
Optimal Linear Subspace Search: Learning to Construct Fast and
High-Quality Schedulers for Diffusion Models

Zhongjie Duan
East China Normal University

Shanghai, China
zjduan@stu.ecnu.edu.cn

Chengyu Wang
Alibaba Group

Hangzhou, China
chengyu.wcy@alibaba-inc.com

Cen Chen∗

East China Normal University
Shanghai, China

cenchen@dase.ecnu.edu.cn

Jun Huang
Alibaba Group

Hangzhou, China
huangjun.hj@alibaba-inc.com

Weining Qian
East China Normal University

Shanghai, China
wnqian@dase.ecnu.edu.cn

ABSTRACT

In recent years, diffusion models have become the most popular
and powerful methods in the field of image synthesis, even rivaling
human artists in artistic creativity. However, the key issue currently
limiting the application of diffusion models is its extremely slow
generation process. Although several methods were proposed to
speed up the generation process, there still exists a trade-off be-
tween efficiency and quality. In this paper, we first provide a detailed
theoretical and empirical analysis of the generation process of the
diffusion models based on schedulers. We transform the designing
problem of schedulers into the determination of several param-
eters, and further transform the accelerated generation process
into an expansion process of the linear subspace. Based on these
analyses, we consequently propose a novel method called Optimal
Linear Subspace Search (OLSS), which accelerates the generation
process by searching for the optimal approximation process of the
complete generation process in the linear subspaces spanned by
latent variables. OLSS is able to generate high-quality images with
a very small number of steps. To demonstrate the effectiveness of
our method, we conduct extensive comparative experiments on
open-source diffusion models. Experimental results show that with
a given number of steps, OLSS can significantly improve the quality
of generated images. Using an NVIDIA A100 GPU, we make it pos-
sible to generate a high-quality image by Stable Diffusion within
only one second without other optimization techniques.

CCS CONCEPTS

• Applied computing→Media arts.

KEYWORDS

diffusion, computational efficiency, path optimization

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0124-5/23/10. . . $15.00
https://doi.org/10.1145/3583780.3614999

ACM Reference Format:

Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, and Weining Qian.
2023. Optimal Linear Subspace Search: Learning to Construct Fast and High-
Quality Schedulers for Diffusion Models. In Proceedings of the 32nd ACM

International Conference on Information and Knowledge Management (CIKM

’23), October 21–25, 2023, Birmingham, United Kingdom. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3583780.3614999

1 INTRODUCTION

In recent years, diffusion models [9, 20, 35] have become the most
popular framework and have achieved impressive success in image
synthesis [5, 23, 28]. Unlike generative adversarial networks (GANs)
[6], diffusion models generate high-quality images without relying
on adversarial training processes, and do not require careful hyper-
parameter tuning. In addition to image synthesis, diffusion models
have also been applied to image super-resolution [29], music syn-
thesis [16] and video synthesis [4]. The research community and
industry have witnessed the impressive effectiveness of diffusion
models in generative tasks.

The major weakness of diffusion models, however, is the ex-
tremely slow sampling procedure, which limits their practicability
[40]. The diffusion model is a family of iterative generative models
and typically requires hundreds to thousands of steps to generate
content. The idea of diffusion models is inspired by the diffusion
process in physics. In image synthesis, various levels of Gaussian
noise are incrementally added to images (or latent variables cor-
responding to images) in a stepwise manner, while the model is
trained to denoise the samples and reconstruct the original images.
The generation process is the reverse process of diffusion process
and both processes include the same time discretization steps to
ensure consistency. The number of steps in the training stage re-
quired is usually very large to improve the image quality, making
the generation process extremely slow.

To tackle the efficiency problem of diffusion models, existing
studies proposed several types of methods. For instance, Salimans
et al. [31] proposed a distillation method that can reduce the num-
ber of sampling steps to half and can be applied repeatably to a
model. By maximizing sample quality scores, DDSS [39] attempted
to optimize fast samplers. However, these speedup methods require
additional training, which makes it difficult to deploy them with
limited computing resources. Another family of studies focused

463

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583780.3614999&domain=pdf&date_stamp=2023-10-21

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, & Weining Qian

�� ���� ���� ���� ����

�� ���� ���� ���� ����

�� ����� �

��������	
�

�� ����� ��

�
�������������

��������	�
���
��
�����������
�
���
�������������������������������� �������������
�

 � � � �� ���

�� ���� ����

�� ����

��������

��������������
��	�
���
��
��������

Figure 1: The complete generation process of diffusion mod-

els consists of hundreds of steps for gradual denoising. Dif-

fusion schedulers speed up this process by skipping some

steps but may make destructive changes to images.

on designing a scheduler to control the generation process, includ-
ing DDIM [34], PNDM [17], DEIS [42], etc. As shown in Figure 1,
these schedulers can reduce the number of steps without training.
However, when we use a small number of steps, these methods
may introduce new noise and make destructive changes to images
because of the inconsistency between the reconstructed generation
process and the complete generation process. Hence we are still
faced with a trade-off between the computing resource requirement
and performance.

In order to speed up the generation process, we focus on de-
vising an adaptive scheduler that requires only a little time for
learning. In this paper, we first theoretically analyze the gener-
ation process of diffusion models. With the given steps, most of
the existing schedulers [13, 17, 34] generate the next sample in
the linear subspace spanned by the previous samples and model
outputs, thus the generation process is essentially the expansion
process of linear subspaces. We also analyze the correlation of in-
termediate variables when generating images, and we observe that
the model outputs contain redundant duplicate information at each
step. Therefore, the number of steps must be reduced to prevent
redundant calculation. In light of these analyses, we replace the
coefficients in the iterative formula with trainable parameters to
control the expansion of the linear subspaces, and then use simple
least square methods [1, 14] to solve these parameters. Leveraging a
path optimization algorithm, we further improve the performance
by tuning the sampling steps. Path optimization and parameter
solving can be performed within only a few minutes, thus it is easy
to train and deploy. Our proposed scheduler, named Optimal Linear
Subspace Search (OLSS), is designed to be lightweight and adaptive.
We apply OLSS to several popular open-source diffusion models
[26] and compare the performance of OLSS with the state-of-the-
art schedulers. Experimental results prove that the approximate
generation process built by OLSS is an accurate approximation of
the complete generation process. The source code of our proposed
method has been released on GitHub1. The main contribution of
this paper includes:

1https://github.com/alibaba/EasyNLP/tree/master/diffusion/olss_scheduler

• We theoretically and empirically analyze the generation pro-
cess of diffusion models and model it as an expansion process
of linear subspaces. The analysis provides valuable insights
for researchers to design new diffusion schedulers.

• Based on our analysis, we propose a novel scheduler, OLSS,
which is capable of finding the optimal path to approximate
the complete generation process and generating high-quality
images with a very small number of steps.

• Using several popular diffusion models, we benchmark OLSS
against existing schedulers. The experimental results demon-
strate that OLSS achieves the highest image quality with the
same number of steps.

2 RELATEDWORK

2.1 Image Synthesis

Image synthesis is an important task and has been widely investi-
gated. In the early years, GANs [11, 21, 24] are the most popular
methods. By adversarial training a generator and a discriminator,
we can obtain a network that can directly generate images. However,
it is difficult to stabilize the training process [30]. Diffusion models
overcome this issue by modeling the synthesis task as a Markovian
diffusion process. Theoretically, diffusion models include Denois-
ing Diffusion Probabilistic Models [33], Score-Based Generative
Models [35], etc. In recent years, Latent Diffusion [26], a diffusion
model architecture that denoises images in a latent space, became
the most popular model architecture. Utilizing cross-attention [37]
and classifier-free guidance [10], Latent Diffusion is able to gener-
ate semantically meaningful images according to given prompts.
Leveraging large-scale text-image datasets [7, 32], diffusion models
with billions of parameters have achieved impressive success in
text-to-image synthesis. Diffusion models are proven to outperform
GANs in image quality [3], and are even competitive with human
artists [5, 23, 28]. However, the slow sampling procedure becomes
a critical issue, limiting the practicability of diffusion models.

2.2 Efficient Sampling for Diffusion Models

The time consumed of generating an image using diffusion models
is in direct proportion to the number of inference steps. To speed up
the generation process, existing studies focus on reducing the num-
ber of inference steps. Specifically, some schedulers are proposed
for controlling this denoising process. DDIM (Denoising Diffusion
Implicit Models) [34] is a straightforward scheduler that converts
the stochastic process to a deterministic process and skips some
steps. Some numerical ODE algorithms [2, 13] are also introduced
to improve efficiency. Liu et al. [17] pointed out that numerical ODE
methods may introduce additional noise and are therefore less effi-
cient than DDIM with only a small number of steps. To overcome
this pitfall, they modified the iterative formula and improved their
effectiveness. DEIS (Diffusion Exponential Integrator Sampler) [42],
another study based on ODE, stabilizes the approximated genera-
tion process leveraging an exponential integrator and a semilinear
structure. DPM-Solver [18] made further refinements by calculating
a part of the solution analytically. Recently, an enhanced version
[19] of DPM-Solver adopted thresholding methods and achieved
state-of-the-art performance.

464

Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

3 METHODOLOGY

3.1 Review of Diffusion Models

Different from GAN-based generative models, diffusion-based mod-
els require multi-step inference. The iterative generation process
significantly increases the computation time. In the training stage,
the number of steps may be very large. For example, the number of
steps in Stable Diffusion [26] while training is 1000.

In the complete generation process, starting from random Gauss-
ian noise 𝒙𝑇 , we need to calculate 𝒙𝑇−1, . . . , 𝒙0 step by step, where
𝑇 is the total number of steps. At each step 𝑡 , the diffusion model
𝜖𝜃 takes 𝒙𝑡 as input and output 𝒆𝑡 = 𝜖𝜃 (𝒙𝑡 , 𝑡). We obtain 𝒙𝑡−1 via:

𝒙𝑡−1 =
√
𝛼𝑡−1

(
𝒙𝑡 −

√
1 − 𝛼𝑡 𝒆𝑡√
𝛼𝑡

)
︸�����������������︷︷�����������������︸

predicted 𝒙0

+
√
1 − 𝛼𝑡−1 − 𝜎2𝑡 𝒆𝑡︸�����������������︷︷�����������������︸

direction pointing to 𝒙𝑡

+ 𝜎𝑡𝝐𝑡︸︷︷︸
random noise

,

(1)

where 𝛼𝑡 , 𝜎𝑡 are hyper-parameters used for training. Note that
𝜎𝑡𝝐𝑡 is the additional random noise to increase the diversity of
generated results. In DDIM [34], 𝜎𝑡 is set to 0, making this process
deterministic given 𝒙𝑇 .

To reduce the steps, in most existing schedulers, a few steps
𝑡 (1), . . . , 𝑡 (𝑛) are selected as a sub-sequence of {𝑇,𝑇 − 1, . . . , 0},
and the scheduler only calls the model to calculate 𝒆𝑡 (𝑖) at these
𝑛 steps. For example, DDIM directly transfers Formula (1) to an
𝑛-step generation process:

𝒙𝑡 (𝑖+1) =
√
𝛼𝑡 (𝑖+1)

(
𝒙𝑡 (𝑖) −

√
1 − 𝛼𝑡 (𝑖) 𝒆𝑡 (𝑖)

√
𝛼𝑡 (𝑖)

)

+
√
1 − 𝛼𝑡 (𝑖+1) 𝒆𝑡 (𝑖) .

(2)

The final tensor 𝒙0 obtained by DDIM is an approximate result
of that in the complete generation process. Another study [13] fo-
cuses onmodeling the generation process as an ordinary differential
equation (ODE) [2]. Consequently, forward Euler, a general numer-
ical ODE algorithm, can be employed to calculate the numerical
solution of 𝒙0:

𝒙𝑡 (𝑖+1) = 𝒙𝑡 (𝑖) +
(
𝑡 (𝑖 + 1) − 𝑡 (𝑖)

) d𝒙𝑡 (𝑖)
d𝑡 (𝑖)

, (3)

where
d𝒙𝑡
d𝑡

= −
d𝛼𝑡
d𝑡

(
𝒙𝑡
2𝛼𝑡

−
𝒆𝑡

2𝛼𝑡
√
1 − 𝛼𝑡

)
. (4)

PNDM [17] is another ODE-based scheduler. It leverages Linear
Multi-Step Method and constructs a pseudo-numerical method. We
simplify the iterative formula of PNDM as:

𝒙𝑡 (𝑖+1) =

√
𝛼𝑡 (𝑖+1)
√
𝛼𝑡 (𝑖)

𝒙𝑡 (𝑖) −
1

√
𝛼𝑡 (𝑖)

𝛼 ′𝑡 (𝑖) 𝒆
′
𝑡 (𝑖) , (5)

where

𝒆′𝑡 (𝑖) =
1

24
(55𝒆𝑡 (𝑖) − 59𝒆𝑡 (𝑖−1) + 37𝒆𝑡 (𝑖−2) − 9𝒆𝑡 (𝑖−3)), (6)

𝛼 ′𝑡 (𝑖) =
𝛼𝑡 (𝑖+1) − 𝛼𝑡 (𝑖)√

(1 − 𝛼𝑡 (𝑖+1))𝛼𝑡 (𝑖) +
√
(1 − 𝛼𝑡 (𝑖))𝛼𝑡 (𝑖+1)

. (7)

��� � � �� ���� � ��

�
�
�
�
��
�

�
�
�
�
�
�
�

Figure 2: The heatmap of the correlation coefficients of latent

variables, which records the whole generation process.

In DDIM (2) and forward Euler (3), 𝒙𝑡 (𝑖+1) is a linear combina-
tion of {𝒙𝑡 (𝑖) , 𝒆𝑡 (𝑖) }. In PNDM (5), 𝒙𝑡 (𝑖+1) is a linear combination
of {𝒙𝑡 (𝑖) , 𝒆𝑡 (𝑖) , 𝒆𝑡 (𝑖−1) , 𝒆𝑡 (𝑖−2) , 𝒆𝑡 (𝑖−3) }. Generally, all these sched-
ulers satisfy

𝒙𝑡 (𝑖+1) ∈ span{𝒙𝑡 (𝑖) , 𝒆𝑡 (1) , . . . , 𝒆𝑡 (𝑖) }. (8)

Recursively, we can easily prove that

𝒙𝑡 (𝑖+1) ∈ span{𝒙𝑡 (1) , 𝒆𝑡 (1) , . . . , 𝒆𝑡 (𝑖) }. (9)

Therefore, the generation process is the expansion process of a linear
subspace. This linear subspace is spanned by the initial Gaussian
noise and the previous model outputs. At each step, we obtain the
model output and add it to the vector set. The core issue of designing
a scheduler is to determine the coefficients in the iterative formula.
The number of non-zero coefficients does not exceed 1

2𝑛
2 + 3

2𝑛.

3.2 Empirical Analysis of Generation Process

To empirically analyze what happens in the whole generation pro-
cess, we use Stable Diffusion to generate several images and store
the latent variables, including 𝒙𝑇 , . . . , 𝒙0, 𝒆𝑇 , . . . , 𝒆1. As shown in
Figure 2, we plot a heat map showing the correlation coefficients
between these variables. We have the following findings:

(1) 𝒙𝑡 is similar to that in neighboring steps and differs from that
in non-neighboring steps. As the denoising process proceeds,
𝒙𝑡 is updated continuously.

(2) The correlation between 𝒙𝑡 and the predicted noise 𝒆𝑡 is
strong in the beginning and becomes weak in the end. The
reason is that 𝒙𝑡 consists of little noise in the last few steps.

(3) The correlation between 𝒆𝑇 , . . . , 𝒆1 is significantly strong,
indicating that the outputs of the model contain redundant
duplicate information.

3.3 Constructing a Faster Scheduler

On the basis of existing schedulers and our analysis, we propose
OLSS, a new diffusion scheduler. In this method, we first run the
complete generation process to catch the intermediate variables

465

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, & Weining Qian

����

����

����

����

��

��

����

����

��

����

����

��

����

��

����

���� ����

����� ��

�� 	 ����
����� �����

���� 	 ����
�� � ���

��� ��

�����������	
�����
�����	��������

����

����

�����

���� 	 ����
��� ��� � � �����

�
������������������	����	��

����

����

������

���� 	 ����
����� �����

�������������������������������������	�

���	�������� �������

�
��������������������������	�

���	����

���� ��������������������
��������������������� �������������	�����

����������������������������	������	����

���� ��������������������

����
����� ��� � � �����

Figure 3: An interpretation of OLSS. (a) In the complete generation process of DDIM from 𝒙𝑡+1 to 𝒙𝑡−1, the scheduler first

computes 𝒙𝑡 ∈ span{𝒙𝑡+1, 𝒆𝑡+1} and then computes 𝒙𝑡−1 ∈ span{𝒙𝑡 , 𝒆𝑡 }. We have 𝒙𝑡−1 ∈ span{𝒙𝑡+1, 𝒆𝑡+1, 𝒆𝑡 }. (b) If we use DDIM

to skip 𝒙𝑡 , the scheduler will compute 𝒙̂𝑡−1 ∈ span{𝒙𝑡+1, 𝒆𝑡+1} using the iterative Formula (2). (c) If we use OLSS to skip 𝒙𝑡 , we

use the orthogonal projection of 𝒙𝑡−1 in span{𝒙𝑡+1, 𝒆𝑇 , . . . , 𝒆𝑡+1} as the estimation of 𝒙𝑡−1. In the parameter-solving process,

we compute the orthogonal projection matrix and construct the new iterative formula. (d) The linear subspace spanned by

{𝒙𝑡+1, 𝒆𝑇 , . . . , 𝒆𝑡+1} is equivalent to the linear subspace spanned by {𝒙𝑇 , 𝒆𝑇 , . . . , 𝒆𝑡+1}. In the generation process of OLSS, we

directly compute 𝒙̂𝑡−1 ∈ span{𝒙𝑇 , 𝒆𝑇 , . . . , 𝒆𝑡+1}. Compared with DDIM, the estimation of 𝒙𝑡−1 is in a higher dimensional linear

subspace, thus it is more accurate.

and then construct an approximate process using these variables, in-
stead of leveraging mathematical theories to design a new iterative
formula.

Assume that we have selected 𝑛 steps {𝑡 (1), . . . , 𝑡 (𝑛)}, which is a
sub-sequence of {𝑇,𝑇 −1, . . . , 0}with 𝑡 (1) = 𝑇 . Calling the diffusion
model for inference is only allowed at these 𝑛 steps. At the 𝑖-th
step, we have obtained intermediate variables 𝒙𝑡 (1) , . . . , 𝒙𝑡 (𝑖) and
𝒆𝑡 (1) , . . . , 𝒆𝑡 (𝑖) . In the complete generation process, it needs to call
themodel for 𝑡 (𝑖+1)−𝑡 (𝑖)−1 times. To reduce time consumption, we
naturally come upwith a naive method. As wementioned in Section
3.2, the correlation between 𝒆𝑇 , . . . , 𝒆1 is significantly strong, thus
we can estimate the model’s output 𝒆𝑡 (𝑖)−1 using a simple linear
model trained with intermediate variables. Formally, let

𝒆̂𝑡 (𝑖)−1 = argmin
𝒆∈E

||𝒆 − 𝒆𝑡 (𝑖)−1 | |22, (10)

where the feasible region is

E = span{𝒙𝑡 (1) , 𝒆𝑡 (1) , . . . , 𝒆𝑡 (𝑖) }. (11)

In other words, we use the orthogonal projection of 𝒆𝑡 (𝑖)−1 in E
as the estimation of 𝒆𝑡 (𝑖)−1. Similarly, we can obtain all estimated
intermediate variables in the missing steps before 𝑡 (𝑖+1) and finally
calculate 𝒙̂𝑡 (𝑖+1) . According to Equations (9, 10, 11), it is obvious
to see the estimated 𝒙𝑡 (𝑖+1) still satisfies Equation (9). However,
note that the estimation may have non-negligible errors and the
errors are accumulated into subsequent steps. To address this issue,
we design a simplified end-to-end method that directly estimates

𝒙𝑡 (𝑖+1) . The simplified method only contains one linear model,
containing 𝑖+1 coefficients𝑤𝑖,0,𝑤𝑖,1, . . . ,𝑤𝑖,𝑖 . The estimated 𝒙𝑡 (𝑖+1)
is formulated as:

𝒙̂𝑡 (𝑖+1) = 𝑤𝑖,0𝒙𝑡 (1) +
𝑖∑
𝑗=1

𝑤𝑖, 𝑗 𝒆𝑡 (𝑗) . (12)

The decision space in this simplified method is consistent with
the naive method mentioned above. Leveraging least square meth-
ods [1], we can easily minimize the mean square error | |𝒙̂𝑡 (𝑖+1) −
𝒙𝑡 (𝑖+1) | |22. Note that we use only 𝒙𝑡 (1) (i.e., 𝒙𝑇) instead of all in-
termediate variables {𝒙𝑡 (1) , . . . , 𝒙𝑡 (𝑖) } in Equation (12), because
{𝒙𝑡 (1) , 𝒆𝑡 (1) , . . . , 𝒆𝑡 (𝑖) } is a linearly independent set and the other
vectors {𝒙𝑡 (2) , . . . , 𝒙𝑡 (𝑖) } can be linearly represented by these vec-
tors. Additionally, the linear independence makes it easier to solve
the least squares problem using QR-decomposition algorithms [14],
which is faster andmore numerically stable than directly computing
the pseudo-inverse matrix [25].

We provide an interpretation of OLSS in Figure 3. When we
skip 𝒙𝑡 , OLSS computes an estimation of 𝒙𝑡−1 in the linear sub-
space spanned by the initial Gaussian noise and the previous model
outputs. Essentially, this estimation is the orthogonal projection
of 𝒙𝑡−1 in the linear subspace. Each time we call the model for
inference, the linear subspace is expanded by the predicted noise.
Therefore, the generation process is the expansion process of the
linear subspace.

466

Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Algorithm 1 Step Searching with error upper bound 𝐷

1: Input: Error upper bound 𝐷
2: Input: Previous steps {𝑡 (1), . . . , 𝑡 (𝑖)}
3: 𝑡𝑙 = 𝑡 (𝑖), 𝑡𝑟 = 0
4: while 𝑡𝑙 > 𝑡𝑟 do
5: 𝑡𝑚 = � 𝑡𝑙+𝑡𝑟2 �
6: if 𝑑 (𝑡 (1), . . . , 𝑡 (𝑖), 𝑡𝑚) > 𝐷 then

7: 𝑡𝑟 = 𝑡𝑚 + 1
8: else

9: 𝑡𝑙 = 𝑡𝑚
10: end if

11: end while

12: 𝑡 (𝑖 + 1) = 𝑡𝑙
13: return 𝑡 (𝑖 + 1)

Algorithm 2 Path searching with error upper bound 𝐷

1: Input: Error upper bound 𝐷
2: 𝑡 (1) = 𝑇
3: for 𝑖 = 1, 2, . . . , 𝑛 do

4: Find 𝑡 (𝑖 + 1) using Algorithm 1
5: if 𝑡 (𝑖 + 1) does not exist then
6: return None
7: end if

8: end for

9: if 𝑡 (𝑛 + 1) > 0 then
10: return None
11: else

12: return {𝑡 (1), 𝑡 (2), . . . , 𝑡 (𝑛)}
13: end if

Algorithm 3 Path optimization

1: Input: The required absolute error 𝜖 of optimal error limit
2: 𝐷𝑙 = 0
3: 𝐷𝑟 = 10 (a sufficiently large value)
4: while 𝐷𝑟 − 𝐷𝑙 > 𝜖 do
5: 𝐷𝑚 = 𝑡𝑙+𝑡𝑟

2
6: Find a path T with error limit 𝐷𝑚 using Algorithm 2
7: if T is not None then
8: 𝐷𝑟 = 𝐷𝑚

9: else

10: 𝐷𝑙 = 𝐷𝑚

11: end if

12: end while

13: Find a path T with error limit 𝐷𝑟

14: return T

3.4 Searching for the Optimal Path

Another problem to be addressed is how to select the 𝑛 steps
{𝑡 (1), . . . , 𝑡 (𝑛)}. In Section 3.2, we observe that the correlation
between 𝒙𝑡 and 𝒆𝑡 is different at each step, indicating that the
difficulty level of generating low-error 𝒙𝑡 is also varied. In most
existing schedulers, these steps are selected in {𝑇,𝑇 −1, . . . , 0} with
equal intervals. For example, in PNDM, Equation (6) comes from
the Linear Multi-Step Method, which enforces that the steps must

be uniformly selected. However, there is no restriction on the se-
lection of steps in our method. We can search for the optimal path
to generate high-quality images.

For convenience, we use 𝑑 (𝑡 (1), . . . , 𝑡 (𝑖 + 1)) to denote the dis-
tance from 𝒙𝑡 (𝑖+1) to its orthogonal projection in the linear sub-
space spanned by {𝒙𝑡 (1) , 𝒆𝑡 (1) , . . . , 𝒆𝑡 (𝑖) } (i.e., the error of 𝒙̂𝑡 (𝑖+1)).
We add an additional step 𝑡 (𝑛 + 1) = 0. To find the optimal path
T = {𝑡 (1), . . . , 𝑡 (𝑛 + 1)}, we formulate the path optimization prob-
lem as:

T = argmin
𝑡 (1),...,𝑡 (𝑛+1)

𝑛
max
𝑖=1

𝑑 (𝑡 (1), . . . , 𝑡 (𝑖 + 1)), (13)

s.t. 𝑇 = 𝑡 (1) ≥ 𝑡 (2) ≥ · · · ≥ 𝑡 (𝑛) ≥ 𝑡 (𝑛 + 1) = 0. (14)

We intend to minimize the largest error in the 𝑛 steps. Setting an
error upper bound 𝐷 , we hope the error of every step does not
exceed 𝐷 . Such a path always exists if 𝐷 is sufficiently large, thus
we can use a binary search algorithm to compute the minimal error
upper bound 𝐷 when a path exists. The pseudo-code is presented
in Algorithm 3. In this binary search algorithm, we have to design
another algorithm to check whether the path with the error upper
bound 𝐷 exists.

According to the conclusions in Section 3.2, the more steps we
skip, the larger errors we have. However, if we only skip a small
number of steps to reduce the error, the path will not end at 0
within 𝑛 steps. Therefore, we use another binary search algorithm
to search for the next step based on a greedy strategy. By skipping
more steps as possible, we can find a path with the error upper
bound 𝐷 if it exists. The pseudo-code of finding the next step with
error limitation is presented in Algorithm 1, and the pseudo-code
of finding the path is presented in Algorithm 2.

The whole path optimization algorithm includes three loops.
From inner to outer, the pseudo-codes of the three loops are pre-
sented in Algorithm 1-3. The first one is to find the next step with
an error limitation. The second one is to check if such a path exists.
Algorithm 2 will return the path to Algorithm 3 if it exists. The
third one is to find the minimal error upper bound. Leveraging the
whole path optimization algorithm, we obtain the optimal path for
constructing the generation process.

3.5 Efficiency Analysis

We analyze the time complexity of constructing an OLSS scheduler.
The most time-consuming component is solving the least square
problem. We need to solve the least square problem O(𝑛) times if
the path is fixed, and O(𝑛 log 1

𝜖 log𝑇) times to perform path opti-
mization, where 𝜖 is the absolute error of optimal 𝐷 . Empirically,
when we use OLSS to improve the efficiency of Stable Diffusion,
usually a few minutes of computation on the CPU is sufficient to
compute the optimal path and solve all the parameters {𝑤𝑖, 𝑗 } after
all the required intermediate variables are collected from the com-
plete generation process. In the inference phase, the computation
on schedulers is negligible compared to the computation on the
models. The total time consumed of generating an image is in direct
proportion to the number of steps.

467

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, & Weining Qian

4 EXPERIMENTS

To demonstrate the effectiveness of OLSS, we conduct compara-
tive experiments. We further investigate the factors that affect the
quality of images generated by OLSS.

4.1 Comparison of Diffusion Schedulers

We compare OLSS with 7 baseline schedulers, including its variant
OLSS-P and 6 existing schedulers. 1) OLSS-P: A variant of our pro-
posed OLSS that selects the steps {𝑡 (1), . . . , 𝑡 (𝑛)} uniformly instead
of using the path optimization algorithm. 2) DDIM [34]: A straight-
forward method that directly skips some steps in the generation
process. It has been widely used in many diffusion models. 3) Euler
[13]: An algorithm of calculating ODEs’ numerical solution. We
follow the implementation of k-diffusion2 and use the ancestral
sampling version. 4) PNDM [17]: An pseudo numerical method that
improves the performance of Linear Multi-Step method. 5) DEIS
[42]: A fast high-order solver designed for diffusion models. It con-
sists of an exponential integrator and a semi-linear structure. 6)
DPM-Solver [18]: A high-order method that analytically computes
the linear part of the latent variables. 7) DPM-Solver++ [19]: An
enhanced scheduler based on DPM-Solver. It solves ODEwith a data
prediction model and uses thresholding methods. DPM-Solver++ is
the most recent state-of-the-art scheduler.

4.1.1 Experimental Settings. The comparative experiments consist
of two parts. The first part is to benchmark the speed-up effect
of these schedulers on open-domain image synthesis and analyze
the relationship between different schedulers. We compare the
schedulers on two popular large-scale diffusion models in the re-
search community, including Stable Diffusion3 and Stable Diffusion
24. The architecture of both models consists of a CLIP-based text
encoder [22], a U-Net [27], and a VAE [15], where the U-Net is
trained to capture the pattern of noise. The implementation of base-
line schedulers is mainly based on Diffusers [38]. We randomly
sample 1000 prompts in LAION-Aesthetics V25 as the conditional
information input to models. The guidance scale is set to 7.0. The
second part is to further investigate the effect of these schedulers
on close-domain image synthesis. We fine-tune Stable Diffusion
on CelebA-HQ [12] (256 × 256) and LSUN-Church [41] (256 × 256)
for 5000 steps respectively. CelebA-HQ is a high-quality version of
CelebA, which is a human face dataset. LSUN-Church is a part of
LSUN and includes photos of churches. The training and generating
process is performed without textual conditional information. We
generate images using the fine-tuned model and compare them
with real-world images in each dataset. In both two parts of the
experiments, in order to avoid the influence of random noise on
the experimental results, we use the same random seed and the
same pre-generated 𝒙𝑇 for every scheduler. For DPM-Solver and
DPM-Solver++, we use their multi-step version to bring out their
best generative effects. For OLSS, we run the complete generation
process to generate 32 images and then let our algorithm construct
the approximate process.

2https://github.com/crowsonkb/k-diffusion
3https://huggingface.co/CompVis/stable-diffusion-v1-4
4https://huggingface.co/stabilityai/stable-diffusion-2-1
5https://laion.ai/blog/laion-aesthetics

4.1.2 Evaluation Metrics. We compare the quality of generated
images by these methods with the same number of steps. Note
that the time consumed by each scheduler is different even if the
number of steps is the same, but we cannot measure it accurately
because it is negligible compared to the time consumed on the
model. We use FID (Frechet Inception Distance) [8], i.e., the Frechet
Distance of features extracted by Inception V3 [36], to measure the
similarity between two sets of images. A smaller FID indicates that
the distributions of the two sets of images are more similar. In the
first part, For each scheduler, we run the generation program with
5, 10, and 20 steps respectively. Considering that the generation
process with fewer steps is an approximate process of the com-
plete generation process, we compare each one with the complete
generation process (i.e., DDIM, 1000 steps). Additionally, we also
compare each one with the 100-step schedulers to investigate the
consistency. In the second part, we compute the FID scores between
10,000 generated images and real-world images. The experimental
results of the two parts are shown in Table 1 and Table 2.

4.1.3 Experimental Results. In Table 1, we can clearly see that
OLSS reaches the best performance with the same steps. The FID
between images generated by OLSS and those by 1000-step DDIM is
lower than other schedulers, and the gap is significant when we use
only 5 steps. Considering the consistency of different schedulers,
we observe that most schedulers generate similar images with the
same settings except Euler. The FID of Euler is even larger than
that of DDIM. This is because Euler’s method computes the numer-
ical solution of 𝒙0 iteratively along a straight line [17], making the
solution far from the origin 𝒙0. PNDM, another ODE-based sched-
uler, overcomes this pitfall by adjusting the linear transfer part in
the iterative formula. Comprehensively, DPM-Solver++ performs
the best among all baseline methods but still cannot outperform
our method. Comparing OLSS and OLSS-P, we find that OLSS per-
forms better than OLSS-P. It indicates that the path optimization
algorithm further improves the performance.

In Table 2, the FID scores of OLSS are also the lowest. Even with-
out the path optimization algorithm, OLSS-P can still outperform
other schedulers. The gap between OLSS and other schedulers is
more significant than that in Table 1, indicating that OLSS is more
effective in generating images with a similar style. The main reason
is that the generation process of images in a close domain follows
a domain-specific pattern, and the learnable parameters in OLSS
make it more suitable for the generation task. Additionally, the FID
of PNDM is lower than DDIM, which is different from the first part
of the experiments. We suspect that PNDM constructs a new gener-
ation pattern to generate realistic images rather than constructing
an approximate process of the original process.

4.2 Efficiency Study

When a scheduler is applied to a diffusion model, there is a trade-
off between efficiency and quality. Fewer steps can reduce the
inference time but usually results in lower image quality. With
the same settings as above, we apply OLSS to Stable Diffusion and
calculate the FID scores with varying numbers of steps. We run the
program on an NVIDIA A100 GPU and record the average time
of generating an image. The results are plotted in Figure 4. As the
number of steps increases, the FID score decreases rapidly at the

468

Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

Table 1: The FID ↓ scores between diffusion schedulers with different steps. The best results are in bold, and the second best are

underscored. †: the generation result of 1000-step DDIM is the most high-quality irrespective of the computational efficiency.

Model Steps / Scheduler
100 Steps 1000 Steps†

DDIM Euler PNDM DEIS
DPM
-Solver

DPM
-Solver++

DDIM

Stable Diffusion
(512 × 512)

5 Steps

DDIM 82.62 78.14 84.40 84.91 85.00 85.24 84.55
Euler 132.19 111.18 134.62 135.06 135.28 135.72 134.28
PNDM 75.53 89.53 74.29 75.50 75.31 75.13 75.41
DEIS 56.31 55.89 58.44 58.03 58.21 58.54 57.68
DPM-Solver 55.39 55.94 57.49 57.09 57.27 57.59 56.76
DPM-Solver++ 54.78 56.11 56.82 56.41 56.59 56.91 56.08
OLSS-P 48.67 61.27 48.62 48.80 48.77 48.72 48.94
OLSS 48.34 61.11 48.40 48.61 48.60 48.57 48.79

10 Steps

DDIM 52.52 59.87 53.71 54.37 54.46 54.66 54.13
Euler 79.63 60.04 81.97 81.70 81.91 82.33 81.32
PNDM 55.77 72.31 54.84 56.01 55.88 55.77 56.03
DEIS 39.11 55.07 41.75 40.96 41.13 41.40 40.97
DPM-Solver 38.93 55.33 41.53 40.75 40.92 41.17 40.73
DPM-Solver++ 38.42 55.72 41.06 40.17 40.33 40.59 40.02
OLSS-P 37.33 59.28 38.64 38.36 38.36 38.38 38.60
OLSS 36.46 58.09 37.68 37.66 37.66 37.67 37.79

20 Steps

DDIM 38.04 57.14 39.07 40.90 40.99 41.17 41.13
Euler 65.38 49.92 67.18 66.85 67.05 67.39 66.32
PNDM 37.26 60.57 35.55 38.38 38.39 38.42 38.55
DEIS 23.37 58.88 28.64 25.87 25.91 25.99 26.28
DPM-Solver 24.38 60.03 28.73 26.16 26.12 26.08 26.72
DPM-Solver++ 26.21 61.43 29.61 27.31 27.20 27.08 27.94
OLSS-P 22.91 58.96 28.20 25.02 25.04 25.11 25.42
OLSS 20.78 58.71 27.26 22.98 23.04 23.09 23.23

Stable Diffusion 2
(768 × 768)

5 Steps

DDIM 93.50 80.83 95.12 98.10 98.16 98.38 97.62
Euler 170.79 119.12 173.09 175.24 175.28 175.51 174.43
PNDM 105.08 99.88 105.82 108.61 108.54 108.67 108.28
DEIS 55.88 58.62 57.30 59.04 59.20 59.50 58.65
DPM-Solver 54.90 58.77 56.31 58.02 58.18 58.48 57.63
DPM-Solver++ 54.25 59.13 55.67 57.30 57.45 57.75 56.91
OLSS-P 50.03 65.20 51.38 51.95 51.87 51.83 51.95
OLSS 49.18 64.89 50.64 51.17 51.11 51.07 51.11

10 Steps

DDIM 55.32 62.05 56.01 58.74 58.83 59.03 58.47
Euler 96.86 61.75 98.57 100.88 100.99 101.26 100.15
PNDM 56.44 64.58 56.94 59.52 59.62 59.81 59.28
DEIS 39.83 60.85 42.11 42.59 42.74 43.02 42.33
DPM-Solver 39.70 61.22 41.93 42.41 42.56 42.81 42.17
DPM-Solver++ 39.40 61.81 41.62 41.89 42.04 42.30 41.66
OLSS-P 38.39 64.21 40.46 40.70 40.70 40.74 40.63
OLSS 38.10 63.81 40.15 40.46 40.48 40.54 40.45

20 Steps

DDIM 40.19 61.44 40.83 44.12 44.25 44.42 44.03
Euler 74.53 48.51 76.08 77.80 77.94 78.18 77.24
PNDM 40.93 62.20 40.26 44.19 44.35 44.61 43.97
DEIS 27.27 64.34 32.74 30.25 30.29 30.39 30.53
DPM-Solver 28.18 65.52 33.47 30.44 30.40 30.38 30.82
DPM-Solver++ 29.81 67.08 34.66 31.34 31.24 31.15 31.88
OLSS-P 26.74 63.82 32.17 30.27 30.31 30.40 30.59
OLSS 26.44 63.64 32.17 29.98 30.01 30.12 30.27

469

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, & Weining Qian

Table 2: The FID ↓ scores of diffusion schedulers with differ-

ent steps on two real-world datasets. The underlying diffu-

sion model is fine-tuned for 5,000 steps.

Dataset Scheduler
Steps

5 Steps 10 Steps

CelebA-HQ

DDIM 80.55 31.72
Euler 83.80 35.85
PNDM 57.63 25.33
DEIS 24.12 11.68
DPM-Solver 23.03 11.68
DPM-Solver++ 21.82 11.44
OLSS-P 14.24 11.40
OLSS 11.65 11.37

LSUN-Church

DDIM 109.57 38.55
Euler 216.07 84.21
PNDM 29.55 14.58
DEIS 55.27 13.67
DPM-Solver 51.66 12.99
DPM-Solver++ 48.93 11.77
OLSS-P 19.46 11.10
OLSS 15.18 10.21

Figure 4: The FID scores (between images generated by our

method and the complete generation process) and inference

time of OLSS.

beginning and gradually converges. The inference time increases
almost linearly with the number of steps. Setting the number of
steps to 5, OLSS is able to generate an image within only one second,
while still achieving satisfactory quality.

4.3 Visualization

To intuitively see how diffusion models generate images with dif-
ferent schedulers, we select 32 examples randomly generated by
Stable Diffusion in the above experiments. We catch the generation
path {𝒙𝑡 (0) , 𝒙𝑡 (1) , . . . , 𝒙𝑡 (𝑛) } and then embed these latent variables
into a 2D plane using Principal Component Analysis (PCA). The
embedded generation paths of three schedulers are shown in Figure
5. Starting from the same Gaussian noise 𝒙𝑡 (0) , these generation
processes finally reach different 𝒙𝑡 (𝑛) . In the complete generation
process, 𝒙𝑖 is updated gradually along a curve. The three 10-step
schedulers construct an approximate generation process. We can
see that the errors in the beginning steps are accumulated in the
subsequent steps, thus the errors at the final steps become larger
than those at the beginning. The generation path of OLSS is the

Figure 5: The generation path {𝒙𝑡 (0) , 𝒙𝑡 (1) , . . . , 𝒙𝑡 (𝑛) } of three
schedulers. We embed the latent variables to 2D using PCA

to see the generation process intuitively.

closest one to the complete generation process, and the generation
path of DPM-Solver++ is the second closest.

4.4 Case Study

In Figure 6, we present examples of images generated using Sta-
ble Diffusion 2 with DDIM, DPM-Solver++, and OLSS. Benefiting
from the excellent generation ability of Stable Diffusion 2, we can
generate exquisite artistic images. With only 5 steps, DDIM may
make destructive changes to images. For instance, the castle in the
first example looks smoggy. DPM-Solver++ tends to sharpen the
entity at the expense of fuzzing details up. Only OLSS can clearly
preserve the texture in the generated images (see the fur of the wolf
in the second example and the flowers in the third example). In the
fourth example, we observe that sometimes both DPM-Solver++
and OLSS generate images in a different style, where OLSS tends
to generate more detail. Despite being generated with significantly
fewer steps than 1000-step DDIM, the images generated by OLSS
still look satisfactory. Hence, OLSS greatly improves the quality of
generated images within only a few steps.

5 CONCLUSION AND FUTUREWORK

In this paper, we investigate the schedulers in diffusion models.
Specifically, we propose a new scheduler (OLSS) that is able to
generate high-quality images within a very small number of steps.
OLSS is a simple yet effective method that utilizes linear models to
determine the coefficients in the iterative formula, instead of using
mathematical theories. Leveraging the path optimization algorithm,
OLSS can construct a faster process as an approximation of the
complete generation process. The experimental results demonstrate
that the quality of images generated by OLSS is higher than the
existing schedulers with the same number of steps. In future work,
we will continue investigating the generation process and explore
improving the generative quality based on the modification in the
latent space.

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foun-
dation of China under grant number 62202170, Fundamental Re-
search Funds for the Central Universities under grant number
YBNLTS2023-014, and Alibaba Group through the Alibaba Innova-
tion Research Program.

470

Optimal Linear Subspace Search: Learning to Construct Fast and High-Quality Schedulers for Diffusion Models CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

DDIM, 5 steps DPM-Solver++, 5 steps OLSS, 5 steps DDIM, 1000 steps

(a) Prompt: “Fantasy magic castle on floating island. A very beautiful art painting.”

DDIM, 5 steps DPM-Solver++, 5 steps OLSS, 5 steps DDIM, 1000 steps

(b) Prompt: “The leader of the wolves bared its ferocious fangs. High-resolution digital painting.”

DDIM, 5 steps DPM-Solver++, 5 steps OLSS, 5 steps DDIM, 1000 steps

(c) Prompt: “On the grassland, there is a towering tree with white flowers in full bloom, and under the tree are colorful flowers.”

DDIM, 5 steps DPM-Solver++, 5 steps OLSS, 5 steps DDIM, 1000 steps

(d) Prompt: “The girl sitting by the river looks at the other side of the river and thinks about life. Oil painting.”

Figure 6: Some examples generated by Stable Diffusion 2 with different schedulers and steps.

471

CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom Zhongjie Duan, Chengyu Wang, Cen Chen, Jun Huang, & Weining Qian

REFERENCES
[1] Åke Björck. 1990. Least squares methods. Handbook of numerical analysis 1

(1990), 465–652.
[2] John C Butcher. 2000. Numerical methods for ordinary differential equations in

the 20th century. J. Comput. Appl. Math. 125, 1-2 (2000), 1–29.
[3] Prafulla Dhariwal and Alexander Nichol. 2021. Diffusion models beat gans on

image synthesis. Advances in Neural Information Processing Systems 34 (2021),
8780–8794.

[4] Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and
Anastasis Germanidis. 2023. Structure and content-guided video synthesis with
diffusion models. arXiv preprint arXiv:2302.03011 (2023).

[5] Zhida Feng, Zhenyu Zhang, Xintong Yu, Yewei Fang, Lanxin Li, Xuyi Chen,
Yuxiang Lu, Jiaxiang Liu, Weichong Yin, Shikun Feng, et al. 2023. ERNIE-ViLG
2.0: Improving text-to-image diffusion model with knowledge-enhanced mixture-
of-denoising-experts. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 10135–10145.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial
networks. Commun. ACM 63, 11 (2020), 139–144.

[7] Jiaxi Gu, Xiaojun Meng, Guansong Lu, Lu Hou, Niu Minzhe, Xiaodan Liang,
Lewei Yao, Runhui Huang, Wei Zhang, Xin Jiang, et al. 2022. Wukong: A 100
million large-scale chinese cross-modal pre-training benchmark. Advances in
Neural Information Processing Systems 35 (2022), 26418–26431.

[8] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. 2017. Gans trained by a two time-scale update rule converge to
a local nash equilibrium. Advances in neural information processing systems 30
(2017).

[9] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in Neural Information Processing Systems 33 (2020), 6840–6851.

[10] Jonathan Ho and Tim Salimans. 2021. Classifier-Free Diffusion Guidance. In
NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications.

[11] Xun Huang, Yixuan Li, Omid Poursaeed, John Hopcroft, and Serge Belongie. 2017.
Stacked generative adversarial networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 5077–5086.

[12] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive
growing of gans for improved quality, stability, and variation. arXiv preprint
arXiv:1710.10196 (2017).

[13] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. 2022. Elucidating
the design space of diffusion-based generative models. Advances in Neural
Information Processing Systems 35 (2022), 26565–26577.

[14] Andrew Kerr, Dan Campbell, and Mark Richards. 2009. QR decomposition on
GPUs. In Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units. 71–78.

[15] Diederik P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. In
International Conference on Learning Representations.

[16] Jinglin Liu, Chengxi Li, Yi Ren, Feiyang Chen, and Zhou Zhao. 2022. Diffsinger:
Singing voice synthesis via shallow diffusion mechanism. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 36. 11020–11028.

[17] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. 2021. Pseudo Numerical Meth-
ods for Diffusion Models on Manifolds. In International Conference on Learning
Representations.

[18] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu.
2022. Dpm-solver: A fast ode solver for diffusion probabilistic model sampling in
around 10 steps. Advances in Neural Information Processing Systems 35 (2022),
5775–5787.

[19] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. 2022.
Dpm-solver++: Fast solver for guided sampling of diffusion probabilistic models.
arXiv preprint arXiv:2211.01095 (2022).

[20] Alexander Quinn Nichol and Prafulla Dhariwal. 2021. Improved denoising diffu-
sion probabilistic models. In International Conference on Machine Learning. PMLR,
8162–8171.

[21] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional
image synthesis with auxiliary classifier gans. In International conference on
machine learning. PMLR, 2642–2651.

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PMLR, 8748–8763.

[23] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
2022. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125 (2022).

[24] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele,
and Honglak Lee. 2016. Generative adversarial text to image synthesis. In Inter-
national conference on machine learning. PMLR, 1060–1069.

[25] Phillip A Regalia. 1993. Numerical stability properties of a QR-based fast least
squares algorithm. IEEE Transactions on Signal Processing 41, 6 (1993), 2096–2109.

[26] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. 2022. High-resolution image synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
10684–10695.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolu-
tional networks for biomedical image segmentation. InMedical Image Computing
and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer, 234–241.

[28] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L
Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim
Salimans, et al. 2022. Photorealistic text-to-image diffusion models with deep
language understanding. Advances in Neural Information Processing Systems 35
(2022), 36479–36494.

[29] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and
Mohammad Norouzi. 2022. Image super-resolution via iterative refinement. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

[30] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. Advances in neural
information processing systems 29 (2016).

[31] Tim Salimans and Jonathan Ho. 2021. Progressive Distillation for Fast Sampling
of Diffusion Models. In International Conference on Learning Representations.

[32] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross
Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell
Wortsman, et al. 2022. Laion-5b: An open large-scale dataset for training next
generation image-text models. Advances in Neural Information Processing Systems
35 (2022), 25278–25294.

[33] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
International Conference on Machine Learning. PMLR, 2256–2265.

[34] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion
Implicit Models. In International Conference on Learning Representations.

[35] Yang Song and Stefano Ermon. 2019. Generativemodeling by estimating gradients
of the data distribution. Advances in neural information processing systems 32
(2019).

[36] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew
Wojna. 2016. Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
2818–2826.

[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

[38] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert,
Kashif Rasul, Mishig Davaadorj, and Thomas Wolf. 2022. Diffusers: State-of-the-
art diffusion models. https://github.com/huggingface/diffusers.

[39] Daniel Watson, William Chan, Jonathan Ho, and Mohammad Norouzi. 2022.
Learning fast samplers for diffusion models by differentiating through sample
quality. In International Conference on Learning Representations.

[40] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao,
Yingxia Shao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. 2022. Diffusion
models: A comprehensive survey of methods and applications. arXiv preprint
arXiv:2209.00796 (2022).

[41] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong
Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).

[42] Qinsheng Zhang and Yongxin Chen. 2022. Fast Sampling of Diffusion Models
with Exponential Integrator. In The Eleventh International Conference on Learning
Representations.

472

