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Abstract

Model editing aims to correct inaccurate knowledge, up-
date outdated information, and incorporate new data into
Large Language Models (LLMs) without the need for re-
training. This task poses challenges in lifelong scenarios
where edits must be continuously applied for real-world
applications. While some editors demonstrate strong ro-
bustness for lifelong editing in pure LLMs, Vision LLMs
(VLLMs), which incorporate an additional vision modal-
ity, are not directly adaptable to existing LLM editors. In
this paper, we propose LiveEdit, a Lifelong vision language
model Edit to bridge the gap between lifelong LLM edit-
ing and VLLMs. We begin by training an editing expert
generator to independently produce low-rank experts for
each editing instance, with the goal of correcting the rel-
evant responses of the VLLM. A hard filtering mechanism
is developed to utilize visual semantic knowledge, thereby
coarsely eliminating visually irrelevant experts for input
queries during the inference stage of the post-edited model.
Finally, to integrate visually relevant experts, we introduce
a soft routing mechanism based on textual semantic rele-
vance to achieve multi-expert fusion. For evaluation, we es-
tablish a benchmark for lifelong VLLM editing. Extensive
experiments demonstrate that LiveEdit offers significant ad-
vantages in lifelong VLLM editing scenarios. Further ex-
periments validate the rationality and effectiveness of each
module design in LiveEdit. 1

1. Introduction

Large language models (LLMs) have become key tech-
niques for text generation in NLP [1–3]. Benefiting from

*Q. Chen and C. Wang contributed equally to this work.
†Corresponding Author
1The source code is available at https://github.com/

qizhou000/LiveEdit.

vision-language pre-training and pure LLMs, Vision-LLMs
(VLLMs) are capable of generating text responses based
on images and text [4–7]. However, outdated or erroneous
built-in knowledge can undermine the value of these mod-
els. To avoid the costly retraining of large-scale parameters,
model editing aims to adapt models by adjusting a small
number of parameters to update specific knowledge. This
plays a critical role in areas such as privacy protection [8, 9],
detoxification [10, 11], bias reduction [12–14], and halluci-
nation correction [15, 16].

Recent research on model editing techniques has pri-
marily focused on pure LLMs [17–20]. However, the ad-
ditional visual modality and the interactions between vi-
sual and textual modalities make these pure LLM editors
less suitable. For example, LLM editors such as those in
[17, 18, 21], which are based on locate-then-edit methods,
assume that the subject in the query is crucial for model rea-
soning. These methods perform causal mediation analysis
on input text queries containing the subject to identify linear
layer weights critical to the LLM’s reasoning. However, in
vision-dominated tasks such as Visual Question Answering
(VQA), where visual inputs often include substantial rele-
vant information, attribution becomes more challenging. As
a result, only limited work has explored how visual repre-
sentations within VLLMs contribute to response generation
and has proposed single-shot editing algorithms [22–24].

In most LLM applications, single-shot model editing is
insufficient to keep the model updated. Thus, the concept of
lifelong editing has emerged to address the continuous need
for model updates [19–21, 25]. In lifelong editing scenarios,
some LLM editors have demonstrated strong performance.
Retrieval-based methods, in particular, avoid directly edit-
ing the original model and apply on-the-fly edit retrieval
and parameter fusion during inference [19, 20, 25]. This
approach offers greater robustness to a growing number of
edits compared to editors that rely on permanent parameter
modifications. For VLLMs, to the best of our knowledge,
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What type of cake is this? What do the hexagon mean?

…

…
𝑬𝑬𝒕𝒕 M-Gen. : What 
does the hexagon 
mean? It is ____ 

𝑬𝑬𝟏𝟏 Rel. : This cake is to be designed for ____
𝑬𝑬𝟏𝟏 T-Gen. : What type of cake is this? It is ____
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T-Loc.: How many continents are there on Earth? The answer is ____

𝑓𝑓𝜃𝜃0
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…
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Figure 1. Lifelong VLLM Editing. In this scenario, the edited VLLM is required to correctly respond to queries involving the edited data
within the generalization domain, while maintaining consistent responses in locality domains. The top left shows test cases where Rel.,
T-Gen./M-Gen., T-Loc., and M-Loc. denote reliability, text/modal generality, and text locality, respectively. The bottom right illustrates
the responses of an effectively edited VLLM across several editing timesteps.

there is currently no related research on lifelong editing, as
illustrated in Figure 1. Visual modality is quite different
from text modality since it typically contains more informa-
tion and is more noisy. Therefore, the approaches working
for LLMs cannot be directly applied to VLLMs.

In this paper, we introduce LiveEdit, a novel frame-
work designed for Lifelong vision language model Editing,
which bridges the gap between lifelong LLM editing and
VLLMs. In this framework, we design a generative low-
rank mixture-of-experts combined with hard and soft rout-
ing as a powerful VLLM editor. The two key techniques are
outlined as follows:
Generation of Low-Rank Experts: Mixture-of-Experts
(MoE) combines multiple ”experts,” each specializing in
specific data patterns or sub-tasks [26, 27]. In VLLM edit-
ing, we treat VLLM’s adherence to a single edit sample
as a sub-task, where each new edit sample corresponds to
a low-rank expert that adjusts the model’s response. MoE
components are typically trained on sub-tasks, but directly
fitting on individual edit samples results in poor generaliza-
tion and inefficiency. To solve this, we propose an expert
generator that creates low-rank experts for each new edit
sample. The generator is trained to align VLLM with key
edit metrics: reliability, textual/modal generality, and tex-
tual/modal locality [22]. The generated experts are stored
in an expert repository. For new inputs, LiveEdit will se-
lect relevant experts from the repository and combines their
adapted responses using hard and soft routing, as detailed
below.
Hard and Soft Routing: We propose a two-stage routing
strategy for expert utilization during inference. Attribution
in [24] shows that VLLM processes prompts in early lay-
ers and extracts key visual features in later layers. In the
first phase, we perform a text-to-vision interaction to extract
key visual features and filter out noise. For each incoming

sample, we compare its extracted features with those of edit
samples, routing to visually relevant experts while filtering
out visually irrelevant ones. Since this hard routing only
considers visual semantics, it may select multiple visually
matched but text-irrelevant experts. In the second phase,
we apply soft routing through multi-expert fusion, incorpo-
rating the semantic similarity between the input query and
the edit text. By combining absolute and relative weights,
relevant edit samples are assigned higher weights and irrel-
evant ones lower weights. This approach suppresses text-
irrelevant experts and avoids redundant interactions.

In the experiments, the proposed LiveEdit framework is
tested with 1, 10, 100, and 1,000 edits on the LLaVA-V1.5
(7B) [28], MiniGPT-4 (7B) [29], and BLIP2-OPT (2.7B) [4]
backbones across the E-VQA [22], E-IC [22], and VLKEB
[30] benchmark datasets. Comparisons with other strong
editors demonstrated the superiority of our approach.

2. Related Works
2.1. Vision Large Language Models
Motivated by recent achievements of LLMs [31], re-
searchers have invested substantial effort in merging LLMs
with vision models [32]. VLLMs synchronize pre-trained
image encoders, usually a Vision Transformer (ViT) [33],
with an LLM decoder. Consequently, this configuration
produces a model proficient in handling images alongside
text inputs [4–7, 34]. The training process for VLLMs typi-
cally unfolds in a two-phase approach. Initially, an align-
ment component, which may be a feed forward network
[28] or more sophisticated structures such as a resampler
[4, 35], is developed to bridge the image encoder with the
LLM. This component is trained using pairs of images and
their corresponding captions, effectively mapping image to-
kens onto the input space of the LLM. Subsequently, the
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focus shifts to broad-spectrum inference capabilities. The
model is then refined through exposure to a diverse array
of tasks, encompassing visual question-answering scenar-
ios [36, 37] and instruction-based interactions in both visual
and textual contexts [38, 39], thereby enriching its func-
tional versatility. However, despite the broad application
potential mentioned above, VLLMs still rely on meticulous
fine-tuning and editing to ensure adaptability and accuracy
across diverse scenarios.

2.2. Model Editing
Model Editing for LLMs: We classify LLM editing into
four categories. (1) Locate-Then-Edit methods identify
and modify specific model parameters related to target
knowledge [40]. ROME [17] uses causal mediation anal-
ysis for localization, while MEMIT [18] and WILKE [21]
extend it for multi-editing. (2) Meta Learning methods
employ a hyper-network to generate updated weights for
edits [41–44]. (3) Additional Parameters methods intro-
duce trainable parameters dedicated to edits while preserv-
ing original weights [45, 46]. Amon them, LEMOE [46]
is based on MoE, but its greedy routing harms old experts’
influence when integrating new ones. (4) Adding Extra
Modules methods store and retrieve edits via external mem-
ory mechanisms [19, 25, 47–49]. In lifelong editing, the
accumulation of shifts in the first two types hinders perfor-
mance, while the latter two mitigate this by adding extra
parameters and decoupling edits. However, in VLLM, extra
modality and noise reduce efficacy.
Model Editing for VLLMs: Leveraging multimodal data
for knowledge editing on VLLMs better resonates with
practical contexts. Previously, the outlined methods were
tailored for LLMs, operating solely on single-modal data.
Yet, when it comes to knowledge editing on VLLMs,
employing multimodal data offers a closer approximation
to real-life settings. In the literature, MMEdit [22] and
VLKEB [30] contribute novel datasets designed specifically
for multimodal knowledge editing tasks. [24] use attribu-
tion analysis to explore how VLLMs extract key informa-
tion from visual representations to generate responses, lead-
ing to the design of a single-step VLLM editing technique.

2.3. Mixture-of-Experts (MoE)
The MoE technique [26, 27] decomposes complex tasks
into simpler ones, using dedicated models called experts.
Recently, MoE layers have been integrated into transformer
architectures. For instance, GShard [50] utilized MoE
in transformer, achieving significant improvements in ma-
chine translation for 100 languages. Switch Transformers
[51] further scaled language models with a trillion param-
eters through efficient MoE designs. However, naive MoE
training may cause load imbalance, wherein a few experts
are overused while others are underutilized. To combat

this, various strategies such as the BASE layer [52], HASH
layer [53], and Expert Choice [54] have been developed to
optimize MoE models’ capacity. Recent efforts focus on
training a decoder-only MoE model with a modified UL2
objective [55]. Notably, Mixtral [56] enhances decision-
making by employing token-choice routing to select two out
of eight experts, improving overall performance. Our work
approaches the MoE structure from a different angle, treat-
ing each knowledge update as a mini-task and leveraging
low-rank experts to store knowledge for VLLM editing.

3. Preliminaries and Task Definition
We formally define the VLLM editing task and its lifelong
extension. Next, we introduce the evaluation criteria.

A VLLM fθ : V × P → O can be considered a func-
tion that maps an image-prompt pair (v, p) to a textual out-
put o = fθ(v, p). Given an edit sample (ve, pe, oe), where
fθ(ve, pe) ̸= oe, a VLLM editor ME : F × V × P ×O →
F produces an updated VLLM fθ′ = ME(fθ, ve, pe, oe).
Starting from an initial VLLM fθ0 , ME iteratively applies
edits as new editing requirements arise in a lifelong context:

fθt = ME(fθt−1
, vet , pet , oet), t = 1, 2, 3, ...

At any timestep t, an effective ME should ensure that fθt
satisfies the following three criteria, as outlined in [22]:
Reliability measures the accuracy of the modified model’s
responses on edited samples:

E(ve,pe,oe)∼{(veτ ,peτ ,oeτ )}t
τ=1

I{fθt(ve, pe) = oe}

where I is the indicator function that evaluates to 1 when
the condition is true.
Generality requires fθt can also adapt to relevant variations
(e.g., rephrased prompts) in the edited samples, including
modal and text generality:

E(ve,pe,oe)∼{(veτ ,peτ ,oeτ )}t
τ=1

Evg∼G(ve)I {fθt(vg, pe) = oe}
E(ve,pe,oe)∼{(veτ ,peτ ,oeτ )}t

τ=1
Epg∼G(pe)I {fθt(ve, pg) = oe}

where G(·) represents the relevant neighbors.
Locality requires fθt remains consistent with fθ0 for sam-
ples unrelated to edits, including modal and text locality:

E(ve,pe,oe)∼{(veτ ,peτ ,oeτ )}t
τ=1

E(vl,pl)∼L(ve,pe)Il(vl, pl)
E(ve,pe,oe)∼{(veτ ,peτ ,oeτ )}t

τ=1
Epl∼L(pe)Il(∅, pl)

s.t. Il(v, p) = I {fθt(v, p) = fθ0(v, p)}

where L(·) represents the irrelevant samples.

4. The Proposed LiveEdit Framework
In this section, we formally introduce the LiveEdit frame-
work, with the overall architecture shown in Figure 2. First,
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Figure 2. Illustration of the LiveEdit framework. The upper part illustrates the editing process of LiveEdit. At time step t, the representation
of an edit sample (vet , pet , oet) at layer le serves as an editing signal to generate the editing expert (Uet , Vet) via feg and routing features
(ϕ̂vet

, ψ̂pet
) via f̂fe. Both are then added to the expert repository Et. The lower part shows the VLLM inference process with LiveEdit,

where f̄fe extracts input sample features at layer le to route editing experts, which then adapt the representation.

we explain how to generate corresponding experts for edit
samples and how to extract the semantic features of the
editing prompt. We then describe their use in extracting
key visual features from the visual representation, thereby
maintaining the expert repository. Next, we describe how
LiveEdit routes experts during a single inference of the
VLLM to instantly adjust its response. Finally, we elabo-
rate on the overall training process of the LiveEdit model.

4.1. Construction and Update of Expert Repository

Since the LLM transformer is the primary module for se-
mantic understanding and response generation, in this work,
we consider inserting the MoE editor between the layers
of the transformer for editing. Previous work [24] on rep-
resentation attribution in VLLM editing has shown that
the latter layers in the model leverage the prompt seman-
tics to extract relevant visual information to generate re-
sponses. Following their findings, we deploy our editor in
a high-contribution layer le within the transformer. The
expert repository is initially set to E0 = {} and is up-
dated from Et−1 to Et at timestep t as a new editing sample
(vet , pet , oet) is input into the model.

Specifically, given a VLLM fθ, the image and text of the
edit sample are converted into embeddings, concatenated,
and fed into the transformer. Let hle ∈ RN×d represent the
intermediate output at layer le, where N and d correspond
to the sequence length and the intermediate dimension, re-
spectively. Let hlevet , hlepet , hleoet denote the respective repre-
sentations of vet , pet , and oet . We define feg(·) to extract
the editing signal and generate the expert:

(Uet , Vet) = feg(h
le
vet

⊕ hlepet ⊕ hleoet ),

s. t. feg(h) = (CAU (U, h),CAV (V, h))
(1)

where U ∈ Rr×dm and V ∈ Rr×dm are two trainable
matrices. ⊕ denotes concatenation. r and dm are hyper-
parameters representing the number of ranks and the mod-
ule dimension, respectively. The cross attention CA(·) is
formulated as:

CA(x, y) = δ
(
xWq (yWk)

T
)
· yWv (2)

where δ denotes softmax, andWq,Wk,Wv are matrices that
map inputs into query, key, and value spaces, respectively.

To perform both hard and soft routing for experts, we re-
spectively extract key visual feature ϕ̂vet using prompt se-
mantics and the pure prompt feature ψ̂pet through a feature
extractor f̂fe(·):

(ϕ̂vet , ψ̂pet ) = f̂fe(h
le
vet
, hlepet )

s.t. f̂fe(hv, hp) = (CAϕ2 (CAϕ1 (ϕ, hp) , hv) ,CAψ (ψ, hp))
(3)

where ϕ ∈ R1×kdm and ψ ∈ R1×kdm are trainable feature
extraction vectors, and k controls the dimension of the vec-
tors. The extracted features ϕ̂vet and ψ̂pet have the same
shape as ϕ and ψ. Finally, the expert repository is updated
by inserting the group of experts and the routing features as
Et = Et−1 ∪ {(Uet , Vet , ϕ̂vet , ψ̂pet )}.

4.2. Expert Routing and Editing on the Fly
Given an input image-prompt pair (vi, pi), let its output at
the le-th layer be hle , where hlevi and hlepi denote the compo-
nents corresponding to vi and pi, respectively. We use an
additional feature extraction function f̄fe (defined in con-
sistency within Eq.3, but taking different inputs) to extract
routing features from the input:

(ϕ̄vi , ψ̄pi) = f̄fe(h
le
vi , h

le
pi). (4)
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Given Et = {(Ueτ , Veτ , ϕ̂veτ , ψ̂peτ )}
t
τ=1, we filter for ex-

perts that are highly relevant to the input sample’s visual
content by calculating the similarity between the key visual
features of the input and the edit samples:

Ê =
{
(Ueτ , Veτ , ψ̂peτ ) | ϕ̄vi ϕ̂

T
veτ

> ϕ̄vi ϕ̄
T
Θ, τ = 1, ..., t

}
,

s.t. (ϕ̄Θ, ) = f̄fe(Θ, h
le
pi)
(5)

where a trainable vision sentinel Θ ∈ RNv×d is set to dy-
namically determine the filtering threshold, following [20],
which effectively avoids the bias caused by manually set
thresholds. Nv is the vision token count of fθ. Intuitively,
if the input sample is more visually similar to the edit sam-
ple than the visual sentinel, then this edit sample should not
be selected.

Although the above process effectively selects visually
relevant editing experts, some results may still have low
prompt semantic relevance. We further use the similar-
ity between prompt features to achieve multi-expert fusion.
Thus, the post-edit representation ĥle is obtained as follows:

ĥle = hle +
∑

(Ue,Ve,ψ̂pe )∈Ê

fsr(ψ̄pi , ψ̂pe , Ê)ρ(hleUTe )Ve (6)

s.t. fsr(ψ̄, ψ̂, Ê) = σ
(
ψ̄ψ̂T

) exp(ψ̄ψ̂T )∑
( , ,ψ̂pe )∈Ê

exp(ψ̄ψ̂Tpe)
(7)

where ρ(·) and σ(·) are ReLU and sigmoid, respectively.
The inner products are rescaled by

√
dm, which is omitted

above. The ĥle will proceed to complete the subsequent
layer inference and generate the modified response. The
Soft Routing function fsr(·) multiplies absolute weights
from the sigmoid and relative weights from the softmax.
The absolute weights control the output strength of each
expert based on similarity. The relative weights balance the
similarity among the selected experts to constrain the scale
of the fused residual output within 1, preventing the com-
bined output from generating an excessively large norm.

4.3. Training of LiveEdit
The training primarily consists of two parts: the edit loss,
which ensures that the generated MoEs effectively guide
the VLLM to follow the editing instructions, and the rout-
ing loss, which ensures hard and soft MoE routing. Given
a batch of edit samples De = {(veb , peb , oeb)}Bb=1, and
their corresponding sampled generality and locality samples
Dg = {(vgb , pgb , ogb)}Bb=1 and Dl = {(vlb , plb , olb)}Bb=1,
the losses are formulated as follows.

4.3.1. Edit Loss
We mix the experts for the entire batch of edit samples to
simulate the scenario during inference, where hard rout-
ing leads to multiple experts. First, we obtain the le-
th layer outputs {(hleveb , h

le
peb
, hleoeb

)}Bb=1 for each part of

an edit sample in De. Then, through Eqs. 1 and 3,
their corresponding experts and routing features can be
obtained as {(Ueb , Veb)}Bb=1 and {(ϕ̂veb , ψ̂peb )}

B
b=1. We

define the expert set for soft routing fusion as Ê =
{(Ueb , Veb , ψ̂peb )}

B
b=1. Thus, for any input sample, its rep-

resentation at layer le will be modified as in Eq. 6. Defining
the VLLM modified in this way as fθÊ , the edit loss is de-
fined as follows:

ℓedit =
1

B

B∑
b=1

(
ℓ
(b)
rel + ℓ(b)gen + ℓ

(b)
loc

)
(8)

where

ℓ
(b)
rel = − log fθÊ (oeb | veb , peb) (9)

ℓ(b)gen = − log fθÊ (ogb | vgb , pgb) (10)

ℓ
(b)
loc = KL

(
fθ (olb | vlb , plb) || fθÊ (olb | vlb , plb)

)
(11)

Here, KL denotes the Kullback-Leibler divergence.

4.3.2. Routing Loss
In the routing part, we maximize the feature similarity be-
tween samples within the generality domain, while min-
imizing the feature similarity between unrelated samples.
First, we randomly assign samples within the same general-
ization domain (i.e., edit samples and their corresponding
generality samples) into two new sets, defined as D̂g =

{[D(b)
e ,D(b)

g ]
π
(b)
1
}Bb=1, and D̄g = {[D(b)

e ,D(b)
g ]

π
(b)
2
}Bb=1.

Here, π(b)
1 , π

(b)
2 ∈ [0, 1]B are the random integer vectors

applied across the batch. This approach equalizes the relia-
bility and generality of samples in feature matching with the
edited and input samples, enhancing routing robustness. We
use f̂fe to extract the routing features {(ϕ̂gb , ψ̂gb)}Bb=1 from
D̂g corresponding to edit end, and use f̄fe to extract the
routing features {(ϕ̄gb , ψ̄gb)}Bb=1 and {(ϕ̄lb , ψ̄lb)}Bb=1 from
D̄g and Dl corresponding to input end, respectively. The
routing loss is formulated as follows:

ℓroute =

B∑
b=1

ℓ
(b)
hr + ℓ(b)sr1 + ℓ(b)sr2 (12)

Hard Routing loss ℓ(b)hr is defined as follows:

ℓ
(b)
hr = fnce(ϕ̄gb , ϕ̂gb , Φ̂ ∪ {ϕ̄Θgb

})+

fnce(ϕ̄lb , ϕ̄Θlb
, Φ̂ ∪ {ϕ̄Θlb

})
(13)

where Φ̂ = {ϕ̂gb}Bb=1. ϕ̄Θgb
and ϕ̄Θlb

represent the features
extracted by the corresponding generality and locality data
at the input end (as defined in Eq.5) from the vision sentinel.
fnce is the InfoNCE loss [57] formulated as:

fnce(α, β+, {βj}nj=1) = − log
exp(αβT+)∑n
j=1 exp(αβ

T
j )

(14)
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We set the temperature to 1, which is omitted here. The
above loss function brings the key visual features of data
within the generalization domain closer—even closer than
those extracted using the visual sentinel. Meanwhile, it
pushes the locality inputs further from the generalization
domain, making them relatively closer to the features ex-
tracted from the visual sentinel.
Soft Routing includes absolute loss ℓ(b)sr1 and relative loss
ℓ
(b)
sr2 , defined as follows:

ℓ(b)sr1 = − log σ(ψ̄gb ψ̂
T
gb
)− log(1− σ(ψ̄gb ψ̂

T
\gb)), (15)

ℓ(b)sr2 = fnce

(
ψ̄gb , ψ̂gb , {ψ̂gj}Bj=1 ∪ {ψ̂lj}Bj=1

)
, (16)

where ψ̂\gb represents a feature randomly selected from
{ψ̂gj}Bj=1 ∪ {ψ̂lj}Bj=1\{ψ̂gb}. Thus, the total training loss
is: ℓtotal = ℓedit + ℓroute. During training, the parameters
of the VLLM, fθ, are frozen. The trainable modules are an
experts generation module, feg , and two feature extraction
modules, f̂fe and f̄fe.

5. Experiments
5.1. Experimental Settings
Datasets: Following [22], we use E-VQA (Editing Visual
Question Answering) and E-IC (Editing Image Caption) as
evaluation datasets. Additionally, we incorporate VLKEB
[30], which is composed of real images to better represent
real-world scenarios.
VLLM Backbones: For comprehensive evaluation, we
select VLLM backbones based on both model architec-
ture and parameter scale, including BLIP2-OPT (2.7B) [4],
LLaVA-V1.5 (7B) [28], and MiniGPT-4 (7B) [29].
Baseline Editors: To our knowledge, there are currently
no editors specifically designed for lifelong VLLM edit-
ing. Therefore, following [22], in addition to the basic FT-L
and FT-M, which respectively fine-tune the final layer of the
LLM and the visual encoder, we adapt LLM-based editing
techniques to VLLM. These include MEND [42], TP [45],
LTE [19], RECIPE [20], and LEMoE [46].

For details on the experimental setup, model hyper-
parameters, and training specifics, please refer to Appendix
7. Building on the experimental settings above, we con-
duct a comprehensive evaluation of edit performance and
perform an in-depth analysis of LiveEdit’s internals.

5.2. General Performance of Lifelong Editing
Table 1 shows partial results of lifelong editing experiments.
In single-edit scenarios, our method generally achieves op-
timal performance. Methods such as FT-L, FT-M, and
MEND [42] try to modify original model parameters and
perform well initially. However, their performance dete-
riorates with more edits due to overfitting and cumulative
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Figure 3. The impact of module dimension dm and expert rank r
on LiveEdit’s edit performance. Experiments are conducted on the
E-VQA dataset, with 1,000 edits on BLIP2. Circle size represents
LiveEdit’s training parameters, and color intensity indicates the
average edit performance across five metrics.

parameter scaling [21, 58]. TP [45] addresses parame-
ter scaling by introducing additional neurons, but a sin-
gle neuron can’t encapsulate each edit’s visual informa-
tion. Retrieval-based methods (SERAC [47], LTE [19],
RECIPE [20]) remain robust in lifelong editing by decou-
pling edits from model parameters, yet struggle with seman-
tically similar but visually different edit samples. LEMoE
[46], a MoE-based editor, excels with few edits but suffers
from issues like disruptive greedy routing and limited gen-
eralization due to overfitting experts to batch edits. Our
method, LiveEdit, surpasses in edit performance. Con-
trastive learning-based expert routing resolves LEMoE’s is-
sues, enhancing both edit speed and generalization. By
decoupling edit samples into independent experts and ap-
plying a fusion strategy for vision-related experts, we pre-
vent the semantic conflicts LEMoE encounters from its
sequential batching. Importantly, our method maintains
nearly 100% locality performance even with increasing ed-
its. Three main factors contribute to our performance: First,
hard routing filters out visually irrelevant experts. Second,
soft routing scales influence by assigning lower scales to
textually irrelevant experts. Finally, the locality edit loss
further confines experts’ influence on response adaptation.

5.3. Hyper-Parameter Search
We conducted a comprehensive hyper-parameters search for
LiveEdit to select the most suitable combination. The most
important hyper-parameters are discussed below.
Trade-off Between Model Scale and Edit Performance:
Figure 3 reports the effects of different combinations of
module dimension dm and expert rank r on edit perfor-
mance and model scale. The dm has a significant impact
on the parameter count of LiveEdit. In terms of edit per-
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Baseline # Edit Editors E-VQA VLKEB
Rel. T-Gen. M-Gen. T-Loc. M-Loc. Average Rel. T-Gen. M-Gen. T-Loc. M-Loc. Average

LLaVA-V1.5
(7B)

1

FT-L 93.88 87.98 80.25 99.61 94.78 91.30 (±0.42) 94.29 87.00 92.22 91.16 91.37 91.21 (±1.09)
FT-M 87.29 76.11 53.23 100.00 96.95 82.72 (±1.05) 76.31 65.57 59.43 100.00 92.35 78.73 (±0.76)

MEND 91.23 90.05 91.29 91.02 90.22 90.76 (±0.64) 92.13 91.28 90.22 89.19 90.13 90.59 (±1.24)
SERAC 89.33 83.72 84.97 82.05 23.78 72.77 (±0.36) 89.77 89.11 87.92 66.68 14.20 69.54 (±0.83)

TP 35.95 36.12 28.65 93.87 97.61 58.44 (±0.33) 50.77 55.70 51.65 87.93 90.43 67.30 (±0.29)
LTE 94.16 93.57 93.59 94.08 86.26 92.33 (±1.56) 94.42 93.57 93.22 86.84 79.69 89.55 (±1.41)

RECIPE 91.37 86.51 87.73 94.27 88.88 89.75 (±1.13) 92.67 92.35 91.01 89.67 82.85 89.71 (±0.57)
LEMoE 93.60 92.77 89.99 99.28 96.98 94.52 (±1.09) 94.85 93.09 91.67 87.03 87.88 90.90 (±0.29)
LiveEdit 94.28 94.51 88.01 100.00 100.00 95.36 (±0.57) 96.43 95.22 93.72 100.00 100.00 97.08 (±0.62)

10

FT-L 90.57 84.14 73.21 95.56 81.50 85.00 (±1.07) 88.05 85.32 85.23 74.53 85.74 83.77 (±1.22)
FT-M 84.90 73.53 49.99 100.00 55.98 72.88 (±0.63) 68.63 57.57 56.56 100.00 82.99 73.15 (±0.23)

MEND 3.58 3.55 3.53 2.10 1.26 2.80 (±0.02) 0.18 0.24 0.05 0.03 0.19 0.14 (±0.00)
SERAC 88.09 83.40 83.57 64.91 15.50 67.10 (±0.92) 81.55 74.49 80.24 54.71 13.15 60.83 (±0.98)

TP 32.71 31.23 28.58 75.10 91.17 51.76 (±0.60) 44.56 47.52 45.36 52.21 66.61 51.25 (±0.69)
LTE 92.83 91.41 90.82 86.38 85.52 89.39 (±0.34) 90.06 81.52 88.11 83.40 81.48 84.91 (±0.78)

RECIPE 90.22 85.92 86.24 90.34 88.11 88.17 (±1.48) 83.92 76.23 82.84 86.33 83.69 82.60 (±0.72)
LEMoE 91.95 86.54 79.82 85.19 49.81 78.66 (±1.03) 91.55 84.58 81.03 67.19 72.81 79.43 (±0.52)
LiveEdit 93.79 93.21 86.42 100.00 100.00 94.68 (±1.03) 95.54 94.52 91.25 100.00 100.00 96.26 (±0.33)

1000

FT-L 71.39 59.83 57.41 55.55 48.99 58.63 (±0.17) 68.14 66.38 66.98 65.61 75.35 68.49 (±0.32)
FT-M 69.57 56.34 44.07 100.00 41.47 62.29 (±0.40) 53.41 48.80 43.16 100.00 57.03 60.48 (±0.50)

MEND 0.04 0.05 0.05 0.08 0.09 0.06 (±0.00) 0.03 0.05 0.07 0.06 0.08 0.06 (±0.00)
SERAC 85.57 75.58 82.01 62.46 15.69 64.26 (±0.37) 60.93 56.49 60.06 52.94 15.04 49.09 (±0.36)

TP 16.56 16.80 15.65 7.28 15.60 14.38 (±0.14) 5.46 4.81 5.51 2.77 7.19 5.15 (±0.07)
LTE 83.93 82.55 81.34 83.97 73.09 80.98 (±1.36) 64.51 56.26 64.80 80.85 76.52 68.59 (±0.60)

RECIPE 87.00 76.81 83.09 86.95 87.03 84.18 (±0.80) 62.00 56.84 61.50 85.37 82.07 69.56 (±0.31)
LEMoE 30.80 25.75 24.32 71.45 46.23 39.71 (±0.23) 67.97 61.07 58.16 48.48 44.06 55.95 (±0.36)
LiveEdit 92.93 90.16 84.30 100.00 96.43 92.76 (±0.20) 92.22 83.97 82.75 100.00 100.00 91.79 (±0.55)

BLIP2-OPT
(2.7B)

1

FT-L 52.86 48.80 32.94 98.24 94.27 65.42 (±0.69) 54.31 54.27 54.08 98.40 94.37 71.09 (±1.05)
FT-M 91.70 87.24 33.30 100.00 85.22 79.49 (±0.72) 92.64 80.97 63.62 100.00 83.02 84.05 (±0.70)

MEND 93.13 92.76 93.07 92.00 75.81 89.35 (±0.93) 94.91 93.81 93.84 94.98 86.54 92.82 (±0.82)
SERAC 88.39 84.50 84.25 85.82 26.00 73.79 (±1.01) 87.95 84.67 85.20 68.10 17.75 68.73 (±0.97)

TP 70.14 65.80 53.05 98.11 85.33 74.49 (±0.38) 50.98 49.47 50.88 94.76 78.57 64.93 (±1.02)
LTE 95.74 93.86 86.90 97.93 87.97 92.48 (±0.70) 94.13 91.93 92.23 93.89 92.27 92.89 (±1.01)

RECIPE 89.42 86.24 87.53 99.87 89.16 90.45 (±1.46) 92.38 89.74 89.17 97.13 94.46 92.58 (±1.16)
LEMoE 93.56 92.23 91.40 98.50 85.21 92.18 (±0.73) 94.59 93.14 92.37 94.53 61.53 87.23 (±0.34)
LiveEdit 96.67 94.20 93.82 100.00 100.00 96.94 (±1.32) 98.77 98.08 94.89 100.00 100.00 98.35 (±1.58)

1000

FT-L 45.10 34.62 35.42 48.42 41.24 40.96 (±0.29) 55.39 54.34 53.87 50.80 54.00 53.68 (±0.80)
FT-M 40.40 31.46 27.85 100.00 27.44 45.43 (±0.68) 47.03 49.68 46.99 100.00 41.41 57.02 (±0.13)

MEND 15.84 14.35 17.73 91.74 70.17 41.97 (±0.12) 37.22 38.03 37.19 91.49 84.10 57.61 (±0.58)
SERAC 83.35 70.80 80.32 67.66 13.13 63.05 (±0.87) 53.58 45.78 52.42 56.81 16.90 45.10 (±0.38)

TP 20.63 15.09 18.41 8.65 8.25 14.21 (±0.18) 24.36 24.21 24.25 16.37 19.96 21.83 (±0.14)
LTE 89.32 82.82 81.51 94.86 69.83 83.67 (±1.05) 61.67 51.05 61.60 94.78 90.94 72.01 (±0.66)

RECIPE 84.99 74.20 82.04 96.82 87.73 85.16 (±1.32) 54.64 46.54 54.10 94.60 96.93 69.37 (±1.04)
LEMoE 19.73 17.34 18.22 72.01 31.06 31.67 (±0.14) 34.74 33.43 32.05 55.55 50.04 41.16 (±0.58)
LiveEdit 94.42 91.98 84.65 100.00 97.38 93.69 (±0.67) 97.00 91.92 87.53 100.00 100.00 95.29 (±1.48)

Table 1. Partial results of lifelong edit performance for BLIP2-OPT and LLaVA-V1.5 on the E-VQA and VLKEB datasets. Due to space
limitations, please refer to Appendix 8.1 for the complete results, including those for the E-IC dataset and the MiniGPT-4 model. “Rel.”,
“T/M-Gen.” and “T/M-Loc.” stand for reliability, text/modal generality, and text/modal locality, respectively. “# Edit” indicates the number
of edits. The t-tests demonstrate our improvements are statistically significant with p < 0.05 level.

formance, both dm and r have substantial effects. Increas-
ing one while keeping the other fixed improves edit per-
formance, though the improvement gradually becomes flat.
Additionally, combinations along the diagonal show gener-
ally consistent performance. Regarding model scale, dm
predominantly influences variation, while r has minimal
impact. Based on this analysis, the optimal configuration
strategy is to select an appropriate dm and maximize r as
much as possible. However, since r linearly controls the
growth rate of the expert repository, specific choices should
also consider the memory needed to store the expert repos-
itory. Additionally, we expand the dimension control pa-
rameter k for feature extraction, as shown in Figure 4. In-
creasing k enhances the feature extraction capability, but an
excessively high k may introduce noise, leading to incorrect
matches, such as reduced modal locality.
The Attached Layer of LiveEdit: Figure 5 shows the im-

pact of the layer attached by LiveEdit on edit performance.
It can be seen that as the layer depth increases, edit per-
formance improves, reaching a peak at 21 layers. After
this point, edit performance slightly declines. We speculate
that transformers typically perform semantic understand-
ing in the early layers and response generation in the later
layers [17, 24, 59]. Attaching to an earlier layer prevents
LiveEdit from leveraging VLLM’s semantic understanding
capabilities to enhance the feature extraction process. For
too deep layers, VLLM has largely stabilized the predictive
tendencies of the response, making it more challenging for
LiveEdit to adapt. The above results also align with the at-
tribution conclusions of [24].

5.4. Ablation Study
Table 2 presents the ablation results for LiveEdit, where
1000 edits are applied to BLIP2 on the E-VQA dataset.
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Figure 4. The dimension control parameter k for feature extrac-
tion.
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Figure 5. Impact of LiveEdit attached layer index le. Results of
1,000 edits for BLIP2 on E-VQA dataset are reported.

Settings Rel. T-Gen. M-Gen. T-Loc. M-Loc. Average

N/A 20.57 19.03 14.17 100.00 100.00 50.75

LiveEdit 94.42 91.98 84.65 100.00 97.38 93.69
- ℓsr1 87.93 83.77 73.40 100.00 76.93 84.41
- ℓsr2 89.21 85.46 77.34 100.00 91.69 88.74
- SR 88.92 81.49 70.94 100.00 75.66 83.40
HR* 93.60 88.50 80.37 100.00 84.77 89.45

Table 2. Ablation study of LiveEdit.

The removal of soft routing (- SR, which directly aver-
ages experts) results in a significant performance drop for
LiveEdit. We can also observe that a large portion of this
loss originates from the removal of the absolute soft rout-
ing loss ℓsr1 , particularly impacting modal locality. This
is because all hard-routed experts are assigned a weight to
adapt the representation, even if they are irrelevant to the
input prompt, ensuring that the sum of adaptation strengths
equals 1. Similarly, removing the relative soft routing loss
ℓsr2 also leads to performance degradation, as the combined
absolute weights of multiple experts may exceed 1 during
testing, resulting in excessively high values. HR* modifies
the visual extraction that leverages prompt semantics by di-
rectly compressing the entire visual representation for hard
routing. This introduces additional visual noise, leading to
the selection of more irrelevant experts, which in turn re-

- Top1: The color of the cloth the person is wearing is red.
- Top2: The sport in the picture is football.
- Top3: The man is hitting the football with his head.

Soft routing weights

Hard routed top1 Hard filtered top2 Hard filtered top3Key Visual AreaInput  Image

Input Query: What is the color of the cloth the athlete is wearing?

00.4 0.20.8 0.61.0

- Top1: The red fruits in the picture are apples.
- Top2: The sauce in the bowl is made of tomato.
- Top3: The pattern on the baby's clothes is a bowl.

Soft routing weights

Input Query: What is the fruit in the picture? 

Hard routed top1 Hard filtered top2 Hard filtered top3

00.4 0.20.8 0.61.0

0.91
8.76e-12
7.69e-15

0.89
3.18e-11
5.09e-13

Key Visual AreaInput  Image

Figure 6. Instance analysis. The left side shows the model input to
LLaVa after editing with LiveEdit. The right side displays the top
3 experts based on hard routing. The heatmaps represent the visual
regions focused on when extracting key visual features. The bar
chart below shows fusion weights from soft routing. Please refer
to Appendix 8.2 for more analysis.

duces the efficacy of subsequent steps.

5.5. Instance Analysis

We conducted an instance analysis of LiveEdit, as shown in
Figure 6. We perform 100 edits on LLaVa, including sam-
ples partially related in visual context to the incoming input
samples. The figure reports the top 3 hard routing results
for two inputs, as well as the fusion weights these experts
received in soft routing. Using a perturbation-based attribu-
tion tool [24, 60], we visualize the visual regions focused
on for key visual feature extraction. It can be observed that
the highlighted regions are closely aligned with the prompt
semantics, which filters out irrelevant visual noise and ben-
efits hard routing. The bar chart indicates that experts un-
related to the input query receive very low fusion weights,
significantly benefiting the locality of edits.

6. Conclusion

In conclusion, we introduce LiveEdit to bridge the gap be-
tween LLM and VLLM editing, with an editing expert gen-
erator and a combination of hard/soft routers. The frame-
work successfully addresses the limitation of exiting editors
in the VLLM lifelong editing scenarios. Our benchmark
and extensive experiments confirm its superiority and high-
light the effectiveness of each component, which support
more accurate and adaptable VLLM editing in real-world
applications.
Acknowledgments. This work is supported by the National
Key R&D Program of China (2022ZD0120302).
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