed shadow input layers. Overall, an increase in the depth of
input layers leads to a decrease in the attack effectiveness of SLADV
and this can be attributed to the model similarity. On the one hand,
increasing the depth of input layers makes a bigger difference be-
tween input and shadow input layers. On the other hand, input layers
with big depth tend to capture high-level features rather than low-
level features [9]. To validate this point, we increase shadow input
layers denoted in Multi in Table 5. Using shadow input layers with
a deeper depth can partly offset the effect of increasing the depth of
input layers but cannot completely offset.
The impact of target model architecture. We change the architec-
ture of the target model and then implement SLADV to further ex-
amine the effectiveness of SLADV . Table 6 reports the attack perfor-
mance of SLADV against the target model of different architectures.
Simply speaking, SLADV can effectively attack four model architec-
tures. Moreover, the results in Table 6 indicate that DenseNet and
MobileNet exhibit a higher vulnerability to adversarial attacks when
compared to ResNet and EfficientNet. This observation aligns with
findings reported in baselines (VR and SSA). A conjecture is that
the simpler and more lightweight design of MobileNet renders it less
robust against attacks (simple architectures may be not able to learn
enough discriminative features). On the other hand, DenseNet’s dis-
tinctive characteristic of having more skip connections allows errors
from earlier layers to propagate more easily to the last layer, poten-
tially increasing its vulnerability to attacks.

7 Conclusion

We designed an attack method called SLADV to sufficiently harness
the characteristics of split learning.In detail, SLADV comprises two
stages: shadow model training and local adversarial attack. Shadow
model training enables attackers to train shadow input layers in-
expensively, compensating for the lack of input layers. Local ad-
versarial attack employs shadow input layers and server layers to
generate adversarial examples against the target model (i.e., the
shared model). Our study also includes a thorough theoretical analy-
sis of SLADV’s attack effectiveness. Extensive empirical experiments
demonstrated the superior attack performance of SLADV and reveal
the striking vulnerability of split learning to adversarial attacks.
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