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ABSTRACT
Sales forecasting during the launch of new products has always
been a challenging task, due to the lack of historical sales data.
The dynamic market environment and consumer preferences also
increase the uncertainty of predictions. Large chains face even
greater difficulties due to their extensive presence across various
regions. Traditional time-series forecasting methods usually rely
on statistical models and empirical judgments, which are difficult
to handle large, variable data and often fail to achieve satisfactory
performance for new products. In this paper, we propose a Multi-
granularity AdversaRial Learning framework (MARL) to leverage
knowledge from old products and improve the quality of invariant
representations for more accurate sales predictions. To evaluate our
proposed method, we conducted extensive experiments on both
a real-world dataset from a prominent international Café chain
and a public dataset. The results demonstrated that our method is
more effective than the existing state-of-the-art baselines for new
product sales forecasting.
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1 INTRODUCTION
Forecasting sales for newly launched products has always been a
difficult task, primarily due to the absence of historical sales data,
together with the dynamic nature of the market environment and
consumer preferences. Often, the accuracy of the sales forecasting
and the company’s performance are highly correlated [3]. When
the forecast deviates significantly, it can lead to the problem of
out-of-stock or over-stocking, which can have a severe impact
on the company’s operations [19]. Although forecasting sales of
new products presents challenges for companies, improving the
accuracy of such predictions can facilitate better risk management
and inventory control for new products at each store [12].

Sales forecasting for new products presents a fundamental chal-
lenge due to the lack of historical sales data. As a result, forecasting
the future sales of new products often requires analyzing historical
sales data of old products [12]. Nevertheless, significant differences
in sales patterns between old and new products can make it difficult
to predict the sales of new products accurately. In addition, some
large retail chains have many stores and sales may vary consider-
ably, which further complicates sales forecasting across stores.

Prior research [2, 23] has attempted to address the data scarcity
issue for new products by identifying old products that closely
resemble the new product. However, measuring product similarity
can be difficult, and a sufficiently similar old product may not exist.
Some works [6, 22, 26] utilize data from all old products to train
models and enhance sales forecasting by fusing multi-modal infor-
mation, such as images and texts. However, this type of approach
can be influenced by variations in sales patterns between products.
Recently, few works [13] address this issue by transfer learning; yet
still do not consider the different sales patterns between products. In
addition, the issue of sales variation between stores has not received
sufficient attention for new product sales forecasting. Most existing
methods [6, 7, 22, 26] focus on individual stores or groups of stores,
each sharing a model. However, they may prove ineffective when
there are either too many groups, resulting in a cumbersome num-
ber of models, or when the number of groups is small, allowing for
significant discrepancies between stores within the same group.

In this paper, we propose a Multi-granularity AdversaRial Learn-
ing (MARL) framework that addresses the issues of data scarcity for
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new products and sales variation between both products and stores.
MARL leverages multi-modal information to transfer knowledge
from historical products across different stores and improves the
quality of invariant temporal representations for more accurate
predictions of new product sales. Despite variations in product and
store sales, inherent transferable patterns can be captured more
effectively by aligning the feature distributions at different granu-
larities, including between both old and new products, as well as
across different stores. Extensive experiments have been conducted
on a real-world dataset from a prominent international Café chain
and a public dataset. Results demonstrate that MARL is superior to
current state-of-the-art baselines in new product sales forecasting.

2 RELATEDWORK
New Product Sales Forecasting. Sales forecasting for new prod-
ucts without historical data is a challenge for many companies [12].
Some works [2, 23] have studied methods based on finding similar
products. These methods require a distance measure to compute
the similarities between two products. However, not all product fea-
tures are suitable for the metric, such as product images. Moreover,
the weight of each product feature is not necessarily the same. As
it is difficult to determine the appropriate weights, similar products
predicted by these methods may not be useful for sales forecasting.
Singh et al. [21] directly leverage the history of old product sales to
train predictionmodels. Vashishtha et al. [26] add the product age to
input features to enhance model performance. Other works [6, 22]
utilize data from other modals to enhance the prediction by multi-
modal fusion methods. Few works [13] focus on transfer learning;
yet they do not consider variations in product and store sales.
Domain Adversarial Transfer Learning. Inspired by GAN [9],
DANN [8] learns domain-adversarial representations by a min-
max optimization method. Discriminator in DANN is used to judge
whether features are from the source or the target domain, and
feature extractor is used to confuse discriminator. There are many
works based on DANN, most of which are for classification tasks ,
such as [4, 25, 27, 29, 30]. There are also someworks based on regres-
sion tasks, such as [10, 11] for two domains. Yet, there often exist
multiple domains in new product sales forecasting, making these
methods difficult to performwell. Themethod [17] directly confuses
multiple domains by making discriminator and feature extractor
have exactly the opposite optimization goals. The work [15] treats
all domains as the same and then aligns themwith a pre-defined dis-
tribution. Some works [1, 20] address the multiple domain problem
by creating additional discriminators and feature extractors.

3 METHODOLOGY
3.1 Problem Setup
Our proposed MARL aims to predict the sales of new products,
which is trained with the historical sales data of old products, prod-
uct attributes, store attributes and other external information. De-
note the number of old products as 𝐾𝑠 . Old products are treated
as source domains, represented as 𝐷𝑠 = {(𝑥𝑖𝑠 , 𝑦𝑖𝑠 , 𝑑𝑖𝑠 )}

𝑁𝑠

𝑖=1, where 𝑁𝑠
and 𝑑𝑖𝑠 represent the total number of data instances of all source
domains and the domain label to which the corresponding data
instance 𝑥𝑖𝑠 belongs, respectively. 𝑥𝑖𝑠 includes various types of in-
puts such as product image, product text attributes, store attributes
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Figure 1: The model architecture of MARL at the 𝑡-th time
point. 𝑇 𝐼 is the time-invariant raw feature extractor (for en-
coding product images and texts, and store features). 𝑇𝑉 is
the time-variant feature extractor (for encoding external
temporal information) and applying soft attention [28] to
image features. 𝐹 is the domain-invariant feature learner,
which incorporates two regularizers: 𝑅𝑃 (product-level fea-
ture invariant regularizer) and 𝑅𝑆 (store-level feature invari-
ant regularizer). 𝑃 is the final sales predictor. In the figure,
“FC” refers to the fully connected layer.

and external temporal information. As sales forecasting is usually
placed in a time series setting, both external information in 𝑥𝑖𝑠 and
𝑦𝑖𝑠 = {𝑦𝑖,𝑡𝑠 }𝑁

𝑖
𝑠

𝑡=1 are time series with the length of 𝑁 𝑖𝑠 , where𝑦
𝑖,𝑡
𝑠 is the

sale on the day 𝑡 . New products are treated as target domains and
their data structures are identical to those of old products, except
for the absence of historical sales data. During training, sales and
domain labels are the outputs. Only predicted sales are treated as
output during inference.

3.2 Raw Feature Extraction
As shown in Figure 1, we use 𝑇 𝐼 and 𝑇𝑉 to process and extract
the raw features. 𝑇 𝐼 is the time-invariant raw feature extractor,
responsible for encoding the time-invariant raw features. For prod-
uct texts, the pre-trained BERT [5] is leveraged to transform them
into feature vectors. For product images, we use Inception V3 [24]
to extract the features. 𝑇𝑉 is the time-variant feature extractor,
responsible for encoding time-variant raw features and applying
soft attention [28] to image features output by 𝑇 𝐼 to obtain the
weighted sum of each channel.

3.3 Multi-Granularity Domain-Invariant
Representation Learning

After raw features are extracted by 𝑇 𝐼 and 𝑇𝑉 , we employ soft
attention [28] to fuse image features, text features and external
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features, which are fed into the left part of 𝐹 (for product-related
feature learning). Meanwhile, store features and external features
are fused and fed into the right part of 𝐹 (for store-related feature
learning). Here, 𝐹 is the domain-invariant feature learner, which is
able to learn domain-invariant representations on both products
and stores. Below we will introduce the techniques in detail.
Sales Forecasting with Adversarial Learning. We leverage do-
main adversarial learning to achieve product knowledge transfer
and learn invariant representations for sales forecasting. This pro-
cess is similar to DANN [8], which allows feature learner 𝐹 and
domain discriminator 𝐷 to have the opposite optimization goals.
Previously, DANN solves the problem with only one source and one
target domain, hence its domain discriminator is a binary classifier.
In MARL, we incorporate 𝑅𝑃 (the product-level feature invariant
regularizer) into 𝐹 (i.e., a feed forward neural network consisting
of four fully connected layers with ReLU activations). The domain
adversarial loss of 𝑅𝑃 is as follows:

𝐿𝑅𝑃 = − 1∑𝑁𝑠

𝑗=1 𝑁
𝑗
𝑠

𝑁𝑠∑︁
𝑖=1

𝑁 𝑖
𝑠∑︁

𝑡=1

𝐾𝑠∑︁
𝑘=1

1[𝑘=𝑑𝑖𝑠 ] log𝑝
𝑡,𝑘
𝑖
, (1)

where 𝑝𝑡,𝑘
𝑖

represents the probability that the domain label at the
time point 𝑡 of the 𝑖-th time series in source domains is predicted
to be 𝑘 . The loss function 𝐿𝐹_𝑎𝑑𝑣𝑝 of 𝐹 with respect to the domain
adversarial loss is −𝐿𝑅𝑃 . With 𝑅𝑃 , the model 𝐹 should be confused
about the domain labels of different old products, and thus is able
to extract the domain-invariant features of each product.
Improved Domain Adversarial Learning. The large number of
domains (i.e, old products) may negatively affect the performance
of knowledge transfer with the vanilla domain adversarial loss.
This observation is also similar to [20]. Here, we improve the loss
𝐿𝐹_𝑎𝑑𝑣𝑝 without additional feature extractors and discriminators.
The optimization goal of 𝐿𝐹_𝑎𝑑𝑣𝑝 is to smooth the output probabili-
ties of samples belonging to each domain. That is, to make the 𝐾𝑠
probabilities output by the 𝑅𝑃 regularization output head as close
to 1

𝐾𝑠
as possible. Thus, the loss 𝐿𝐹_𝑎𝑑𝑣𝑝 is re-written as follows:

𝐿𝐹_𝑎𝑑𝑣𝑝 = − 1
𝐾𝑠

∑𝑁𝑠

𝑗=1 𝑁
𝑗
𝑠

𝑁𝑠∑︁
𝑖=1

𝑁 𝑖
𝑠∑︁

𝑡=1

𝐾𝑠∑︁
𝑘=1

|𝑝𝑡,𝑘
𝑖

− 1
𝐾𝑠

|. (2)

Minimizing 𝐿𝐹_𝑎𝑑𝑣𝑝 enables the feature learner 𝐹 to have the ability
to learn domain-invariant features across multiple domains.
Multi-Granularity Knowledge Transfer. In the literature, many
works [6, 7, 22, 26] for sales forecasting often ignore the store
information or focus on training one model for a group of very
similar stores. We observe that although there are some differ-
ences between stores, there are actually things they can learn from
each other, such as the fact that sales are likely to drop when they
encounter unusual weather conditions. Thus, knowledge can be
transferred across stores, which is similar to the case of products.
As shown in Figure 1, we further add 𝑅𝑆 (store-level feature invari-
ant regularizer) to 𝐹 to incorporate multi-granularity knowledge
transfer. The loss function 𝐿𝑅𝑆 of 𝑅𝑆 has the same form as 𝐿𝑅𝑃 ; and
the loss function 𝐿𝐹_𝑎𝑑𝑣𝑠 also has the same form as 𝐿𝐹_𝑎𝑑𝑣𝑝 . At
this time, the domain-invariant representations on both products
and stores can be obtained. Next, we concatenate the two types of
features and input them into 𝑃 to forecast the sales.

3.4 Selective Feature Sharing by Store Groups
For sales forecasting, as the size of the training set for each store
is relatively small, in order to avoid the data hungry problem, we
naturally divide all the stores into 𝐽 groups according to the store
type (store type is related to location, such as residential area and
transportation hub). Each store group has its own output prediction
head. As shown in Figure 1, in 𝑃 , there are two branches after the
GRU block. The left FC represents product-related features, which
is shared by all the data samples. The right FC considers the store
group granularity, where each store group has a separate FC. For an
input instance, based on its store group, we selectively concatenate
the outputs of the shared product-based and its own store group-
based FC blocks. After that, the corresponding FC (i.e., the final
output layer) is employed to forecast the sales. The Mean Squared
Error (MSE) loss function of 𝑃 is as follows:

𝐿𝑚𝑠𝑒 =
1∑𝑁𝑠

𝑗=1 𝑁
𝑗
𝑠

𝑁𝑠∑︁
𝑖=1

𝑁 𝑖
𝑠∑︁

𝑡=1
(𝑦𝑖,𝑡𝑠 − 𝑦𝑖,𝑡𝑠 )2, (3)

where 𝑦𝑖,𝑡𝑠 represents the sales forecast value at the time point 𝑡 of
the 𝑖-th time series in source domains.

3.5 Overall Loss Function
The loss functions of 𝑃 , 𝑅𝑃 and 𝑅𝑆 are 𝐿𝑚𝑠𝑒 , 𝐿𝑅𝑃 and 𝐿𝑅𝑆 , respec-
tively. The overall loss function of MARL is as follows:

𝐿𝐹 = 𝐿𝑚𝑠𝑒 + 𝜆1𝐿𝐹_𝑎𝑑𝑣𝑝 + 𝜆2𝐿𝐹_𝑎𝑑𝑣𝑠 , (4)

where the hyper-parameters 𝜆1 and 𝜆2 control the trade-off between
product sales forecasting and adversarial domain discrimination.

4 EXPERIMENTS
4.1 Setup
Datasets. We use two datasets: (1) Café. This is a real-world, in-
house dataset from an prominent international Café chain and is
collected from 2018 to 2021. It includes product images and texts,
as well as some external temporal information and store attributes.
We select two categories of products, i.e., Cake and Sandwich, to
conduct experiments separately. The number of products in both
categories is both around thirty. In the dataset, there are 110 stores
for experiments, divided into five types. (2) VISUELLE [22]. This is
a public dataset from a fast fashion company named Nunalie during
2016 to 2019. It includes 5577 clothing products. Each product is
associated with image and text information, sales in 12 weeks after
launch, some external information and three Google Trends data
describing the category, color and fabric popularity.
Baselines. We compare our method with the following baselines:
(1) Classical deep learning models. We select MLP and LSTM
as baselines, and use the architectures in [21]. Because MARL uses
GRU, we also take it as the baseline with the similar architecture to
LSTM. (2) Attention based Multi-modal RNNs [6]. The Concat
Multi-modal RNN, Residual Multi-modal RNN and Cross-Attention
RNN are included. They use the encoder-decoder structure. The
encoder is responsible for fusing multi-modal features with atten-
tion, and the decoder is based on RNN to forecast sales. (3) GTM-
Transformer [22]. This is the state-of-the-art transformer-based
model based on the fusion of multi-modal features.

3830



CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Zhenzhen Chu et al.

Table 1: Comparison of results over VISUELLE and Café.

Method
Café VISUELLECake Sandwich

wMAPE MAE wMAPE MAE wMAPE MAE
MLP 73.22 2.58 95.62 2.77 70.55 31.70
LSTM 69.24 2.44 95.59 2.77 68.89 30.95
GRU 70.40 2.48 94.13 2.73 69.50 31.23

Concat Multi-modal RNN 69.95 2.46 89.20 2.59 68.68 30.86
Residual Multi-modal RNN 68.09 2.40 89.32 2.59 68.68 30.86

Cross-Attention RNN 67.73 2.39 89.30 2.59 65.93 29.62
GTM-Transformer 69.40 2.44 90.27 2.61 61.11 27.46

MARL 63.59 2.24 82.83 2.40 60.62 27.24
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Figure 2: Visualization of latent representations of products
and stores. (a) and (b) are the results of the products, and (c)
and (d) are the results of stores. (b) and (d) leverage feature
invariant regularizers, while (a) and (c) do not.

Metrics. We use mean absolute error (MAE) and weighted mean
absolute percentage error (wMAPE) [16] as evaluation metrics.
Implementation Details. For Café, we split the dataset into train-
ing/validation/testing sets in the ratio of 7:1:2 for Cake and Sand-
wich respectively. And we add Google Trends data for it. For VI-
SUELLE, because the original dataset is not split according to the
chronological order of product launch, we re-split it. The number of
products in training, validation, and testing sets are 4055, 178, and
442, respectively. Another important point is that there are no store
attributes in VISUELLE, so we replace such features in Café with
the external information of the fashion season. In VISUELLE, there
are over 4,000 products, which makes it obviously unreasonable
to transfer knowledge by the product granularity. So we treat the
product category as the domain. As there are no store attributes
suitable for applying separate output prediction headers, we do not
apply it of MARL in the implementation. Categorical features such
as color and fabric are processed with one-hot encoding. During
training, we employ the Adam optimizer [14] to optimize MARL,
and the feature invariant regularizers and the rest of the model will
be alternately optimized. We set both 𝜆1 and 𝜆2 in Eq.(4) to 0.1.

4.2 General Forecasting Performance
The experimental results are shown in Table 1. MLP has the worst
performance. LSTM and GRU have similar performance, but their
overall effect is lower than that of the attention-based multi-modal
RNNs, because the use of attention to fuse multi-modal features
has a better effect. Among the three attention-based RNNs, Cross-
Attention RNN has the best overall performance, which is consistent
with [6]. On VISUELLE, GTM-Transformer is better, but it does not
perform well on Café. This may be because the quality of Google
Trends data in Café is relatively low. MARL achieves the best results
over all datasets, especially over Sandwich of Café. Its wMAPE is
6.37% lower than the second-ranking model.

Table 2: Ablation study over VISUELLE and Café. FIR, SOPH
and FS represent feature invariant regularizers, separate out-
put prediction headers for each store group and fashion sea-
son, respectively.

Method Café VISUELLEFIR SOPH Cake Sandwich
Product Store or FS wMAPE MAE wMAPE MAE wMAPE MAE

✗ ✗ ✗ 69.78 2.46 88.91 2.58 62.38 28.03
✓ ✗ ✗ 67.85 2.39 86.80 2.52 61.00 27.41
✗ ✓ ✗ 68.50 2.41 87.47 2.54 61.59 27.67
✓ ✓ ✗ 67.25 2.37 86.06 2.50 60.62 27.24
✓ ✓ ✓ 63.59 2.24 82.83 2.40 - -

Table 3: Analysis of domain adversarial loss over Sandwich.

Adversarial Setting wMAPE MAE MMD
Product Store

None 88.91 2.58 0.69 0.34
CE 87.07 2.53 0.41 0.27

FIR (Ours) 86.06 2.50 0.36 0.06

4.3 Detailed Model Analysis
Ablation Study. The experimental results are shown in Table 2.
We can see that FIR are helpful and are more effective on Café than
VISUELLE. This is because VISUELLE has much many products,
each with very little data, and it does not have store attributes. We
can only leverage the product category and fashion season as the
basis for domain division rather than product and store. In addition,
the prediction effects have a large improvement after with SOPH.
Visualization. To obtain an intuitive understanding of feature
invariant regularizers on the feature extractor 𝐹 , we use t-SNE
to reduce the dimension of the latent representations. The visual-
ization of the training sets of Sandwich is shown in Figure 2. For
illustration, we randomly select two domains for product and store
parts. It can be seen that the overlap between the two domains is
higher after using feature invariant regularizers, which indicates
that they can achieve a better feature alignment effect.
Analysis of Domain Adversarial Loss. We compare the effect
of our domain adversarial loss with that of [17]. The results over
Sandwich without SOPH are shown in Table 3. Here, CE denotes
using the domain adversarial loss in [17] to replace the one in Eq. (2).
In addition, we use the maximum mean discrepancy (MMD) [18] to
measure the feature alignment ability. For products, our FIR method
is slightly better than CE, while for stores, our method is much
better than CE. This shows the superiority of our method.

5 CONCLUSION
In this paper, we propose a multi-granularity adversarial learning
framework for new product sales forecasting. It effectively learns
invariant representations formore accurate predictions of new prod-
uct sales. Experiments on both real-world and public datasets show
its effectiveness, outperforming existing state-of-the-art baselines.
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