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Figure 1. Comparison of videos generated by T2V models w/ and w/o EVS. Our method significantly improves imaging quality compared
to videos solely generated by VideoCrafter-2.0 (see the Iron Man head and cat eyes), and frame consistency compared to AnimateDiff-V2
(see the stability of car color across frames).

Abstract

In recent years, large text-to-video (T2V) synthesis mod-
els have garnered considerable attention for their abili-
ties to generate videos from textual descriptions. However,
achieving both high imaging quality and effective motion
representation remains a significant challenge for these T2V
models. Existing approaches often adapt pre-trained text-
to-image (T2I) models to refine video frames, leading to is-
sues such as flickering and artifacts due to inconsistencies
across frames. In this paper, we introduce EVS, a training-
free Encapsulated Video Synthesizer that composes T2I and
T2V models to enhance both visual fidelity and motion
smoothness of generated videos. Our approach utilizes a
well-trained diffusion-based T2I model to refine low-quality
video frames by treating them as out-of-distribution sam-
ples, effectively optimizing them with noising and denois-

*Co-corresponding authors.

ing steps. Meanwhile, we employ T2V backbones to en-
sure consistent motion dynamics. By encapsulating the T2V
temporal-only prior into the T2I generation process, EVS
successfully leverages the strengths of both types of models,
resulting in videos of improved imaging and motion quality.
Experimental results validate the effectiveness of our ap-
proach compared to previous approaches. Our composition
process also leads to a significant improvement of 1.6x-4.5x
speedup in inference time. 1

1. Introduction
Recently, large-scale text-to-video (T2V) models [27, 28,
32, 33] have gained significant attention due to their ability
to generate realistic videos from textual descriptions. These
models leverage vast datasets of text-video pairs, allowing
them to learn complex relationships between textual inputs

1Source codes: https://github.com/alibaba/EasyNLP/
tree/master/diffusion/EVS
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and visual outputs. Currently, the prominent T2V gener-
ation research in the open-source community can largely
be categorized into two main approaches. The first ap-
proach focuses on training a general T2V diffusion model.
This is achieved either by initializing certain modules with
pre-trained text-to-image (T2I) models and introduces ad-
ditional blocks to concentrate on learning the temporal dy-
namics of videos [3, 8, 40], or by training from scratch
jointly on images and videos [14, 45]. In contrast, al-
ternative methods employ T2I models for video synthesis
without extensive re-training [13, 30, 47], which inflate T2I
along the temporal axis (i.e., replacing self-attention layers
in U-Net with cross-frame attention layers) and successfully
maintain the imaging quality of generated videos at the T2I
levels. Despite these advancements, as shown in Figure 2,
current popular T2V models often struggle to simultane-
ously ensure high imaging quality and motion quality [12],
which are essential challenges that need to be addressed to
improve overall performance of video synthesis.

A straightforward approach to addressing the challenges
is to improve the imaging quality of videos generated in the
vanilla T2V pipeline by combining T2I models. Yet, T2I
models can only be applied in a frame-independent man-
ner, which may lead to flickers between frames. Thus, ex-
plicit consistency constraints are incorporated into the video
synthesis pipeline. For instance, Rerender-A-Video [43]
utilizes optical flow to iteratively warp latent features
from the previous frame, aligning them with the current
frame. TokenFlow [7] explicitly propagates diffusion fea-
tures and computes inter-frame feature correspondences us-
ing Nearest-Neighbor Field (NNF) search. However, these
methods are designed for real-world videos and rely on pre-
cise optical flow or NNF estimations on input videos with
high motion consistency. When these techniques are di-
rectly applied to model-generated videos that may exhibit
apparent inconsistencies, inaccuracies in estimation can ex-
acerbate these inconsistencies and introduce artifacts.

We propose EVS, a training-free Encapsulated Video
Synthesizer composing of T2I and T2V models to pro-
duce videos with significantly balanced imaging and mo-
tion qualities, together with large inference speedup com-
pared with vanilla alternating two models. Specifically, we
treat low-quality image frames as out-of-distribution sam-
ples [24, 26, 29, 46] for the T2I model and devise proper
noising and denoising steps to pull them back to the high-
quality imaging distribution. As for the underlying T2V
model, we employ publicly available backbones that are ca-
pable of producing highly consistent and stable videos to
enhance the motion smoothness. In the EVS framework,
we encapsulate this T2V temporal-only prior into the T2I
generation process, mitigating the adverse effects of poor
T2V imaging quality. This can be achieved through Selec-
tive Feature Injection (SFI), which incorporates inversion

VideoCrafter-2.0
AnimateDiff-
Lightning

Ours
HunyuanVideo

Motion
Smoothness

Subject
Consistency

Temporal
Flickering

Aesthetic 
Quality

Dynamic
Degree

Imaging
Quality

Appearance
Style

Overall
Consistency

Motion

Imaging

*

* Scores are normalized 
using min-max scaling

Figure 2. Evaluation results of T2I/T2V models on VBench [12].
Results show that motion and imaging qualities are hard to balance
in one T2V model. With encapsulated composition of T2I and
T2V models, our method effectively combines their advantages.

features representing spatial details, while allowing the re-
maining features to be refined by the temporal prior. Experi-
ments on the authoritative benchmark VBench [12] demon-
strate that EVS integrates the advantages of both two types
of models, which outperforms baselines and achieves 1.6x-
4.5x speedup in inference time. The results are also sum-
marized in Figure 2. In summary, the key contributions of
our paper are as follows:
• We introduce EVS, a training-free framework which en-

hances the imaging and motion qualities of synthesized
videos with versatile T2I and T2V diffusion models.

• We propose a novel encapsulated injection of T2V mod-
ule into T2I diffusion processes to achieve complemen-
tary advantages of T2V and T2I models.

• Experiments show that EVS effectively improves the
imaging and motion qualities of synthesized videos, and
achieves 1.6x-4.5x speedup in inference time.

2. Related Works
2.1. Video Diffusion Models

Current diffusion-based T2V methods [3, 6, 8, 10, 13, 14,
18, 30, 39, 40, 45] can be categorized into two groups. The
first category comprises zero-shot methods that require only
a pre-trained T2I model [13, 30, 36, 47]. During inference,
these methods utilize cross-frame attention to ensure tem-
poral consistency, which are limited to generating videos
with simple dynamics and are unable to handle more com-
plex motions. To address this limitation, some studies fine-
tune the T2I model on a single video, enabling the genera-
tion of videos with similar motion patterns. However, this
approach tends to overfit the specifics of the single video
and lacks generalization to other motions [5, 35, 42]. The
second category involves training a general T2V diffusion
model on large-scale video data [3, 8, 10, 14, 45]. Due to
the scarcity of high-quality video-text data, these methods
either initialize the T2V spatial module with a pre-trained
T2I model or jointly train using both image and video data.
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Current T2V benchmarks, such as VBench [12], include
evaluation metrics such as frame-wise imaging quality, tem-
poral consistency, and dynamic degree. According to the
findings [12, 23], there is currently no model that excels
across all dimensions. VideoCrafter-2.0 [3], an open-source
T2V model that achieves a balanced and excellent perfor-
mance across all dimensions, consistently ranking above av-
erage in each. It explores various strategies to enhance the
learning of temporal modules and mitigate image degrada-
tion. Nonetheless, despite these efforts, the resulting imag-
ing quality still falls short when compared to that of ded-
icated T2I models. Inspired by recent advances in frame-
wise video editing [7, 30], one might contemplate improv-
ing the imaging quality of individual frames using sophis-
ticated T2I models. However, processing each frame in-
dependently may exacerbate inconsistencies among frames,
leading to noticeable flickering.

2.2. Improving Temporal Consistency of Videos

Previous works [2, 7, 13, 30, 43] have considered constrain-
ing temporal consistency at both global and local levels. At
the global level, they replace self-attention in U-Net with
cross-frame attention to regularize the roughly unified ap-
pearance; however, this approach is insufficient for ensur-
ing local detail consistency. Rerender-A-Video [43] and
FRESCO [44] employs optical flow to warp and fuse the
latent features, while TokenFlow [7] utilizes NNF to com-
pute inter-frame feature correspondences, propagating ref-
erence frame features to others. Their explicit enforcement
effectively constrains consistency at local level. Nonethe-
less, achieving explicit correspondence requires that input
videos exhibit highly consistent and simple motion [11, 17],
with minimal amplitude changes between frames.

With the rapid development of T2V models, there has
been increasing interest in exploring the integration of T2I
and T2V models [22]. BIVDiff [34] firstly employs a T2I
model to process individual video frames, followed by a
T2V model for temporal smoothing. Consequently, the
overall imaging quality aligns with that of the T2V model.
VideoElevator [48] adopts T2I and T2V denoising steps to
enhance temporal consistency and imaging quality simul-
taneously. They break down each sampling step into T2I
and T2V from start to finish. Introducing T2I too early can
hinder motion understanding, leading to motionless frames.
AnyV2V [15] processes the first frame using T2I model and
leverage image-to-video (I2V) [46] model to handle the en-
tire video. The final results is limited by current I2V ability,
which struggles to process videos with complex motion.

3. EVS: The Proposed Method
In this section, we leverage both T2I and T2V models to en-
hance imaging quality and motion smoothness of generated
videos, without training another refinement model. We first

introduces the generation process of T2I and T2V models.
After that, we describe two basic composition approaches of
T2I and T2V models, discussing and presenting their limi-
tations. We then delve into the specifics of our encapsulated
composition, addressing how it overcomes these drawbacks.

3.1. Preliminaries and Basic Notations

T2I. T2I models, exemplified by the Latent Diffusion
Model (LDM) [31], generate images based on textual de-
scriptions. LDM comprises a pre-trained autoencoder and
a U-Net architecture. The encoder compresses an image x
into latent space, yielding z0 = E(x), while the decoder D
reconstructs z0 back to the pixel space. LDM is trained in
latent space by estimating various levels of noise added to
z0, with the strength parameterized by {ᾱt}Tt=1:

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where t = 0, · · · , T−1 is the timestep and ϵ is the Gaussian
random noise. At the inference stage, we sample zt−1 based
on zt with DDIM sampling [37]:

zt−1 =
√

αt−1 zt→0︸︷︷︸
predicted z0

+
√

1− αt−1ϵθ (zt, t, c)︸ ︷︷ ︸
direction pointing to zt−1

, (2)

where zt→0 is the predicted clean latent at timestep t:

zt→0 = (zt −
√
1− αtϵθ(zt, t, c))/

√
αt, (3)

ϵθ denotes the noise prediction diffusion model, and c rep-
resents the text embedding. For each T2I denoising step, we
obtain both zt−1 via Eq. (2) and zt→0 via Eq. (3).

When we aim to improve the imaging quality using T2I
models, SDEdit noising-denoising procedure is often lever-
aged [24, 26]. Specifically, a noising timestep tI and an
ending denoising timestep t′I are determined. Noise is ap-
plied using Eq. (1) to obain ztI , then denoising steps are per-
formed to obtain zt′I−1, zt′I→0 with enhanced imaging qual-
ity. In the following sections, we focus on the predicted
zt′I→0 (denote as zI

0), as it serves as a crucial link between
T2I and T2V. In short, we re-write the process as:

zI
0 = T2I↑(z0, tI, t

′
I). (4)

T2V. Recent T2V[3, 19] training strategy and inference pro-
cess are consistent with those of T2I models. Additionally,
the dimensionality of latent space is expanded along the
temporal axis. VideoCrafter-2.0 [3] and AnimateDiff [8]
employ a frame-wise autoencoder to process video frames,
ensuring that the clean distribution of T2V is analogous to
that of T2I. Similar to Eq. (4), we assign a noising timestep
tV and an ending timestep t′V to enhance the temporal con-
sistency across the frames from z0 to zV:

zV
0 = T2V↑(z0, tV, t

′
V). (5)
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Figure 3. a/b: Two basic compositions of T2I and T2V. c: T2I
denoising process encapsulated with the [T2V] block.

Note that noise schedules for T2I and T2V are different.
Consequently, except for zT (both Gaussian noises) and
z0 (T2I and T2V models share a common autoencoder),
the intermediate timestep latents zt are drawn from different
distributions for T2I and T2V models. Therefore, a latent zt
from one model cannot be directly fed into the other model.
DDIM Inversion. SDEdit [24] is typically employed for
conditional image generation, where the condition is im-
plicitly remained under noisy latents. Therefore, finding a
balance between maintaining condition fidelity and utilizing
the diffusion prior presents a significant challenge. DDIM
inversion [37] deterministically encodes the latent z0 into
noisy latent, which can be used to reconstruct z0 through
DDIM sampling. To tackle the accumulated error [25] when
classifier-free guidance is applied, [4, 9, 22] collect convo-
lutional features finv and attention features Qinv,Kinv, Vinv
during the DDIM inversion process. These features are se-
lectively injected to replace original features during denois-
ing process in predefined U-Net layers.

3.2. Compositions of T2I and T2V Denoising

In this section, we introduce how to derive the encapsulated
composition of T2I and T2V models to generate videos with
higher imaging qualities and temporal consistency.
Two Basic Compositions. Previous works to compose T2I
and T2V models can be summarized into two basic ones.
Given a video latent z0 with unsatisfied imaging quality
and temporal smoothness, the first approach employs the
T2V model to produce a smooth video, followed by a few
T2I denoising steps to improve the frame imaging quality
(see Figure 3(a)), similar to previous research on T2I-based
video processing [7, 43]. The noising-denoising process is
defined as:

zV
0 = T2V↑(z0, tV, 0), zVI

0 = T2I↑(zV
0 , tI, 0). (6)

In this scenario, it is trivial to see that frame-wise T2I can
re-introduce inconsistencies across frames. The second ap-
proach involves starting with the T2I noising and denoising
steps, followed by T2V (see Figure 3(b)) [34]:

zI
0 = T2I↑(z0, tI, 0), zIV

0 = T2V↑(zI
0, tV, 0). (7)

However, this type of method may lead to a degradation in
imaging quality of video frames after refinement via T2V,
as the final imaging quality still depends on the T2V model.
The challenge arises from the implicit condition of noisy
latents in SDEdit, where it is difficult to separate spatial and
temporal components.

We approach this problem from two perspectives. Con-
sidering the two basic compositions, the quality of the final
video is limited by the model applied at later. Therefore,
a natural idea emerges: once we obtain zVI

0 or zIV
0 , we can

feed them into another round of noising and denoising. This
iterative process can introduce a significant amount of re-
dundant steps. To address this, our first strategy is Encapsu-
lated Composition, which efficiently alternates between T2I
and T2V stages during the denoising process, thereby elim-
inating redundancy. To further minimize the impact of the
T2V model’s disadvantages on imaging quality, we exclu-
sively leverage its temporal prior. This introduces our sec-
ond strategy of leveraging T2V temporal-only prior with Se-
lective Feature Injection (SFI), where we selectively inject
features from DDIM inversion into the denoising process to
preserve imaging information from previous T2I steps.
Our Encapsulated Composition. The key challenge lies in
bridging the gap between two latent distributions of T2I and
T2V at arbitrary timesteps. Directly utilizing zt from one
model (either T2I or T2V) to another is not feasible, particu-
larly when two models employ different sampling methods.
Instead of completely denoising the latents using one model
and subsequently transitioning to another model (refer to
Eq. (6) and Eq. (7)), we propose to leverage the intermedi-
ate predicted clean latents to efficiently align the two latent
distributions. Specifically, we start with the T2I noising-
denoising process:

zI
0 = T2I↑(z0, tI, tT2V). (8)

Different from Eq. (7), we do not completely denoise un-
til reaching timestep 0. At timestep tT2V, the predicted clean
latent zI

0 can serve as a shortcut to be connected with T2V,
which aligns well with the distribution of clean latent rep-
resentations in both T2I and T2V models. This allows us to
effectively input it into the T2V noising-denoising process:

zIV
0 = T2V↑(zI

0, tV, tV − nV), (9)

where nV represents how many times the T2V step is exe-
cuted. This process effectively stabilizes inconsistent video
latents zI

0 from frame-wise T2I denoising into consistent
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zIV
0 . The tV value is independent with T2I shortcut timestep
tT2V, and can therefore be regarded as an encapsulated
block outside the T2I process. For varying levels of incon-
sistency in video frames (such as global inconsistency of
changing color, or local inconsistency of changing details),
different noisy timestep tV will be required. By decoupling
this T2V stabilization block from T2I process, we can intro-
duce a significantly larger noise at a later stage for T2I de-
noising. This approach allows us to explore optimal meth-
ods for balancing stabilization with minimal degradation in
imaging quality. Similarly, zIV

0 can serve as a shortcut to be
connected back to the T2I denoising process for the remain-
ing T2I steps:

zIVI
0 = T2I↑(zIV

0 , tT2V, 0), (10)

where zIVI
0 is the finally enhanced video latent. Instead of

implementing T2V stabilization during every T2I denois-
ing step, we investigate the potential efficiency gained by
selecting only one time of applying the block. This aims
to conserve computational resources while maintaining ef-
fectiveness. Once the T2V block is introduced, the previ-
ously improved imaging quality from T2I may deteriorate
again, necessitating another round of T2I and T2V process-
ing. This indicates that the final stability of the video frames
is significantly influenced by the timing of the last use of the
T2V model stabilization, leading to a pipeline represented
as T2I+[T2V]+T2I, where the encapsulated block [T2V]
needs to be applied only once.
Leveraging Temporal-Only Prior of T2V. Directly ap-
plying T2V-based SDEdit [24] simultaneously introduces
imaging and temporal prior. Applying DDIM inversion
based reconstruction [37], on the other hand, will not intro-
duce any prior. In our work, we wish to maintain imaging
quality from T2I steps, and only leverage the temporal prior
of T2V. In practice, it is feasible to attain a balanced nois-
ing strength with SDEdit. We aim to further minimize the
imaging degradation caused by T2V.

We start by considering two extreme cases: (1) recon-
structing the original video to the maximum extent, using
DDIM inversion and full features injection; and (2) leverag-
ing the T2V prior to the maximum extent using DDIM in-
version. For a well-trained T2I model, DDIM inversion can
reconstruct arbitrary image with enough steps [37], even
for out-of-distribution (OOD) images (as shown in Figure 4
first row, T = 50). With limited steps (T = 5), even
the reconstruction will fail, it allows for the T2I prior to
self-rectify low-quality images. Based on this observation,
we regard this partial reconstruction as an opportunity for
the T2V model to utilize its prior knowledge. As shown
in Figure 4 second row, using the T2V model with fewer
steps (T = 8) can temporally smooth the OOD videos gen-
erated from frame-wise T2I-based approaches.

With the above two extreme cases, we can start our prob-

Input: OOD image T=50 T=5T=500

Input: OOD video
(Temporal: inconsistency
Spatial: Van Gogh Style )

T=8
(Temporal: consistency

Spatial: Van Gogh Style )

T=8 w/ SFI (Ours)
(Temporal: consistency

Spatial: Van Gogh Style )

T=50
(Temporal: inconsistency
Spatial: Van Gogh Style )

Figure 4. Row 1: T2I-based DDIM inversion with different steps.
With limited (T = 5), T2I prior helps self-rectify images. Row
2: T2V-based DDIM inversion with limited steps (T = 8) si-
multaneously introduces temporal and spatial prior, but the latter
fails to fully capture the original watercolor style. Our Selective
Feature Injection (SFI) strategy can exclusively introduce the tem-
poral prior without imaging style degradation.

ing analysis of U-Net layers to find a satisfied partial re-
construction point, which only leverages the temporal prior
of the T2V model. Recent analysis of T2I U-Net decoder
layers has shown that, (1) self-attention Softmax(QK⊤)
at deeper layers represent structural information of origi-
nal images [20, 21]. (2) V is closely related to imaging
information, i.e, styles and colors, while shallower layers
of the U-Net architecture are more related to detailed tex-
tures [4, 38]. For our task, we aim at maintaining the imag-
ing information; therefore, we inject Kinv, Vinv at predefined
layers, while slightly perturbing self-attention maps through
blending Qinv with Q during denoising:

ϕout = Attn(γ ·Qinv + (1− γ) ·Q,Kinv, Vinv), (11)

where Qinv,Kinv, Vinv are collected attention features during
DDIM inversion process, Q is original query smoothed by
T2V during the denoising steps, and γ is the blending rate.
When γ = 1 and injection is applied in all U-Net layers, the
process should result in the upper limit of reconstruction.
Then we gradually decrease γ and the number of injected
layers, progressing from the shallow to the deep layers of
the U-Net. This process involves incrementally introducing
temporal priors while ensuring the preservation of image
quality. Our Selective Feature Injection (SFI) strategy sim-
plifies the identification of the balancing point compared to
SDEdit, since spatial and temporal information are decou-
pled in an explainable manner, rather than being implicitly
mixed within noisy latent space as in SDEdit.

3.3. Summary of Our EVS Method

To summarize, the optimal pipeline in EVS can be charac-
terized as follows: the primary denoising step involves the
T2I process for imaging quality enhancement, with inter-
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Algorithm 1 The EVS Algorithm
Input: z0: Original video latent; c: Text embedding; tT2V: [T2V] employ timestep

during T2I process; tI, tV: Noising timestep of T2I, T2V; nV: [T2V] block de-
noising steps;

Output: zIVI
0 : Improved video latent;

ztI =
√

ᾱtIz0 +
√

1− ᾱtI ϵ;
for t = tI, tI − 1, ..., 1 do

zt→0, zt−1 ← zt, ϵ
I
θ(zt, t, c);

if t = tT2V then
zI
0 := ztT2V→0; # bridge to [T2V]

ztV , {f,QKV }inv = DDIM-inv(zI
0, tV);

for t′ = tV, tV − 1, ..., tV − nV + 1 do
zt′→0, zt′−1 ← zt′ , ϵ

V
θ (zt′ , t, c, {f,QKV }inv);

end for
zIV
0 := z(tV−nV)→0; # bridge back to T2I

ztT2V =
√

¯αtT2Vz
IV
0 +

√
1− ᾱtT2V ϵ;

end if
end for
Return zIVI

0 := z0.

mediate timestep for the application of the [T2V] encapsu-
lated block for temporal motion consistency enhancement.
DDIM inversion with Selective Feature Injection is optional
only for challenging cases where the imaging information
required and obtained through the T2I model falls entirely
outside the T2V domain, making it challenging for SDEdit
to obtain a balanced point for both factors. Finally, We
present the EVS algorithm pseudo-code in Algorithm 1.

4. Experiments
4.1. Experimental Settings

Dataset. We utilize videos from VBench [12], generated by
VideoCrafter-2.0 [3] (VC2) and AnimateDiff-V2 [8] (AD2)
as our original video dataset. We use the Overall Consis-
tency subset2, due to its inclusion of videos characterized
by complex movements, and intricate details in the objects.
This subset is particularly useful for evaluating temporal
motion consistency and imaging quality. The global con-
sistency of videos produced by VideoCrafter-2.0 is well-
preserved, particularly regarding the shape and color of
subjects. However, the primary issue arises from local in-
consistencies, which manifest as flickering and artifacts in
details (illustrated in Figure 5 Left, where details of Iron
Man’s legs exhibit noticeable changes across frames). In
contrast, AnimateDiff-V2 videos present a more challeng-
ing scenario, characterized by global inconsistency (as il-
lustrated in Figure 5 Right, where the color of the mov-
ing car transitions from white to red). To clearly illustrate
the improved imaging quality achieved by T2I models, we
resize the videos to twice their original dimensions (VC2:
320× 512, AD2: 512× 512) for input to all baselines.
Baselines. We compare our approach with two streams of
baselines. Rerender-A-Video [43], FRESCO [44] and To-
kenFlow [7] utilize T2I for frame-wise processing. Token-

2For each of the 93 prompts provided in the benchmark, we select
videos (with id=0) for both VC2 and AD2, totaling 186 videos.

Flow also necessitates a precise DDIM inversion and the
storage of intermediate features to compute NNF. Since our
task involves substantial yet specific adjustments, such as
enhancing image quality and adding details, we apply the
same inversion strength sI = tI/TI = 0.4 for above meth-
ods, and our method to ensure a fair comparison. BIVD-
iff employs a mixed inversion of T2I and T2V inversion
to align frame-wise generated latents of T2I with the T2V
denoising process, leveraging the T2V model to achieve
temporal smoothness of videos. It requires an inversion
strength of sI = 1.0 for mixed inversion in the initial ran-
dom noise at timestep tI = TI. AnyV2V [15] applys T2I
model for first frame processing, followed by the appli-
cation of the I2V inversion (I2Vgen [46]) using the same
strength as ours. All methods utilize epiCRealism3 as T2I,
which is specialized in high-quality image synthesis, with
total timesteps TI = 50. For BIVDiff and our method, we
adopt AnimateDiff-Lightning [19] with default TV = 8 as
the foundational model for the T2V model due to its supe-
rior temporal motion consistency ranking on VBench.
Evaluation Benchmarks. For imaging quality assessment,
we adopt DOVER [41] and the Aesthetic Predictor (AP)
V2.54. In terms of motion consistency, we utilize two met-
rics from VBench [12]: Motion Smoothness (MS) and Sub-
ject Consistency (SC). The former metric focuses on local
consistency by interpolating frames [16] t − 1 and t + 1
and computing the error with frame t. The latter metric
emphasizes global consistency by leveraging DINO [1] fea-
ture similarity across all frames. We further calculate an
Overall score by averaging the normalized values of the
four scores mentioned above. The normalization range is
derived from the VBench LeaderBoard5. Additionally, we
emphasize time efficiency as we introduce a new compo-
sition technique, without time-consuming explicit consis-
tency computing and redundant denoising steps.

4.2. Comparisons Against Baselines

Table 1 shows that our EVS enhances temporal motion con-
sistency and imaging quality of videos generated by VC2
and AD2, achieving an overall better video quality. As il-
lustrated in Figure 5 Left, the inaccurate estimation of op-
tical flow in VC2 videos results in significant repainting in
Rerender-A-Video. Similarly, the inaccurate estimation of
NNF in TokenFlow leads to mismatches between adjacent
patches, ultimately resulting in blurring (see mechanical de-
tails of Iron Man’s legs). In the case of AD2, the inconsis-
tency also exacerbates the issues stemming from inaccura-
cies in optical flow or NNF estimation. As demonstrated
in Figure 5 Right, while Rerender-A-Video and TokenFlow
may achieve some level of global color consistency, the in-

3https://huggingface.co/emilianJR/epiCRealism
4https://github.com/discus0434/aesthetic-predictor-v2-5
5https://huggingface.co/spaces/Vchitect/VBench Leaderboard
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Figure 5. Comparison with baselines. Our method enhances both imaging quality and temporal consistency. Rerender-A-Video and
TokenFlow introduce inconsistencies, evidenced by blur and artifacts (see red frames and flickers in yellow line pixels across frames). T2V
temporal smoothing of BIVDiff reverts imaging quality to T2V level, lacking realistic details. AnyV2V is unable to effectively propagate
the first frame’s enhancement to subsequent frames, resulting in persistent artifacts. We refer the reader to our supplementary material for
comprehensive video comparisons with baselines.

Consistency (↑) Imaging (↑) Overall (↑) Time (↓) Consistency (↑) Imaging (↑) Overall (↑) Time (↓)
MS SC DOVER AP MS SC DOVER AP

VC2-ori 0.9829 0.9738 55.17 4.50 0.6435 - AD2-ori 0.9769 0.9484 73.32 4.69 0.5806 -
Rerender 0.9820 0.9745 76.39 5.29 0.8385 532.15 Rerender 0.9750 0.9496 85.05 5.73 0.8197 1174.08
FRESCO 0.9745 0.9706 73.59 5.44 0.7917 206.89 FRESCO 0.9667 0.9396 82.28 5.08 0.6968 494.37

TokenFlow 0.9696 0.9786 64.47 4.39 0.6759 546.94 TokenFlow 0.9630 0.9541 72.77 4.65 0.5369 1091.74
BIVDiff 0.9885 0.9800 64.62 5.05 0.7707 352.70 BIVDiff 0.9758 0.9513 74.39 4.91 0.6107 1073.66
AnyV2V 0.9775 0.9540 73.10 5.11 0.7483 377.21 AnyV2V 0.9751 0.9270 76.93 4.89 0.5998 672.71

Ours 0.9881 0.9808 73.20 5.46 0.8545 120.86 Ours 0.9825 0.9530 84.30 5.42 0.8243 302.82

Table 1. Quantitative comparison with baselines. First line refers to VC2 and AD2 generated original (-ori) videos. Our method enhances
both imaging quality and consistency and achieves the highest overall score, with 1.6x-4.5x speedup.

accurate estimation of pixel correspondence continues to in-
duce local inconsistencies (notably seen in the decorative
details on the front of the car). This observation is fur-
ther evidenced in Table 1, which indicates that FRESCO
encounters a similar issue. The SC metric, which indicates
global consistency, shows improvement across all meth-
ods. Conversely, the MS metric, reflecting local inconsis-
tency, experiences a decline for most baselines, whereas
our approach demonstrates a notable enhancement. Apart
from the overall quality, the inference speed of EVS is sig-
nificantly improved. Rerender-A-Video and FRESCO re-
quires iterative T2I usage across frames to incorporate opti-
cal flow, resulting in a time complexity that scales linearly
with frames N . Tokenflow requires precise T2I DDIM in-
version with sufficient number of steps to ensure that the
propagation of intermediate features can match the original

video content. For two T2V based baselines, BIVDiff re-
quires an inversion strength of sI = 1.0 for mixed inversion
in the initial random noise. AnyV2V relies on precise T2V
DDIM inversion to maintain the structural integrity of the
source video. Our EVS batchify process all frames without
the need for time-consuming accurate inversion. Overall,
EVS achieves 1.6x-4.5x speedup on these datasets.

4.3. Ablation Studies

Compositions Strategy. As shown in Table 2, pure
T2V or T2I can achieve optimal consistency or imag-
ing quality. T2I achieves the highest imaging quality
score; however, consistency deteriorates compared orig-
inal videos due to frame-wise operation. In contrast,
T2V produces the highest score in consistency, along with
marginally improved imaging quality. Two basic composi-
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N frames

VC2−ori T2I T2V

Ours: T2I+[T2V]+T2I T2I+T2V T2V+T2I

N frames

Figure 6. T2I+T2V declines to T2V imaging quality (zoom in
to see the blurred face of Iron Man in red frames). T2V+T2I in-
troduces inconsistency similar to T2I (see flickers in yellow line).
Our T2I+[T2V]+T2I balances both aspects.

tions, T2I+T2V/T2V+T2I, can slightly balance two aspects,
but their results still tends to favor the model used later. As
shown in Table 2, T2I+T2V significantly enhances consis-
tency compared to T2I, but results in a notable decline in
imaging quality. Conversely, T2V+T2I achieves the high-
est imaging quality at the expense of poorer consistency.
T2I+[T2V]+T2I achieves a balance with comparable con-
sistency from T2V and imaging quality from T2I.

Consistency (↑) Imaging (↑) Overall (↑) Time (↓)
MS SC DOVER AP

VC2-ori 0.9829 0.9738 55.17 4.50 0.6435 -
T2I 0.9666 0.9710 71.96 5.48 0.7567 108.62
T2V 0.9903 0.9817 62.83 5.03 0.7655 60.03

T2I+T2V 0.9885 0.9800 64.62 5.05 0.7707 155.07
T2V+T2I 0.9868 0.9796 75.27 5.44 0.8474 160.31

T2I+[T2V]+T2I 0.9881 0.9808 73.20 5.46 0.8545 120.86

Table 2. Ablation study of T2I and T2V compositions.

Hyperparameter Analysis. In Algorithm 1, we utilize four
hyperparameters: tI, tV, tT2V, nV. As illustrated in Figure 7,
a larger value of tT2V (indicating earlier insertion of the T2V
block during T2I) allows for more timesteps to be avail-
able for T2I, resulting in improved imaging quality but in-
creased inconsistency. A larger tV (addition of more noise)
can more effectively eliminate inconsistencies. However,
excessively large tV may cause the frames to converge too
closely to the T2V imaging distribution, adversely affecting
imaging quality. In the supplementary material, we explore
the full combination of these hyperparameters and also ap-
ply additional T2V models for enhanced consistency.
Analysis of SFI. To validate the effectiveness of the Selec-
tive Feature Injection technique in preserving imaging in-
formation, we conduct tests on T2I-refined stylized videos
from the VBench Appearance Style subset. These styles are
completely beyond the comprehension of T2V model (e.g.
Van Gogh style in Figure 4). For these videos, we first apply
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𝑡! = 3
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frame12 frame16 frame1 frame12𝑡!"# = 12

Figure 7. Hyperparameter analysis of the T2V block.
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Figure 8. T2V SDEdit v.s. DDIM. It is challenging for SDEdit to
strike a balance of maintaining imaging information (PSNR) and
introducing T2V motion prior (MS) across all timesteps. DDIM
with Selective Feature Injection (SFI) can find empirical points.

SDEdit with different noising strength. Results in Figure 8
indicate that regardless of the total timesteps (8 or 20), as
the noising strength increases, there is a noticeable enhance-
ment in temporal smoothness, but this comes at the cost of
significant loss in imaging details (lower PSNR). For DDIM
inversion, the overall reconstruction PSNR is notably higher
than that of SDEdit under same level of motion smoothness.
One can selectively choose injected layers and Qinv injected
rate γ: injecting in shallower U-Net layers with higher γ
can maintain original video in a larger extent. Compared to
SDEdit, it is easier to achieve a balanced point. As shown
in Figure 8, injecting deeper layers with γ = 0.8 or shal-
lower layers with γ = 0.5 are two optical points. Transi-
tioning from higher γ to these two points can enhance mo-
tion smoothness with negligible PSNR degradation.

5. Conclusion
In conclusion, our novel training-free encapsulated video
synthesizer, EVS, successfully bridges the gap between ex-
isting pre-trained T2I and T2V models, resulting in higher-
quality video synthesis with enhanced visual fidelity and
motion smoothness. It also achieves a significant 1.6x-4.5x
speedup in inference time. For our future work, we will
continue to improve the video quality for T2V pipelines by
refining the T2I/T2V denoising process.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of IEEE/CVF international conference on computer
vision, pages 9650–9660, 2021. 6

[2] Duygu Ceylan, Chun-Hao P. Huang, and Niloy J. Mitra.
Pix2video: Video editing using image diffusion. In Proceed-
ings of IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 23206–23217, 2023. 3

[3] Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia,
Xintao Wang, Chao Weng, and Ying Shan. Videocrafter2:
Overcoming data limitations for high-quality video diffusion
models. In Proceedings of IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7310–7320,
2024. 2, 3, 6

[4] Jiwoo Chung, Sangeek Hyun, and Jae-Pil Heo. Style in-
jection in diffusion: A training-free approach for adapting
large-scale diffusion models for style transfer. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8795–8805, 2024. 4, 5

[5] Zhongjie Duan, Lizhou You, Chengyu Wang, Cen Chen, Zi-
heng Wu, Weining Qian, and Jun Huang. Diffsynth: La-
tent in-iteration deflickering for realistic video synthesis. In
Proceedings of European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in
Databases 2024, pages 332–347. Springer, 2024. 2

[6] Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang,
Yinan He, Long Zhuo, Ziqi Huang, Ziyue Dong, Jing-
wen He, Dongwei Pan, et al. Vchitect-2.0: Parallel trans-
former for scaling up video diffusion models. arXiv preprint
arXiv:2501.08453, 2025. 2

[7] Michal Geyer, Omer Bar-Tal, Shai Bagon, and Tali Dekel.
Tokenflow: Consistent diffusion features for consistent video
editing. arXiv preprint arXiv:2307.10373, 2023. 2, 3, 4, 6

[8] Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang,
Yaohui Wang, Yu Qiao, Maneesh Agrawala, Dahua Lin,
and Bo Dai. Animatediff: Animate your personalized text-
to-image diffusion models without specific tuning. arXiv
preprint arXiv:2307.04725, 2023. 2, 3, 6

[9] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 4

[10] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video dif-
fusion models. Advances in Neural Information Processing
Systems, 35:8633–8646, 2022. 2

[11] Zhihao Hu and Dong Xu. Videocontrolnet: A motion-guided
video-to-video translation framework by using diffusion

model with controlnet. arXiv preprint arXiv:2307.14073,
2023. 3

[12] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang
Si, Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang
Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive
benchmark suite for video generative models. In Proceed-
ings of IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 21807–21818, 2024. 2, 3, 6

[13] Levon Khachatryan, Andranik Movsisyan, Vahram Tade-
vosyan, Roberto Henschel, Zhangyang Wang, Shant
Navasardyan, and Humphrey Shi. Text2video-zero: Text-
to-image diffusion models are zero-shot video generators.
In Proceedings of IEEE/CVF International Conference on
Computer Vision, pages 15954–15964, 2023. 2, 3

[14] Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai,
Jin Zhou, Jiangfeng Xiong, Xin Li, Bo Wu, Jianwei Zhang,
et al. Hunyuanvideo: A systematic framework for large video
generative models. arXiv preprint arXiv:2412.03603, 2024.
2

[15] Max Ku, Cong Wei, Weiming Ren, Huan Yang, and Wenhu
Chen. Anyv2v: A plug-and-play framework for any video-
to-video editing tasks. arXiv preprint arXiv:2403.14468,
2024. 3, 6

[16] Zhen Li, Zuo-Liang Zhu, Ling-Hao Han, Qibin Hou, Chun-
Le Guo, and Ming-Ming Cheng. Amt: All-pairs multi-field
transforms for efficient frame interpolation. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9801–9810, 2023. 6

[17] Feng Liang, Bichen Wu, Jialiang Wang, Licheng Yu, Kun-
peng Li, Yinan Zhao, Ishan Misra, Jia-Bin Huang, Peizhao
Zhang, Peter Vajda, et al. Flowvid: Taming imperfect op-
tical flows for consistent video-to-video synthesis. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8207–8216, 2024. 3

[18] Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu,
Shaodong Wang, Xianyi He, Yang Ye, Shenghai Yuan, Li-
uhan Chen, et al. Open-sora plan: Open-source large video
generation model. arXiv preprint arXiv:2412.00131, 2024.
2

[19] Shanchuan Lin and Xiao Yang. Animatediff-lightning:
Cross-model diffusion distillation. arXiv preprint
arXiv:2403.12706, 2024. 3, 6

[20] Bingyan Liu, Chengyu Wang, Tingfeng Cao, Kui Jia, and
Jun Huang. Towards understanding cross and self-attention
in stable diffusion for text-guided image editing. In Pro-
ceedings of IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 7817–7826, 2024. 5

[21] Bingyan Liu, Chengyu Wang, Jun Huang, and Kui Jia. At-
tentive linguistic tracking in diffusion models for training-
free text-guided image editing. In Proceedings of 32nd ACM
International Conference on Multimedia, pages 4158–4166.
ACM, 2024. 5

[22] Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya
Jia. Video-p2p: Video editing with cross-attention control. In
Proceedings of IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8599–8608, 2024. 3, 4

[23] Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang,
Yong Zhang, Haoxin Chen, Yang Liu, Tieyong Zeng, Ray-

18217



mond Chan, and Ying Shan. Evalcrafter: Benchmarking and
evaluating large video generation models. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 22139–22149, 2024. 3

[24] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided
image synthesis and editing with stochastic differential equa-
tions. arXiv preprint arXiv:2108.01073, 2021. 2, 3, 4, 5

[25] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and
Daniel Cohen-Or. Null-text inversion for editing real images
using guided diffusion models. In Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 6038–6047, 2023. 4

[26] Weili Nie, Brandon Guo, Yujia Huang, Chaowei Xiao, Arash
Vahdat, and Anima Anandkumar. Diffusion models for
adversarial purification. arXiv preprint arXiv:2205.07460,
2022. 2, 3

[27] OpenAI. Sora. [Online] https://openai.com/
index/video-generation-models-as-world-
simulators/, 2024. 1

[28] PikaLabs. Pika 1.0. [Online] https://www.pika.
art/, 2023. 1

[29] Dustin Podell, Zion English, Kyle Lacey, Andreas
Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and
Robin Rombach. Sdxl: Improving latent diffusion mod-
els for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023. 2

[30] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei,
Xintao Wang, Ying Shan, and Qifeng Chen. Fatezero: Fus-
ing attentions for zero-shot text-based video editing. In Pro-
ceedings of IEEE/CVF International Conference on Com-
puter Vision, pages 15932–15942, 2023. 2, 3

[31] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings
of IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10684–10695, 2022. 3

[32] Runway. Gen-2. [Online] https://research.
runwayml.com/gen2, 2023. 1

[33] Runway. Gen-3. [Online] https://runwayml.com/
research/introducing-gen-3-alpha, 2024. 1

[34] Fengyuan Shi, Jiaxi Gu, Hang Xu, Songcen Xu, Wei Zhang,
and Limin Wang. Bivdiff: A training-free framework for
general-purpose video synthesis via bridging image and
video diffusion models. In Proceedings of IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
7393–7402, 2024. 3, 4

[35] Chaehun Shin, Heeseung Kim, Che Hyun Lee, Sang-gil Lee,
and Sungroh Yoon. Edit-a-video: Single video editing with
object-aware consistency. In Asian Conference on Machine
Learning, pages 1215–1230, 2024. 2

[36] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv preprint arXiv:2209.14792,
2022. 2

[37] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 3, 4, 5

[38] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali
Dekel. Plug-and-play diffusion features for text-driven
image-to-image translation. In Proceedings of the/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
1921–1930, 2023. 5

[39] Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang,
Xiang Wang, and Shiwei Zhang. Modelscope text-to-video
technical report. arXiv preprint arXiv:2308.06571, 2023. 2

[40] Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou,
Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan He, Jiashuo
Yu, Peiqing Yang, et al. Lavie: High-quality video gener-
ation with cascaded latent diffusion models. arXiv preprint
arXiv:2309.15103, 2023. 2

[41] Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jing-
wen Hou, Annan Wang, Wenxiu Sun, Qiong Yan, and Weisi
Lin. Exploring video quality assessment on user generated
contents from aesthetic and technical perspectives. In Pro-
ceedings of IEEE/CVF International Conference on Com-
puter Vision, pages 20144–20154, 2023. 6

[42] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian
Lei, Yuchao Gu, Yufei Shi, Wynne Hsu, Ying Shan, Xiaohu
Qie, and Mike Zheng Shou. Tune-a-video: One-shot tun-
ing of image diffusion models for text-to-video generation.
In Proceedings of IEEE/CVF International Conference on
Computer Vision, pages 7623–7633, 2023. 2

[43] Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change
Loy. Rerender a video: Zero-shot text-guided video-to-video
translation. In SIGGRAPH Asia 2023, pages 1–11, 2023. 2,
3, 4, 6

[44] Shuai Yang, Yifan Zhou, Ziwei Liu, and Chen Change
Loy. Fresco: Spatial-temporal correspondence for zero-shot
video translation. In Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8703–
8712, 2024. 3, 6

[45] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiao-
han Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video
diffusion models with an expert transformer. arXiv preprint
arXiv:2408.06072, 2024. 2

[46] Shiwei Zhang, Jiayu Wang, Yingya Zhang, Kang Zhao,
Hangjie Yuan, Zhiwu Qin, Xiang Wang, Deli Zhao, and
Jingren Zhou. I2vgen-xl: High-quality image-to-video
synthesis via cascaded diffusion models. arXiv preprint
arXiv:2311.04145, 2023. 2, 3, 6

[47] Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng
Zhang, Wangmeng Zuo, and Qi Tian. Controlvideo:
Training-free controllable text-to-video generation. arXiv
preprint arXiv:2305.13077, 2023. 2

[48] Yabo Zhang, Yuxiang Wei, Xianhui Lin, Zheng Hui, Peiran
Ren, Xuansong Xie, Xiangyang Ji, and Wangmeng Zuo.
Videoelevator: Elevating video generation quality with
versatile text-to-image diffusion models. arXiv preprint
arXiv:2403.05438, 2024. 3

18218

https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/
https://openai.com/index/video-generation-models-as-world-simulators/
https://www.pika.art/
https://www.pika.art/
https://research.runwayml.com/gen2
https://research.runwayml.com/gen2
https://runwayml.com/research/introducing-gen-3-alpha
https://runwayml.com/research/introducing-gen-3-alpha

	. Introduction
	. Related Works
	. Video Diffusion Models
	. Improving Temporal Consistency of Videos

	. EVS: The Proposed Method
	. Preliminaries and Basic Notations
	. Compositions of T2I and T2V Denoising
	. Summary of Our EVS Method

	. Experiments
	. Experimental Settings
	. Comparisons Against Baselines
	. Ablation Studies

	. Conclusion

