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Abstract. Machine Reading Comprehension (MRC) is an important
NLP task with the goal of extracting answers to user questions from
background passages. For conversational applications, modeling the con-
texts under the multi-turn setting is highly necessary for MRC, which
has drawn great attention recently. Past studies on multi-turn MRC usu-
ally focus on a single domain, ignoring the fact that knowledge in dif-
ferent MRC tasks are transferable. To address this issue, we present a
unified framework to model both single-turn and multi-turn MRC tasks
which allows knowledge sharing from different source MRC tasks to help
solve the target MRC task. Specifically, the Context-Aware Transferable
Bidirectional Encoder Representations from Transformers (CAT-BERT)
model is proposed, which jointly learns to solve both single-turn and
multi-turn MRC tasks in a single pre-trained language model. In this
model, both history questions and answers are encoded into the contexts
for the multi-turn setting. To capture the task-level importance of dif-
ferent layer outputs, a task-specific attention layer is further added to
the CAT-BERT outputs, reflecting the positions that the model should
pay attention to for a specific MRC task. Extensive experimental results
and ablation studies show that CAT-BERT achieves competitive results
in multi-turn MRC tasks, outperforming strong baselines.

Keywords: Machine reading comprehension · Question answering ·
Transfer learning · Pre-trained language model

1 Introduction

Conversational search [22,31], a way of seeking information through conversa-
tions, has become a heated topic in the filed of Information Retrieval (IR). The
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core task of conversational search is to answer user questions in a multi-turn sce-
nario. In the literature, such task can modeled as multi-turn Machine Reading
Comprehension (MRC) [27], whose goal is to answer user questions based on a
given passage, by means of multi-turn interactions between machines and users.

According to previous research, there are mainly two challenges faced by
multi-turn MRC [27]. i) Some questions that users raise in the dialogue are
unanswerable as the questions may belong to a wrong topic, or the information
from which the answers can the extracted is missing in the passage. Thus, the
answers to this type of questions can be categorized as “CANNOT ANSWER”.
ii) As a question raised by users usually depends on previous answers sent by
machines (i.e., chatbots), modeling the dialogue history is important and chal-
lenging for answering the question in the multi-turn setting. Therefore, many
phenomena may occur, such as co-references and omissions. For example, to
answer the question “What happened to him?”, where “him” is covered in the
previous answer “Mr. David found the dog was lost and became very sad at that
moment”, one has to know that “he” refers to “Mr. David”.

To address the above-mentioned challenges, recent studies consider incor-
porating contextual information into MRC models. Typical methods include
prepending previous questions and answers [32], adding history answer markers
to the passage [16], or using attention mechanisms to select the dialogue his-
tory [17]. There are also studies applying context-aware neural networks such
as recurrent neural networks and graph neural networks to convey the infor-
mation in past turns [2,6,11,28]. However, these methods often ignore the fact
that knowledge in many kinds of MRC tasks are transferable. To be more spe-
cific. both multi-turn and single-turn MRC tasks share some commonalities, such
as unanswerable question recognition and knowledge reasoning. The knowledge
learned from one MRC task may benefit the learning of other MRC tasks, espe-
cially when the tasks are closely related. Hence, it is crucial to leverage transfer
learning to capture the shared knowledge from different multi-turn and single-
turn MRC tasks for mutual reinforcement of the model performance.

To better leverage the cross-domain, cross-task knowledge, we present
a unified framework to solve both single-turn and multi-turn MRC tasks,
named Context-Aware Transferable Bidirectional Enoceder Representations
from Transformers (CAT-BERT). The overview CAT-BERT framework is shown
in Fig. 1. Inspired by the recent success of pre-trained language models, we
extend Bidirectional Encoder Representations from Transformers (BERT) [4]
to consider both history questions and answers to the model the contextual
information. Thus, the learned text representations are more robust across dif-
ferent MRC tasks. Observing the fact that different MRC tasks may possess
some unique task-dependent attributes [9], we further augment our model with
a task-specific attention layer to capture the task-level importance of different
layer outputs.

To the best of our knowledge, our study is the first to present a unified
framework for both multi-turn and single-turn MRC tasks. Our framework can
also be easily combined with other tasks by multi-task learning.
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Fig. 1. An overview of the proposed Context-Aware Transferable BERT framework,
which unifies three tasks, i.e., two multi-turn MRC tasks (QuAC [3] and CoQA [19]),
and one single-turn MRC task (SQuAD 2.0 [18]). In the middle part, the context-
aware BERT backbone is employed as the shared encoder, where the index in the input
representation is the history answer index. The training policy selects the training data
to feed into the context-aware BERT backbone, and then pass the data to task-specific
attention and output layers to generate task-specific outputs.

We need to further claim that although multi-task learning has been recently
studied for MRC (e.g., MultiQA [21], MT-DNN [10], MT-SAN [25]), CAT-BERT
differs from these approaches in the following two perspectives. i) We focus on
multi-turn MRC and propose a unified framework that can bridge the gaps
between multi-turn and single-turn MRC tasks. ii) We seek to boost the perfor-
mance of the MRC task in the target domain and better capture the transferable
knowledge from other domains by considering task-specific attention.

To summarize, the contributions of this work are three-fold:

– We are the first to propose a unified framework named CAT-BERT for jointly
learning multi-turn and single-turn MRC tasks. This sheds the light on how
to leverage knowledge from large-scale single-turn MRC datasets to boost the
performance of models for multi-turn MRC tasks.

– We propose a task-specific attention mechanism to model the task dependen-
cies on each layer of CAT-BERT. Qualitative experiments show the attention
weights learned are insightful and intuitive.

– Our method achieves competitive results in the QuAC leaderboard - a large-
scale multi-turn MRC benchmark dataset. Extensive experiments demon-
strate our method is effective. The model ablation studies show the impor-
tance of different integral parts of our model.

The reminder of this paper is summarized as follows. Section 2 briefly intro-
duces the related work. The techniques of the CAT-BERT model is elaborated
in Sect. 3. Experimental results are reported in Sect. 4. Finally, we draw the
conclusion and discuss the future work in Sect. 5.
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2 Related Work

In this section, we present a brief summarization on the related work of CAT-
BERT, including the MRC task and transfer learning.

2.1 Machine Reading Comprehension

Our work is closely related to the MRC task. Unlike the typical question answer-
ing task [1,23,24], MRC [29] is a task to understand a given passage and use the
passage to answer user questions. Different from single-turn MRC, we specifically
focus on the multi-turn setting, where the user and the system interacts multiple
times. The main challenging for multi-turn MRC is modeling the rich context
of the multi-turns of human-machine interaction. In the literature, SDNet [32]
takes the contexts into consideration by appending the history questions and
answers to the inputs. HAE [16] adopts the marker to indicate the positions of
history answers in the passage. HAM [17] further employs attention mechanisms
to select the related history questions. However, these methods may fail when
the context dependencies are more complicated.

There are also studies trying to model the contextual information using neu-
ral networks such as Recurrent Neural Networks (RNNs) and Graph Neural
Networks (GNNs). For example, GraphFlow [2] views the relations between con-
text words in each turn as a graph, and applies GNN to capture the information
flow. FlowQA [6] employs RNNs to convey word representations of past turns
and incorporates them with the current turn’s representations. FlowDelta [28]
further extends the FlowQA model to explicitly model the information gains by
delta operations. MC2 [30] adopts convolution neural networks to better cap-
ture the flow information in a more fine-grained manner with three perspectives.
We notice that these studies only focus on one single domain for the MRC task,
while we unify single-turn and multi-turn MRC tasks in different domains.

2.2 Transfer Learning

Moreover, our work is closely related to transfer learning, as we consider the
joint learning of multiple MRC tasks in various domains. There are some studies
to adopt multi-task and transfer learning to address MRC. The study in [20]
transfers models trained on large span-level QA datasets to sentence-level QA
datasets. MT-SAN [25] is a multi-task learning framework for MRC. The results
of MT-SAN shows that performance on the target task can be improved by
knowledge transfer. MT-DNN [10] further extends this idea to natural language
understanding by multi-task training of a series of different tasks such as senti-
ment analysis, text matching and MRC. Li et al. [8] extend a similar method for
the task of story ending prediction. Apart from these methods, MultiQA [21] is
an empirical investigation of transfer learning in ten single-turn MRC tasks. The
paper shows that training on multiple MRC datasets can make the underlying
model more general and robust. However, these works do not consider multi-turn
MRC tasks yet.
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With the rapid development of deep neural networks, knowledge transferred
from unsupervised tasks can be used for learning task-specific models. For
instance, pre-trained word embeddings such as Word2vec [13] and Glove [14] are
the key components for NLP tasks. With deeper models and more data, large-
scale pre-trained language models such as ELMO [15], BERT [5], ALBERT [7],
RoBERTa [12] and XLNet [26] show their effectiveness on many downstream
NLP tasks. Different from the existing studies that address general NLP tasks,
our study proposes a unified framework for both single-turn and multi-turn MRC
tasks. We further design the CAT-BERT model to leverage information from
source MRC tasks to help the learning of the target MRC task.

3 The CAT-BERT Model

In this section, we start with the task description. After that, we introduce the
CAT-BERT model and its transfer learning procedure.

3.1 Task Description and Overall Framework

The CAT-BERT model is designed to address the following problem. Let P =
[wp1 , wp2 , . . . , wpi

] be the input passage, where wpi
stands for i-th word in the

passage. The history question answer pairs are represented as:

history = [(Q1, A1), (Q2, A2), . . . , (Qn−1, An−1)] (1)

where Qi and Ai denote the question and the answer in the i-th turn. Given
the passage P , the history question answer pairs history and the question Qn

in n-th turn, our goal is to predict the correct answer span Ân in the passage.
Note that history is specifically employed to model the multi-turn MRC task.
If there is no history, the problem setting will become the normal single-turn
MRC task.

Figure 1 shows the high-level overview of the framework. It can be referred
to as Context-Aware Transferable BERT, CAT-BERT for short. In this model,
we design a unified input representations for both single-turn and multi-turn
MRC tasks. The context-aware BERT model backbone is employed as the shared
encoder for each task, with model modifications to handle both history questions
and answers. After that, a token-wise task-specific attention is introduced to
model the task dependencies on each layer. Finally, a dynamic training policy is
adopted to train the model for multi-task learning of these tasks.

3.2 Context-Aware BERT Encoding

As shown in Fig. 2, our model augments the original BERT model with context
modeling and a task-specific attention based transfer learning framework. Details
of the model are introduced in the subsequent sections.
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Fig. 2. The details of the context-aware BERT. We showcase an example of a BERT
model with 3 layers. αi is denoted as the token-wise layer attention for i-th token.

Modeling History Answers. Following [16], we introduce the History Answer
Embedding (HAE) technique to the BERT model, in order to model history
answers. Here, every token in the passage has an embedding index. If the embed-
ding index of a token is non-zero, it means that this token is a part of the answer.
For example, if the token “it” belongs to the answer of last third question, its
embedding index is set to 3. Then, all embedding vectors of each token, including
token embeddings, position embeddings, segment embeddings and history answer
embeddings, will be summed together. Then the summed vector sequences serve
as the input of the context-aware BERT encoder. For all questions and passage
words that have not been used as an answer, the embedding index is 0.

Modeling History Questions. Besides history answers, it is also important
to incorporate history questions. We consider a simple strategy to append the
latest k history questions to the current n-th question. The history questions are
separated by the special symbol [SEP]. For example, when k is 2, we append
the previous two questions, in the format of followings:

[CLS]Qn[SEP]Qn−1[SEP]Qn−2[SEP]P[SEP] (2)

where Qn and P refer to the tokens of the current n-th question and the passage.
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3.3 Transfer Learning with Task-Specific Attention

We then present the transfer learning component for multi-task learning of dif-
ferent MRC tasks. Briefly speaking, the framework learns multi-turn and single-
turn MRC tasks simultaneously, where all tasks share the context-aware BERT
but with different task-specific layers and task-specific attention weights.

Task-Specific Attention. To learn the dependencies of tasks on specific lay-
ers, we equip the model with task-specific token-wise attention. We denote the
i-th token representation in j-th layer as Hij . We employ the soft attention
mechanism to adapt the importance of the outputs of different levels in the
context-aware BERT encoder. Formally, we define St

i , the final representation of
i-th token for the task t, as follows:

St
i =

∑

j

αt
ijHij , (3)

where t ∈ {T1,T2,. . . ,Tk} (i.e., the MRC task collection). αt
ij is the attention

weight corresponding to i-th token at j-th layer for the task t.
The attention weights are then defined as follows:

αt
ij = e

Ht
ij∗Wt+btj

∑
j e

Ht
ij

∗Wt+bt
j
, (4)

∑
j αt

ij = 1. (5)

Note that btj in the above formula can be viewed as the layer bias. It is designed
for helping the attention module to know the layer depth in the neural net-
work, which plays a similar role to the position embeddings in the original token
representations. Meanwhile, the attention weights are task-specific, which are
essential for the model to capture the unique characteristics for different tasks.

We further denote the output from the shared context-aware BERT encoder
as the matrix St ∈ R

d×m, where d is the dimension of each token’s output vector
and m is the length of input sequence. We add two output layers on St to predict
the start position and end position of the answer spans. Formally, we have:

P s
t = Softmax(W t

sS
t + bst ), (6)

P e
t = Softmax(W t

eS
t + bet ), (7)

where t is the task index. W t
s , W t

e ∈ R1×d, bts and bte ∈ R1×1 are the corresponding
projection matrices and bias terms. s and e stand for the start and end positions
of the answer spans, respectively. After we obtain the probabilities P t

s and P t
e

for each word as the start and end positions of the answer span, during the
inference phase, top c words with the highest probabilities are selected to form
valid answer candidates.
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Algorithm 1. CAT-BERT Training Procedure
Require: Batched context enhanced training examples B = {B1, B2, . . . , BK} from

the task set {T1,T2,. . . ,Tk}, where Bt = {Bt
1, B

t
2, . . . , B

t
p}

Ensure: The CAT-BERT model M
1: Freeze parameters in task-specific attention and output layers. Set other parameters

(wt) to be trainable.
2: while steps < N1 do
3: Sample a task t from a pre-defined task distribution.
4: Read a batch Bt

p from Bt.
5: Run through the CAT-BERT model to obtain the task-specific loss Lt.
6: Calculate the gradients ∇wtLt.
7: Update the parameters wt = wt - λ∇wtLt where λ is the learning rate.
8: end while
9: Freeze the parameters of the context-aware BERT encoder. Set parameters in task-

specific attention and output layers (w′
t) to be trainable.

10: while steps < N2 do
11: Sample a task t from a pre-defined task distribution.
12: Read a batch Bt

p from Bt.
13: Run through the CAT-BERT model to obtain the task-specific loss Lt.
14: Calculate the gradients ∇w′

t
Lt.

15: Update the parameters w′
t = w′

t− λ∇w′
t
Lt.

16: end while

Learning Objectives. For a given MRC task, we adopt the negative log like-
lihood as the loss function. Formally, the sample-wise loss function for the start
position is:

Lossts = − log P t
si (8)

The sample-wise loss for the end position Losste can be obtained in a similar
way. Hence, the total loss of the task t is the sum of two prediction losses, i.e.

Losst =
Lossts + Losste

2
. (9)

For simplicity, we omit all the regularization terms in the loss functions.

3.4 Dynamic Training Policy

The training policy is defined as a probability distribution for each MRC task,
which can also be viewed as the coefficient weights of different tasks. By utiliz-
ing the dynamic training policy, our framework can be more flexible to handle
different tasks. For ease of implementation, we adopt a simple strategy in this
work, where we sample data from each task with equal probability. We leave the
design and analysis of complicated training policies as future work.

Here we explain how to transfer knowledge from source MRC tasks to the
target MRC task. The procedure is also shown in Algorithm1. The whole process
has two stages: (1) multi-task training and (2) task-specific fine-tuning:
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Multi-task Training. We select a task t according to the training policy, and
read the batch from the task t to do a forward pass. Then we make a backward
pass and update all the parameters except task-specific attention parameters.
This is achieved by simply set the attention weights α as fixed, where we set αt

ij

as 1 if j is the last layer’s index, and 0 otherwise. This helps to train a shared
context-aware BERT encoder.

Task-Specific Fine-Tuning. For this stage, we fix the parameters in the
context-aware BERT encoder and only update the token-wise task-specific atten-
tion and task-specific output layers. This stage seeks to tune task-specific param-
eters to capture task-specific characters so as to boost the end-task performance.

4 Experiments

In this section, we conduct extensive experiments to examine our model per-
formance. Firstly, we show that the CAT-BERT model is highly effective for
multi-turn MRC. Next, we conduct experiments to examine the benefits brought
by transfer learning and our context modeling method. Finally, we qualitatively
evaluate the learned task-specific attention weights, and discuss the insightful-
ness of task-specific attention.

4.1 Datasets

In this work, all the experiments are conducted on three public MRC datasets:
QuAC [3], SQuAD 2.0 [18] and CoQA [19]. The statistics of these datasets are
shown in Table 1. We take SQuAD 2.0 [18] and CoQA [19] as source domain
datasets and QuAC [3] as the target domain dataset. Both QuAC and CoQA are
famous datasets for multi-turn conversational MRC tasks, thus multi-turn inter-
action knowledge learned from CoQA can be potentially transferred to QuAC.
Below, we briefly introduce the three datasets:

– QuAC: The QuAC dataset aims to simulate the information-seeking scenario
in real life. It contains 14k dialogues and 100k question-answers pairs in total.
The passages are collected through crowdsourcing from one single domain in
Wikipedia.

– CoQA: The CoQA dataset also belongs to conversational question answering,
which contains 127k question-answer pairs and 8k conversations. Text pas-
sages are selected from seven different domains in Wikipedia. The abstractive
answers and the supporting evidence are also provided.

– SQuAD 2.0: The SQuAD 2.0 dataset focuses on single-turn MRC. It augments
the version 1.0 of the SQuAD dataset with additional 50k negative question
answers.
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Table 1. The statistics of QuAC, CoQA and SQuAD 2.0 datasets. Both QuAC and
CoQA are multi-turn MRC datasets, while SQuAD is a singe-turn MRC dataset.

QuAC CoQA SQuAD 2.0

Train Dev Test Train Dev Test Train Dev Test

Questions 83,568 7,354 7,353 108,647 7983 - 130,31 11,873 -

Dialogues 11,567 1,000 1,002 7199 500 - 19,035 1,204 -

Questions/dialogue 7.2 7.4 7.3 15.1 16.0 - 6.8 9.9 -

Tokens/question 6.5 6.5 6.5 5.5 5.5 - 9.9 10.1 -

Tokens/answer 15.1 12.3 12.3 9.3 9.2 - 3.2 3.2 -

Avg. tokens/passage 397 440 446 276 266 - 117 127 -

% Unanswerable 20.2 20.2 20.2 19.0 13.2 - 33.4 50.1 -

4.2 Experimental Setup

We follow the evaluation settings used in QuAC1 to examine our method and
all the baselines. We adopt three metrics to evaluate our model: the word-level
F1 score measures the overlap between the prediction and gold answers, HEQQ
refers to the percentage of questions in which the model exceeds human, and
HEDD measures the percentage of dialogues where the model exceeds human.

In the experiments, we set the learning rate as 3e−5, the batch size as 12, and
the max sequence length as 512. The training step is 24k for single task, and we
double the training steps if we add another task. For the BERT-WWM model2

on the three-task setting, the learning rate is set to 2e−5 and the training step is
48k. We sample batches from tasks with equal probability (which is the training
policy). The max answer length is set to 50. For QuAC, CoQA and SQuAD
2.0 tasks, we append the token “CANNOT ANSWER” and “UNKNOWN” to
the end of the passage. All the models are implemented with TensorFlow and
trained with NVIDIA Tesla V100 GPU.

4.3 Overall Results

Table 2 shows the CAT-BERT performance on the QuAC test set3. Over-
all, our model achieves competitive results on the leaderboard, outperforming
some strong baselines include BERT-FlowDelta, ConvBERT, BertMT, etc. For
the results of history answer embeddings, we suggest readers to refer to the
paper [16], as it makes a full comparison with the effects caused by different
turns in history answer embeddings.

Note that there are two methods using data augmentation strategies achieve
better results on the leaderboard. We will also consider such data augmentation
strategies in near future as well. We also note that there is an concurrent study

1 https://s3.amazonaws.com/my89public/quac/scorer.py.
2 It refers to the BERT model with whole word masking.
3 For fair comparison, we omit the ensemble methods and those methods with data

augmentation in the QuAC leaderboard.

https://s3.amazonaws.com/my89public/quac/scorer.py
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Table 2. A comparison of the proposed model and methods from the QuAC leader-
board. † means the score is copied from leaderboard. Note that, our final model was
originally named as TransBERT in the leaderboard. To avoid confusion with other
models, we name it as CAT-BERT in this work.

Methods F1 HEQQ HEQD Total

BiDAF++ † 50.2 43.3 2.2 95.7

BiDAF++ w/2-Context † 60.1 54.8 4.0 118.9

BERT+HAE † 62.4 57.8 5.1 125.3

FlowQA† 64.1 59.6 5.8 129.5

GraphFlow† 64.9 60.3 5.1 130.3

BERT w/2-context† 64.9 60.2 6.1 131.2

HAM† 65.4 61.8 6.7 133.9

zhiboBERT† 67.0 63.5 8.6 139.1

ConvBERT† 68.0 63.5 9.1 140.6

BertMT† 68.9 65.2 8.9 143.0

Context-Aware-BERT † 69.6 65.7 8.1 143.4

BERT-FlowDelta† 67.8 63.6 12.1 143.5

CAT-BERT (Our model) 71.4 68.1 10.0 149.5

History-Att-TransBERT that achieves slightly better results, which shows the
helpfulness of transfer learning. However, due to the lack of the published paper
and the source code of the model, it is difficult to assess their method and
compare our method with theirs.

4.4 Comparison of Transfer Policies

In this section, we compare the impacts of different transfer learning policies
and the task-specific output layer. In Table 3, we conduct experiments using
three types of transfer learning policies with different choices of source-domain
tasks. We denote the sequential task learning setting as Seq and the mixed task
learning as Mix. Our approach can be viewed as a mixed task training policy
augmented with task-specific output layers, denoted as Co. From the results,
we can see that our method achieves the best scores among all policies under
the same tasks. Comparing with mixed task learning, our method also attains a
better performance, due to the design of the task-specific output layer.

From the results, we can also find that sequential learning can obtain a lit-
tle higher results than the mix training setting in F1 and HEQQ. However,
in sequential learning, the training order does matter. The performance drops
especially when a different type of task is inserted between two same tasks. Read-
ers can observe the results of Seq (CoQA-SQuAD 2.0-QuAC) v.s. Seq (SQuAD
2.0-CoQA-QuAC). Additionally, a good training order requires prior knowledge.
Thus, it might be easier yet beneficial to incorporate task-specific output lay-
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Table 3. The experimental results of different transfer policies are presented. The task
order in Seq stands for the task learning order. -L and -W refer to results obtained
from BERT-Large and BERT-WWM models, respectively.

Policy Tasks F1 HEQQ HEQD

None QuAC 65.8 61.8 7.2

Seq CoQA, QuAC 67.6 63.9 8.2

Seq SQuAD 2.0, QuAC 67.2 63.2 8.6

Seq CoQA & SQuAD 2.0 & QuAC 68.1 64.3 7.7

Seq SQuAD 2.0 & CoQA & QuAC 68.3 64.7 9.3

Mix CoQA & QuAC 67.6 63.4 8.4

Mix SQuAD 2.0 & QuAC 66.8 62.9 8.8

Mix QuAC & SQuAD 2.0 & CoQA 68.4 64.5 8.3

Co CoQA & QuAC 67.9 64.3 8.9

Co SQuAD 2.0 & QuAC 67.8 64.0 9.6

Co QuAC & SQuAD 2.0 & CoQA 68.7 65.0 9.4

Co-L QuAC & SQuAD 2.0 & CoQA 70.2 66.5 9.9

Co-W QuAC & SQuAD 2.0 & CoQA 73.1 69.9 13.3

Table 4. The effects of task-specific attention mechanism. (w/o attn) means without
the using of attention mechanisms.

Model F1 HEQQ HEQD Total

CAT-BERT-12 68.6 64.8 9.2 142.6

CAT-BERT-6 68.7 65.0 9.4 143.1

CAT-BERT-3 68.7 65.1 9.6 143.4

CAT-BERT (w/o attn) 68.4 64.6 8.3 141.3

CAT-BERT-WWM-24 73.2 70.0 13.1 149.9

CAT-BERT-WWM-12 73.3 70.1 12.9 156.3

CAT-BERT-WWM-6 73.3 70.1 13.4 156.8

CAT-BERT-WWM-3 73.3 70.1 13.0 156.4

CAT-BERT-WWM (w/o attn) 73.1 69.9 13.3 156.3

ers in the mix policy to capture the task differences, so the potential negative
transfer brought by the other tasks can be reduced. We also show the improve-
ments made by employing better pre-trained language models. The results show
that increasing the model size (see Co-L) and adopting the whole word masking
technique for BERT (see Co-W) can improve all metrics greatly.

We notice that (SQuAD 2.0 & QuAC) always achieves better HEQD than
(CoQA & QuAC). This means that the single-turn dataset SQuAD helps more
than the multi-turn dataset CoQA for the QuAC task, although QuAC belongs
to the category of the multi-turn MRC task. Benefiting from our unified frame-
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work, we can easily train a model to learn the shared knowledge between single-
turn and multi-turn MRC tasks.

4.5 The Benefit from the Attention Mechanism

Table 4 shows the results with respect to the different numbers of layers that
employ the attention mechanism. The upper part shows the performance of
attention applied to the last 12, 6, 3 layers. The model size of the CAT-BERT
backbone is the same as the BERT-Base model. The bottom part shows the
performance of attention mechanism, with the backbone changed to the BERT-
Large model with whole word masking. We can observe that, with the incor-
poration of the token-wise attention technique, the performance scores using
both BERT-Base (denoted as CAT-BERT) and BERT-Large-WWM (denoted as
CAT-BERT-WWM) as backbones are improved. For example, for CAT-BERT-
WWM, F1 improves from 73.1 to 73.3, HEQQ from 69.9 to 70.1. This shows it
is beneficial to incorporate the attention mechanism to capture the token-wise
task-specific information to further improve the model performance.

Furthermore, we visualize the attention scores of the last three layers from
our final model CAT-BERT-WWM on a randomly chosen example for both
QuAC and SQuAD 2.0 tasks, as shown in Fig. 3. On the QuAC task (left), most
of the attention weights are close to 1 on the last two layers; while on the SQuAD
2.0 task (right), the larger attention weights appear only in the last layer. The
figure further demonstrates the necessity to introduce the task-specific token
level attention mechanism to our framework to deal with the task differences
among various MRC tasks.

4.6 Error Analysis

To analyze the shortcomings of our model, we randomly sample 50 wrong answers
from predictions. The main errors can be categorized into two types:

– Logical Error. A typical error of the model is that the internal semantic
changes in the passage are sometimes ignored. For example, the question
is “Did Davies recover?”, with two descriptions provided: “He subsequently
collapsed after a drug overdose and was taken to hospital”, and then “Ray
recovered from his illness as well as his depression”. The model only regards
the first description as the answer and ignores the second description. This
type of errors contributes mostly to the poor performance.

– Indirect Description. Although some answers are contained in the pas-
sages, they may be indirectly described, where complicated reasoning may be
required for answering those implicit questions. For example, the question is
“How profitable was the last album?” and the gold answer should be “the
biggest-selling German music act in history”. But the model gives a wrong
prediction “CANNOT ANSWER”. In this case, it is necessary to enhance the
reasoning ability of the model, which is a non-trivial task.
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Fig. 3. The visualization of task-specific attention scores in the last three layers from
the CAT-BERT-WWM model. The left is from the QuAC task, with the right from
the SQuAD 2.0 task.

5 Conclusion and Future Work

In this work, we propose a deep BERT-based transfer learning model named
CAT-BERT to unify the learning of multi-turn and single-turn MRC tasks. In
this model, a task-specific token-wise attention mechanism is proposed to cap-
ture the dependencies on different layers for each task. Extensive evaluation
results show thee proposed method is effective and achieves competitive results.
Qualitative results also demonstrate that the attention weights learned by the
model are insightful.
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