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ABSTRACT
In this paper, we introduce HugNLP, a unified and comprehensive
library for natural language processing (NLP) with the prevalent
backend of Hugging Face Transformers, which is designed for NLP
researchers to easily utilize off-the-shelf algorithms and develop
novel methods with user-defined models and tasks in real-world
scenarios. HugNLP consists of a hierarchical structure including
models, processors and applications that unifies the learning pro-
cess of pre-trained language models (PLMs) on different NLP tasks.
Additionally, we present some featured NLP applications to show
the effectiveness of HugNLP, such as knowledge-enhanced PLMs,
universal information extraction, low-resource mining, and code
understanding and generation, etc. The source code will be released
on GitHub (https://github.com/HugAILab/HugNLP).

CCS CONCEPTS
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1 INTRODUCTION
Recently, pre-trained language models (PLMs) have become the
imperative infrastructure in natural language processing (NLP)
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tasks [5, 18, 43], which bring substantial improvements by a two-
stage training strategy: pre-train and fine-tune. Benefiting from
this strategy, a branch of methods arises to improve the models’
effectiveness, promoting NLP’s development in both academia and
industry [12, 16].

Yet, many existing approaches follow different patterns and code
architectures, it is not easy to obtain high-performing models and
develop them easily for researchers. To fill this gap, this paper
presents a unified and comprehensive open-source library to allow
researchers to develop and evaluate NLP models more efficiently
and effectively. We mainly utilize Hugging Face Transformers1
as the prevalent backend, which provides abundant backbones of
different scale-sizes of PLMs. Thanks to Hugging Face, we name
our framework as HugNLP to fully extend Hugging Face Trans-
formers into an NLP-style library. HugNLP consists of some well-
designed components, such as Models, Processors, and Applications.
Concretely, 1) for Models, we provide some popular PLMs, includ-
ing BERT [5], RoBERTa [18], DeBERTa [9], GPT-2 [25] and T5 [26],
etc. Based on these PLMs, we develop task-specific modules for
pre-training (e.g., masked language modeling (MLM), casual lan-
guage modeling (CLM)) and fine-tuning (e.g., sequence classifying
and matching, span extraction, text generation). We also provide
some prompt-based techniques for PLMs, including PET [27], P-
tuning [17], Prefix-tuning [15], Adapter-tuning [10], In-context
learning [6] and Chain-of-Thought prompting [40]. 2) In Processors,
we develop relevant data processing tools2 for some commonly
used benchmark datasets and business-specific corpora. 3) In Ap-
plications, we present core capacities to support the upper-layer
components. Specifically, our proposed KP-PLM [33] enables plug-
and-play knowledge injection inmodel pre-training and fine-tuning
via converting structure knowledge into unified language prompts.
We also develop some products: 1) HugIE: a unified information
extraction framework, and 2)HugChat3: a ChatGPT-like training
pipeline for large language models (LLMs). HugNLP also integrates
some novel algorithms and applications, such as uncertainty-aware
self-training [21, 34], code understanding and generation [7, 36, 38].

Overall, HugNLP has the following features.

1https://HuggingFace.co/.
2The Processor is related to the task format. For example, we tailor some benchmark
datasets, such as Chinese CLUE [42], GLUE [31], etc.
3HugChat: Small ChatGPT-like Models via Generative Instruction-tuning
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Figure 1: An overview of the HugNLP library.

• HugNLP offers a range of pre-built components and mod-
ules (i.e.,Models, Processors, Applications) that can be used to
speed up the development process and simplify the imple-
mentation of complex NLP models and tasks.

• HugNLP can also be easily integrated into existing work-
flows and customized to meet the specific needs of individual
researchers or projects, ensuring the framework’s scalability
and flexibility.

• HugNLP is equipped with some novel core capacities, such
as knowledge-enhanced pre-training, prompt-based fine-
tuning, instruction and in-context learning, uncertainty-
aware self-training, and parameter-efficient learning. We
thus develop some featured products or solutions on real-
world application scenarios, e.g., HugIE, and HugChat.

• HugNLP is based on PyTorch and Hugging Face, which are
widely used tools and platforms in the NLP community, al-
lowing researchers to leverage their strengths and apply
them to both academics and industry scenarios [13, 24, 32,
41].

2 HUGNLP
2.1 Overview
HugNLP is an open-sourced library with a hierarchical structure.
As shown in Figure 1. The backend is the prevalent Hugging Face
Transformers platform that provides multiple transformer-based
models and task trainers. In other words, HugNLP can be seen as
a customized NLP platform for efficient training and evaluation.
In addition, HugNLP integrates MLFlow, which is a novel tracking
callback toolkit for model training and experiment result analysis.
Users can simply add configure parameters tracking_uri in
the training script, and observe the tracking records after running
MLFlow server.

HugNLP consists of three key components, including Models,
Processors, and Applications. Users can directly select the pre-built
settings for some common tasks, or develop special user-defined
training solutions in real-world application scenarios. We will pro-
vide a detailed description in the following sections.

from tools.model_utils.parameter_freeze import
ParameterFreeze

freezer = ParameterFreeze()
class BertForSequenceClassification(BertPreTrained

Model):
def __init__(self, config):

super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.bert = BertModel(config)
# freeze the backbone
if self.config.use_freezing:

self.bert = freezer.freeze_lm(self.bert)
self.classifier = torch.nn.Linear(

config.hidden_size, config.num_labels)
self.init_weights()

Code 1: A model case of parameter freezing.

2.2 Library Architecture
Models. In Models, we provide some popular transformer-based

models as backbones, such as BERT, RoBERTa, GPT-2, etc. We
also release our pre-built KP-PLM, a novel knowledge-enhanced
pre-training model which leverages knowledge prompting [33] par-
adigm to inject factual knowledge and can be easily used for ar-
bitrary PLMs. Apart from basic PLMs, we also implement some
task-specific models, involving sequence classification, matching,
labeling, span extraction, multi-choice, and text generation. Partic-
ularly, we develop standard fine-tuning (based on CLS Head 4) and
prompt-tuning models 5 that enable PLM tuning on classification
tasks. For few-shot learning settings, HugNLP provides a prototyp-
ical network [28] in both few-shot text classification and named
entity recognition (NER).

In addition, we also incorporate some plug-and-play utils in
HugNLP. 1) Parameter Freezing. If we want to perform parameter-
efficient learning [20], which aims to freeze some parameters in
PLMs to improve the training efficiency, we can set the configure
use_freezing and freeze the backbone. A use case is shown
in Code 1. 2) Uncertainty Estimation aims to calculate the model
certainty when in semi-supervised learning [21]. 3) We also design
Prediction Calibration, which can be used to further improve the ac-
curacy by calibrating the distribution and alleviating the semantics
bias problem [46].

Processors. HugNLP aims to load the dataset and process the task
examples in a pipeline, containing sentence tokenization, sampling,
and tensor generation. Specifically, users can directly obtain the
data through load_dataset, which can directly download it
from the Internet or load it from the local disk. For different tasks,
users should define a task-specific data collator, which aims to
transform the original examples into model input tensor features.

Applications. It provides rich modules for users to build real-
world applications and products by selecting among an array of
settings from Models and Processors. More details are shown in
Section 2.4.

4For standard fine-tuning, we need to add a classification head (CLS head) on the PLM
and obtain the probability distribution of each class. The parameters of the CLS head
are randomly initialized.
5Different from fine-tuning, prompt-tuning can reuse the pre-training objective (e.g.,
MLM, CLM) to perform classifying on the masked token. It requires a task-orient
template (e.g., “It was [MASK].”) and the label word mapping (e.g., “great” maps to
“positive” class in sentiment analysis task.)
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python3 hugnlp_runner.py \
--model_name_or_path=$path \
--data_dir=$data_path \
--output_dir=./outputs/glue/$glue_task \
--seed=42 \
--max_seq_length=$len \
--do_train \
--do_eval \
--gradient_accumulation_steps=1 \
--evaluation_strategy=steps \
--learning_rate=1e-5 \
--num_train_epochs=10 \
--task_name=clue \
--task_type=head_cls \
--model_type=bert \
--user_defined="data_name=rte" \

Code 2: An application case of sequence classification for
GLUE benchmark.

2.3 Core Capacities
To further improve the effectiveness of HugNLP, we design multiple
core capacities in the following.

Knowledge-enhanced Pre-training. Conventional pre-trainingmeth-
ods lack factual knowledge [22, 45]. To deal with this issue, we
present KP-PLM [33] with a novel knowledge prompting paradigm
for knowledge-enhanced pre-training. Specifically, we construct a
knowledge sub-graph for each input text by recognizing entities
and aligning with the knowledge base (e.g., Wikidata5M 6) and
decompose this sub-graph into multiple relation paths, which can
be directly transformed into language prompts. KP-PLM can be
easily applied to other PLMs without introducing extra parameters
as knowledge encoders.

Prompt-based Fine-tuning. Prompt-based fine-tuning aims to
reuse the pre-training objective (e.g., MLM) and utilizes a well-
designed template and verbalizer to make predictions, which has
achieved great success in low-resource settings. We integrate some
novel approaches into HugNLP, such as PET [27], P-tuning [17], etc.
We also build some parameter-efficient learning to make it more
effective when training LLMs.

Instruction-tuning and In-Context Learning. Instruction-tuning
[39] and in-context learning [2] enable few/zero-shot learning
without parameter update, which aims to concatenate the task-
aware instructions or example-based demonstrations to prompt
GPT-style causal language models to generate reliable responses.
These approaches are mainly used in recent LLMs, such as Chat-
GPT7, LLaMA, and LangChain8. So, all the NLP tasks can be unified
into the same format and can substantially improve the models’
generalization. Inspired by this idea, we also extend it into two
other paradigms: 1) extractive-style paradigm: we unify various
NLP tasks into span extraction, which is the same as extractive
question answering [14], and 2) inference-style paradigm: all the
tasks can be viewed as natural language inference to match the
relations between inputs and outputs [35].

Uncertainty-aware Self-training. Self-training can address the la-
beled data scarcity issue by leveraging the large-scale unlabeled data
in addition to labeled data, which is one of the mature paradigms

6https://deepgraphlearning.github.io/project/wikidata5m.
7https://chat.openai.com/.
8https://langchain.com/.

Figure 2: An application case of HugIE.

PLMs AFQMC CMNLI CSL IFLYTEK OCNLI TNEWS WSC Avg.

BERT-base 72.30 75.91 80.83 60.11 78.52 57.18 75.89 72.04
BERT-large 72.91 77.62 81.30 60.77 78.71 57.77 78.28 72.60
RoBERTa-base 73.33 81.05 80.17 60.81 80.88 57.69 86.74 74.10
RoBERTa-large 74.66 80.50 82.60 61.37 82.19 58.54 87.53 75.33
MacBERT-base 74.23 80.65 81.63 61.14 80.65 57.65 80.26 73.80
MacBERT-large 74.66 81.19 83.70 62.05 81.92 59.03 86.74 75.46

Table 1: Accuracy (%) of different tasks in the CLUE bench-
mark.

in semi-supervised learning [1, 3, 23]. However, the standard self-
training may generate too many noises, inevitably degrading the
model performance due to the confirmation bias. Thus, we present
uncertainty-aware self-training. Specifically, we train a teacher
model on few-shot labeled data, and then use Monte Carlo (MC)
dropout technique in Bayesian neural network (BNN) [8] to approx-
imate the model certainty, and judiciously select the examples that
have a higher model certainty of the teacher.

Parameter-efficient Learning. To improve the training efficiency
of HugNLP, we also implement parameter-efficient learning, which
aims to freeze some parameters in the backbone so that we only tune
a few parameters during model training. We develop some novel
parameter-efficient learning approaches, such as Prefix-tuning [15],
Adapter-tuning [10], BitFit [44] and LoRA [11], etc.

2.4 Featured Applications
Benchmark Tuning. We develop the training application for some

popular benchmarks, such as Chinese CLUE and GLUE. We use
both standard fine-tuning and prompt-based fine-tuning paradigms
to tune PLMs over these benchmarks. The case of this application
is shown in Code 2.

Universal Information Extraction based on Extractive Instruction.
We develop HugIE, a novel universal information extraction toolkit
based on HugNLP. Specifically, we collect multiple Chinese NER
and event extraction datasets from ModelScope 9 and QianYan 10.
Then, we use the core capacity of extractive-style instruction with
a global pointer [29] to pre-train a universal information extraction
model. We also upload the trained model to Hugging Face 11. An
example of using HugIE is shown in Figure 2.

Low-resource Tuning for PLMs. For low-resource settings, we have
integrated two core capacities of prompt-tuning and uncertainty-
aware self-training to further improve the performance with limited
labeled data. In other words, prompt-tuning can fully reuse the
9https://modelscope.cn/datasets
10https://www.luge.ai
11https://HuggingFace.co/wjn1996/wjn1996-hugnlp-hugie-large-zh.
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Figure 3: The development workflow of HugNLP.

Paradigms Methods SST-2 SST-5 MR CR MPQA Subj TREC CoLA Avg.(acc) (acc) (acc) (acc) (acc) (acc) (acc) (matt.)

PT-Zero RoBERTa 82.57 29.46 65.10 82.15 49.90 69.20 20.80 -4.89 49.29
KP-PLM 84.15 30.67 64.15 81.60 53.80 68.70 24.80 -2.99 50.61

PT-Few RoBERTa 86.35±1.3 36.79±2.0 83.35±0.9 88.85±1.4 66.40±1.9 89.25±2.6 76.80±5.0 6.61±6.9 66.80
KP-PLM 90.71±1.0 44.21±2.9 82.00±1.5 85.35±0.4 67.30±1.2 91.45±0.4 81.00±3.3 24.28±11.3 70.79

FT-Full RoBERTa 94.90 56.90 89.60 88.80 86.30 96.50 97.10 63.90 84.25
KP-PLM 95.30 57.63 89.20 89.10 87.40 96.20 97.10 64.87 84.60

Table 2: The comparison between KP-PLM and RoBERTa-base over multiple natural language understanding (NLU) tasks in
terms of acc/f1/matt. (%) and standard deviation with three paradigms, such as zero-shot prompt-tuning (PT-Zero), few-shot
prompt-tuning (PT-Few), and full-data fine-tuning (FT-Full).

prior knowledge derived from PLMs to achieve high grades with
few examples, while self-training can augment unlabeled data to
enhance effectiveness.

Code Understanding and Generation. In addition to traditional
NLP tasks, we also consider the scenario of code understanding
and generation, such as clone detection, defect detection, and code
summarization [19].

2.5 Development Workflow
HugNLP is easy to use and develop. We draw a workflow in Figure 3
to show how to develop a new running task. It consists of five main
steps, including library installation, data preparation, processor se-
lection or design, model selection or design, and application design.
This illustrates that HugNLP can simplify the implementation of
complex NLP models and tasks.

3 EXPERIMENTAL PERFORMANCES
In this section, we empirically examine the effectiveness and effi-
ciency of the HugNLP toolkit on some public datasets.

3.1 Performance of Benchmarks
To validate the effectiveness of HugNLP on both fine-tuning and
prompt-tuning, we choose Chinese CLUE [42] and GLUE bench-
marks [31]. For Chinese CLUE, we choose different sizes of BERT,
RoBERTa and MacBERT [4] and report the accuracy over the de-
velopment sets of each task in Tables 1. For GLUE, we perform full-
resource fine-tuning (FT-full), few-shot prompt-tuning (PT-few),
and zero-shot prompt-tuning (PT-zero) based on our proposed KP-
PLM. We select RoBERTa as the strong baseline and report the
accuracy results with standard deviation in Table 2. The obtained
comparable performance has shown the reliability of HugNLP in

Methods RTE CB AGNews Avg.

Few Labeled Data (16-shot)
Fine-Tuning 54.4±3.9 74.5±2.6 88.9±2.7 72.60

Few Labeled Data (16-shot) + Unlabeled Data
UST 55.6±2.6 76.0±3.1 89.3±3.5 73.63
CEST 57.0±1.9 78.1±2.7 88.5±2.2 74.53
LiST 60.8±2.5 79.7±2.9 90.3±2.5 76.93

Table 3: Accuracy (%) of uncertain-aware self-training with
only 16 labeled examples per class.

both full and low-resource scenarios, which achieves similar per-
formance compared to other open-source frameworks and their
original implementations [32].

3.2 Effectiveness of Self-training
Weend this sectionwith an additional validation on the self-training.
We choose some recent methods (using uncertainty estimation)
to evaluate the implementations of HugNLP, including UST [21],
CEST [30], and LiST [37]. Results in Table 3 show that self-training
can make substantial improvements in low-resource scenarios.

4 CONCLUSION
In this paper, we introduce HugNLP, a unified and comprehensive
library based on PyTorch and Hugging Face, allowing researchers
to apply it to different academics and industry scenarios. HugNLP
consists of three key components (i.e., Processors, Models and Appli-
cations) and multiple pre-built core capacities and plug-and-play
utils. Finally, we perform some evaluation of different aspects of
applications, and the results demonstrate its efficiency and effec-
tiveness. We think HugNLP can promote research and development
for NLP applications.
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