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Abstract. The success of open-access knowledge graphs, such as YAGO,
and commercial products, such as Google Knowledge Graph, has attracted
much attention from both academic and industrial communities in build-
ing common-sense and domain-specific knowledge graphs. A natural ques-
tion arises that how to effectively and efficiently manage a large-scale
knowledge graph. Though systems and technologies that use relational
storage engines or native graph database management systems are pro-
posed, there exists no widely accepted solution. Therefore, a benchmark
for management of knowledge graphs is required.

In this paper, we analyze the requirements of benchmarking knowl-
edge graph management from a specific yet important point-of-view, i.e.
characteristics of knowledge graph data. Seventeen statistical features of
four knowledge graphs as well as two social networks are studied. We
show that through these graphs depict similar structures, their tiny dif-
ferences may result in totally different storage and indexing strategies,
that should not be omitted. Finally, we put forward the requirements to
seeding datasets and synthetic data generators for benchmarking knowl-
edge graph management based on the study.
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1 Introduction

Recent years have witnessed an enthusiasm on the construction and application
of large-scale knowledge graphs in both academia and industry communities.
A knowledge graph can serve as the backbone of Web-scale applications such
as query expansion [6], question answering [11] etc. For example, there are over
500 million entities and 3.5 billion facts in Google Knowledge Graph [18], which
is employed to enhance Google search engine’s search results. A natural question
arises that how to efficiently manage such large-scale knowledge graphs. Though
systems and technologies, such as using relational database management sys-
tems with specific indexing, or building native graph databases, are developed,
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it is still a research problem. Therefore, a benchmark for knowledge graph man-
agement is required for better understanding the problem of knowledge graph
construction and utilization, and helping users to select appropriate systems or
technologies while using knowledge graphs.

Existing benchmarks for graph data management, such as LinkBenck from
Facebook [2], Social Network Benchmark (SNB) from LDBC [8] and our previous
work BSMA [16], are mainly designed for social graph management applications.
Note that the inherent difference between knowledge graphs and social networks
is that the vertices and edges in knowledge graphs are usually typed or annotated
with rich attributes or semantic labels, while in social graphs, the number of
semantic labels of vertices and edges is limited. We argue that these benchmarks
should not be used for benchmarking knowledge graph management, not to
mention that they are accessed by different kinds of workload.

In this paper, we analyze the requirements for benchmarking knowledge
graph management from a basic yet important point-of-view, i.e. statistical char-
acteristics that depict structures of knowledge graphs. We show that the semantic
nature of knowledge graphs results in different characteristics from knowledge
graphs to social networks, as well as between different knowledge graphs, and
different parts within a knowledge graph.

The contributions of this paper are as follows:

– Thirteen statistics and four statistical distributions are introduced for char-
acterizing structures of graphs. Their intuitive meaning and effectiveness on
managing graphs are analyzed.

– Studies over four knowledge graphs, including both common-sense knowledge
graphs and domain-specific ones, and two social networks, are conducted.
The empirical studies show that though these graphs are similar in certain
structure characteristics, such as power-law distribution of vertex degrees,
they are different in other features. Detailed analysis on how and why these
differences exist is provided.

– The requirements for seeding datasets and synthetic data generator for bench-
marking knowledge graphs are analyzed. We show that the synthetic data
generator cannot be trivially adapted to an existing social network generator.

The rest of this paper is organized as follows. In Sect. 2 we introduce the related
works on statistical characteristics and benchmarks in large scale graph. In
Sect. 3, we introduce the statistical metrics used to evaluate the graphs. In Sect. 4
we describe four knowledge graphs and two social networks we experiment on.
In Sect. 5, we present our empirical studies on this issue. Finally, we conclude
with a summary and propose the future work in Sect. 6.

2 Related Work

A benchmark for knowledge graph management requires a clear understanding
of the statistical characteristics of knowledge graphs. Research works which are
focused on analyzing graph structural properties such as complex network, have
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proposed structural metrics and distributions such as node degree, hop and diam-
eter for modelling the structural properties of a graph. Benchmarks on big graph
systems benefit a lot from them. For example, a benchmark generates synthetic
data according to the distributions or topology of a graph. In this section, we
give a brief introduction to these research fields.

For the past years, researchers have devoted themselves to analyzing struc-
tural properties of large scale graphs. Broder et al. [4] study the web as a graph
via a series of graph structural metrics such as diameter, nodes and degree. For
social network, Kumar et al. [12] study the evolutions of Flickr and Yahoo!
360 by analyzing their dynamic time-graph’s structure properties, for example,
diameter, degree, community size, etc. Boccaletti et al. [3] survey the studies of
the structure and dynamics of complex network.

At the same time, benchmarks for big graph analytical have also been devel-
oped rapidly in recent years. Lancichinetti et al. [13] propose a benchmark for
graphs, which pays attention to the heterogeneity in the distributions of node
degrees and community sizes. As for social networks, Linkbench [2] characterizes
the Facebook graph workload and constructs a realistic synthetic benchmark.
Social Network Benchmark (SNB) from LDBC [8] models a synthetic social net-
work which is similar to Facebook. It is the first LDBC benchmark based on the
choke-point analysis [8], which identifies the technique challenges to evaluate in
a workload. BSMA [16] is another applicable benchmark aimed to analyze the
social media data based on Sina Weibo (microblog) in China.

The research works of the graph structural properties and benchmarks inspire
us to have a close observation of the knowledge graphs’ characteristics in order
to study the problems of designing a benchmark for knowledge graphs from the
point of statistical characteristics.

3 Statistical Characteristics

Both knowledge graphs and social networks can be modelled as a directed graph
G = (V,E), where V is the set of nodes (entities or users) and E is the set
of directed edges (semantic relations). The thirteen statistics are illustrated in
Table 1 and the four distributions are introduced as follows:

Degree Distribution. The degree distribution of G is p(d) = nd

|V | , where nd is
the number of nodes whose degree is d and |V | donates the number of nodes in
G. In many graphs, the degree exhibits a power-law distribution [5] which has
the form: p(d) ∝ L(d)d−α, where α > 1 and L(d) is a slowly varying function.
We study in-degree and out-degree separately in this paper.

Distribution of Hops. For a path P = {v1, v2, ..., vh} in G. The hop of a path
P is defined as Hops(P ) = h − 2, where h is the number of nodes in P . The
distribution of hops reflects the connectivity cost inside a graph.

Distribution of Connected Components. There are strongly and weakly
connected component in graph theory. A strongly connected component is a
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Table 1. Description of statistical characteristics

Statistics Description

#Nodes Number of nodes

#Edges Number of edges

#Density The sparsity of a graph, which is formulated as D(G) = |E|
|V |(|V |−1)

#ZIDNodes Number of nodes with zero in-degree

#ZODNodes Number of nodes with zero out-degree

#BiDirEdges Number of bidirectional edges

#CTriads Number of closed triangles. A closed triangle is a trio of vertices
each of which is connected to both the other two vertices.

#OTriads Number of open triangles. An open triangle is a trio of vertices each
of which is connected to at least one of the other two vertices.

AvgCC Average clustering coefficient. The average clustering coefficient of a
graph is defined as C = 3×#Closed triads

#Open triads
[19].

FMWcc Fraction of nodes in max weakly connected component

FMScc Fraction of nodes in max strongly connected component

AppFdiam Approximately full diameter

90%EffDiam The 90 percentile effective diameter, measures minimum number of
hops in which 90 % of all connected pairs of nodes in a graph are
reachable.

community in which any pair of nodes are reachable. A weakly connected com-
ponent is a set of nodes in which any two nodes are reachable regardless of the
edges’ direction. The connected components reflects the connectivity of a graph.

Distribution of Clustering Coefficient. The definition of the clustering coef-
ficient w.r.t. a node vi is Ci = |{ejk:vj ,vk∈Ni,ejk∈E}|

|Ni|(|Ni|−1) [20], where ejk is the edge
between vj and vk (j �= k) and Ni is the set of neighbour nodes of vi. The
clustering coefficient measures the nodes’ tendency to cluster together.

4 Data Description

In this section, we describe two social networks and four knowledge graphs we
study in this paper.

Social Network. Sina Weibo is a famous social media which provides micro-
blog service in China. In this paper, we generate two graphs consisting of persons
and fellowship relations. In the first graph, we generate 0.2 million users ran-
domly (SNRand) from the entire user set, which have more than 5 million
relations between them. In the second graph, we select 0.2 million most active
users including 36 million edges among them (SNRank). Note that the graphs
are neither synchronized nor complete. However, as the comparison to knowledge
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graphs, the SNRand can simulate the real-life data and SNRank can simulate
the most critical situation where activities in social networks are very intense.

WordNet [9] is a lexical network for the English language designed in Prince-
ton University. In WordNet, English words are grouped into sets of cognitive
synonym (e.g. nouns, verbs, adjectives and adverbs), in which every synonym
stands for a distinct concept. We utilize the real-life WordNet directly in our
experiment. The words or concepts are nodes and semantic relations are edges.

YAGO2 [10] is a huge semantic knowledge graph which harvests knowledge
from WordNet , Wikipedia and GeoNames1. We generate three subgraphs from
YAGO2, named YagoTax, YagoFact and YagoWiki. YagoTax is the taxonomy of
YAGO2, consisting of subClassOf relations and reflecting the taxonomic knowl-
edge. YagoFact contains all the factual relations of YAGO2, standing for the
factual knowledge. YagoWiki consists of the hyperlink relations (linkedTo) in
YAGO2, reflecting the natural hyperlink structure of Wikipedia.

DBpedia [14] is a multi-language knowledge base extracted from the Wikipedia.
The English version of DBpedia describes 4.58 million entities and 2,795 differ-
ent properties. It utilizes the mapping-based technique to extract facts from
Wikipedia info-boxes. We generate the synthetic data DBpediaFact from all the
factual knowledge of DBpedia.

Enterprise Knowledge Graph(EKG) is a domain specific knowledge graph
constructed by us. It models the relationships among people, companies,
products for customer relation management (CRM). We extract relations from
2 million news articles from Sina Finance News2 using a bootstrapping strategy
similar to snowball [1] to iteratively detect relation tuples from entities.

Note the fact that all the knowledge graphs data we generated are real-life,
which makes our empirical studies on these graphs more convincing.

5 Empirical Studies

In this section, we evaluate the graphs with a toolkit SNAP [15] and conduct an
association rule mining experiment to conduct a series of empirical studies.

5.1 Analysis for Statistics

We analyze the graphs in three groups based on different objectives: 1) In order to
study the different aspects of a knowledge graph, we compare the three subgraphs
of YAGO2 and make an in-depth analysis of them. 2) We take the four knowledge
graphs into consideration and make a series of horizontal comparisons, trying to
reveal the differences between each knowledge graph in detail. 3) We compare the
knowledge graphs with social networks, attempting to explain why and how the
1 http://www.geonames.org/.
2 http://finance.sina.com.cn/.

http://www.geonames.org/
http://finance.sina.com.cn/
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differences exist between them. The evaluation results are listed in Table 2. Those
statistics are normalized by #Nodes in order to make them be comparable.
Notice that the symbol # before the statistics in Table 1 are replaced by % in
Table 2 and only #Nodes and #Edges are retained.

Table 2. Normalized statistics of graphs

Statistics YagoTax YagoFact YagoWiki DBpedia WordNet EKG SNRand SNRank

#Nodes 4.49e+5 2.14e+6 2.85e+6 4.26e+6 9.79e+4 9.45e+3 2.00e+5 2.02e+5

#Edges 4.51e+5 3.99e+6 3.80e+7 1.44e+7 1.54e+5 1.21e+4 5.45e+6 3.68e+7

Density 2.02e-6 1.75e-6 9.38e-6 1.59e-6 3.21e-5 2.72e-4 2.72e-4 1.80e-3

%ZIDNs 0.958 0.706 0.184 0.461 0.056 0.240 0.128 0.003

%ZODNs 5.78e-5 0.215 0.010 0.198 0.492 0.515 0.010 0.011

%BDEdges 0.000 0.019 2.940 0.129 0.487 0.498 6.984 81.29

%CTriads 0.000 0.365 26.02 2.115 0.043 0.093 59.92 2,167

%OTriads 2,982 93.62 616.9 371.4 30.66 14.82 5.94e+4 2.26e+5

AvgCC 0.000 0.095 0.331 0.325 0.032 0.029 0.105 0.067

FMWcc 0.998 0.953 0.999 0.989 0.988 0.655 1.000 1.000

FMScc 0.000 0.006 0.778 0.051 0.204 0.162 0.854 0.985

AppFdiam 11.00 15.00 14.00 40.00 25.00 18.00 15.00 7.000

90%EDiam 6.740 5.340 3.830 5.920 10.800 6.770 5.090 3.350

Comparison Between YAGO2’s Subgraphs. The three subgraphs Yago-
Tax, YagoFacts and YagoWiki describe three aspects of YAGO2 respectively.
From Table 2 we can see, the %CTriads and %OTriads of the three sub-
graphs are different significantly. The %OTriads of YagoTax is highest while
the %CTriads is 0.00. In YagoFacts and YagoWiki, the differences between
%CTriads and %OTriads are relatively smaller. The AvgCC of YagoWiki is
higher than YagoTax and YagoFacts, indicates that the nodes in YagoWiki are
more likely to be clustered via the relation linkedTo than the taxonomic relation
subClassOf in YagoTax and factual relations in YagoFact. The relative differences
of the three subgraphs’ %ZODNs are greater than that of %ZIDNs in general,
shows that the out-degree distributions of the three subgraphs are more diverse
than their in-degree distributions.

Comparison Between Knowledge Graphs. To make the comparisons among
the four knowledge graphs meticulously, we further divide them into two groups
according to their contents: taxonomic level (e.g. YagoTax and WordNet) and
factual level (e.g. YagoFact, DBpediaFact and EKG).

In taxonomic level group, the %ZIDNs and %ZODNs of YagoTax show
almost every node in YagoTax has out-degrees while 95.8 % of the nodes have
no in-degree. Because the YagoTax is a taxonomy tree with few hierarchies and
tremendous unconnected leaves. In WordNet, the FMScc shows that 20.4 %
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of the nodes are in the max strongly connected component and the %ZODNs
shows half of the nodes inWordNet have no out-degree. We imply the topology
of WordNet is a star structure with a max strongly connected component (20.4 %
nodes) in the centre and the other half of nodes (49.2 %) are distributed outside.

In factual level group, the YagoFact and DBpediaFact are both common-
sense knowledge graphs (CSKG) and EKG is a domain-specific knowledge graph
(DSKG). We compare YagoFact and DBpediaFact first. The scale and density of
DBpediaFact are greater than YagoFact, indicates that the automatically gener-
ated DBpediaFact [14] contains more entities than them in YagoFact, where the
relation extraction method is based on hand-written rules [10]. The %CTriads
and %OTriads show nodes in DBpediaFact are more likely to form triangles
than YagoFact. As for the CSKG (YagoFact, DBpediaFact) and DSKG (EKG),
the density of DSKG is higher than CSKG. The %CTriads, %OTriads as well
as AvgCC show that the DSKG have more triangles than CSKG, too.

Comparison Between Knowledge Graphs and Social Networks. The
density shows that social networks are denser than knowledge graphs. Due
to the activeness of people, social networks contain more bidirected edges than
knowledge graphs. The %CTriads and %OTriads of social networks are greater
than knowledge graphs. Because in social networks, a person’s friends tend to
be friends due to the triadic closure property [7]. The FMWcc and FMScc
of social networks show that most of nodes in social networks are in a max
strongly connected component, while in knowledge graphs, most of the nodes
tend to form strongly connected components within a small range. Another evi-
dence from FMWcc shows that the nodes in knowledge graphs are connected
by a max weakly connected component. We conclude that the strongly connected
components in knowledge graphs are connected by a series of bridges [19] (also
known as cut-edge) actually. In short, there exist gaps between the strong con-
nected components in knowledge graphs, while the social network is a whole
strong connected component.

Conclusion. Table 3 summarizes the statistics which have significant different
performances in the three comparison groups. As we can see, the differences
between the subgraphs of YAGO2 in the first group are mainly embodied in (open
or close) triangle, clustering co-efficient and strongly connected component three
aspects. Then we can not treat the knowledge graph as a whole graph when
generating the synthetic data. We should generate it separately according to
different parts or semantic topics.

In the second group, the density, %CTriads, %OTriads, AvgCC, %ZIDNs
and %ZODNs are the prominent statistical characteristics which perform
diversely between each knowledge graphs on both taxonomic and factual lev-
els. It implies that when generating synthetic data or designing workloads for a
knowledge graph in a special domain, the data characteristics should be consid-
ered first and the workloads should emphasize these characteristics in special.
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Table 3. The prominent statistics which are different in each comparison group

Experiment groups Density %CTriads %OTriads AvgCC FMScc %BDEdges %ZDNs

YAGO subgraphs
√ √ √ √

KGs Taxonomic
√ √ √ √

Factual
√ √ √ √

KGs and SNs
√ √ √ √ √

1 %ZDNs donates for %ZIDNs and %ZODNs.
2 KGs and SNs are short for the “Knowledge Graphs” and “Social Networks”.

Fig. 1. Dist. of indegree Fig. 2. Dist. of outdegree Fig. 3. Dist. of hops

Fig. 4. Dist. of SCC Fig. 5. Dist. of WCC Fig. 6. Dist. of ACC

In the last group, the density, triangle, strongly connected component and
%BDEdges are the main characteristics which perform different between knowl-
edge graphs and social networks. There are few bidirectional edges in knowl-
edge graphs (but not none). Thus data generator should control their existences
appropriately in knowledge graphs. The gaps between strong connected compo-
nents in knowledge graphs remind us that more facts should be extracted and
added to the existing knowledge graphs to bridge them in the future. And with
the development of them, the benchmarks for knowledge graph data manage-
ment techniques should focus on different properties dynamically.

5.2 Analysis for Distributions

In this section, we give an in-depth analysis of the graphs’ distribution metrics.
The distributions are illustrated in Figs. 1, 2, 3, 4, 5 and 6.
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Table 4. Fitted parameters for all the distributions

Graphs InDeg OutDeg Hop SCC WCC

L(d) α L(d) α a b c L(d) α L(d) α

yagoFact 2.07e+5 1.859 4.80e+5 2.245 4.00e+12 5.71 1.22 2.66e+5 4.940 2.13e+5 3.228

YagoTax 1.70e+4 1.855 4.48e+5 8.412 1.95e+11 5.45 0.47 - - 1.98e+1 1.063

yagoWiki 3.92e+6 1.914 5.61e+8 3.000 9.40e+12 7.84 1.89 1.20e+5 3.849 1.48e+2 0.597

DBpedia 6.77e+5 1.827 2.08e+14 7.697 1.58e+13 10.62 1.96 1.30e+5 2.361 1.55e+5 3.769

WordNet 2.86e+4 2.455 7.86e+4 2.379 7.60e+10 21.40 2.03 7.63e+3 2.745 2.54e+2 2.045

EKG 1.14e+3 1.913 2.96e+2 2.719 3.64e+7 7.49 1.31 7.41e+3 5.236 1.39e+4 3.834

SNRand 5.27e+5 1.884 2.44e+5 1.441 3.55e+10 10.29 3.20 2.85e+4 6.555 - -

SNRank 1.95e+5 1.293 3.12e+7 2.078 3.43e+10 14.39 4.72 - - - -

1 The “-” represents that the distribution’s points are not enough to fit the parameter.
2 Due to the divergency of the points, the average clustering co-efficient distributions are not fitted.

In Fig. 1, the in-degree distributions of all knowledge graphs and social net-
works exhibit the power-law distributions. The estimated parameters are detailed
in Table 4. Nearly all the exponents α are consistently around (1.8,2.4) except
that of SNRank, which is different with all the others. The initial segment of
SNRank distribution deviates from the power law greatly until the in-degree
increases up to around 560.

The out-degree distributions are shown in Fig. 2. As we can see, there exist
not only significant distinctions between knowledge graph and social network but
also between knowledge graphs. The out-degree distributions of the three YAGO2
subgraphs are different significantly, which is consistent with the analysis in
previous section. All the distributions are deviated from power law initially, and
they are diverse with each other as well. The descent rates of the distributions
also vary widely. The fitted parameters α in Table 4 fluctuate from 1.4 to 8.4.

Figure 3 illustrates distributions of hops in those graphs. All the distributions
are in “S” shape. In order to fit the data to some curve, we introduce a variant
of sigmoid function with the form f(x) = a

1+eb−cx . The parameters are fitted
very well in Table 4. The max hops of yagoTax and WordNet are larger than the
others in general. The SNRand and SNRank have the minimal max hops, close
to 6, which is in consistent with six degrees of separation theory [20] in social
networks. Another interesting discovery is that with the hop added from 2 to 3,
all the distributions increase explosively in general.

Figures 4 and 5 reflect the distributions of connected components. Both the
distributions of strongly and weakly connected components of knowledge graphs
are in power-law distribution uniformly except yagoTax which is a flat tree with a
lot of unconnected leaves. While in SNRand and SNRank as social networks, there
only have one max strongly connected component and a small part of isolated
nodes. The pow-law distributions of strongly and weakly connected components
in knowledge graphs show that the nodes in knowledge graphs are clustered in
several small ranges (actually most of the strongly connected components are
connected by bridges according to our analysis in previous section). However,
nodes in social networks are organized into one big strongly connected component.



46 W. Cheng et al.

Figure 6 presents the distributions of average clustering coefficient (ACC).
In this experiment setting, we treat the graphs as undirected and the degree is
the total of in-degree and out-degree. Figure 6 shows, all the other graphs are
trend to perform the power law initially except SNRank, with the value of x
increases, the curves start to diverge. The ACC of social networks is higher than
knowledge graphs in general, which also reflects that the local clustering property
of knowledge graphs is not as strong as social networks.

Table 5. Relatedness of in and out relations in YAGO2

InRelation1 InRelation2 R(r1, r2) OutRelation1 OutRelation2 R(r1, r2)

rdf:type subClassOf 0.9948 rdf:type hasWikipediaUrl 0.9999

playsFor isAffiliatedTo 0.9797 linksTo hasWikipediaUrl 0.9894

hasChild isMarriedTo 0.9182 rdf:type linksTo 0.9815

wasBornIn isLocatedIn 0.8712 exports imports 0.9220

graduatedFrom worksAt 0.7545 playsFor isAffiliatedTo 0.7668

created directed 0.7456 imports dealsWith 0.7475

actedIn created 0.6943 exports dealsWith 0.7454

diedIn wasBornIn 0.6730 imports hasTLD 0.6553

wroteMusicFor directed 0.6041 hasTLD dealsWith 0.6334

isCitizenOf dealsWith 0.5590 isConnectedTo hasAirportCode 0.5984

Conclusion. Figures 1 and 2 illustrate that the in-degree and out-degree distrib-
utions of knowledge graphs and social networks are of great differences. The ini-
tial segment of the out-degree distributions follow a different kind of distributions
(e.g. poisson or a combination of poisson and power-law). Users can generate the
synthetic data sectionally according to the different in or out degrees. Figure 3
shows the distributions of hops that exhibit the “S” shape distribution, which
fits a sigmoid function very well. Users can utilize the sigmoid function to gener-
ate the data. Figures 4 and 5 illustrate that the knowledge graphs are separated
naturally into a number of strongly connected components and isolated weakly
connected components, in which the size of the components displays power law
distributions. The natural partition ability of the knowledge graph allows us to
manage the data distributively, which will potentially reduce the cost of join
operations significantly. However, in social networks, users should divide them
by some special graph partition algorithms. Figure 6 shows the distributions of
average clustering co-efficient are in the power law distribution, but with the
incasement of degree, the clustering co-efficient starts to diverge, indicating the
data generator should not only obey the power law distribution in overall but
also embody the data divergence at the same time.
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5.3 Analysis for Labels’ Relatedness

We conduct an association rule experiment on semantic labels of YAGO2 as a
case study to discover the relatedness between labels.

For a relationship, there are two kinds of relations, namely, out and in respec-
tively. To compute the relatedness between labels ri and rj , we first define the
support of ri → rj as supp(ri → rj) = |ri∩rj |

|ri| , which is inspired by the definition
in [17], where |ri| denotes the number of nodes that have a relation ri and |ri∩rj |
denotes the number of nodes that have both relations ri and rj . Obviously, the
support function is not symmetric, inspired by the definition of F-measure, the
relatedness of ri and rj is defined as R(ri, rj) = 2×supp(ri→rj)×supp(rj→ri)

supp(ri→rj)+supp(rj→ri)
.

Table 5 lists top-10 pairs of relations with highest relatedness. From Table 5,
we find the semantic relations are topic related. For example, hasChild and
isMarriedTo indicate children and marriage belong to the same topic. Some
semantic relations have no intersection with others. For example, the related-
ness between hasGender and isLocatedIn is 0.00. However, some relations (e.g.
rdf:type) almost have co-occurrence with any other relations, which indicates
the semantic labels are distributed differently due to the semantics. Thus, in
the point of designing benchmarks, we conclude the data generator for knowl-
edge graphs cannot be trivially adapted to an existing social network generator.
Note that in many information extraction systems, new kinds of relations should
be extracted easily by many automatic methods, for example, the snowball [1]
system learns new generated patterns to discover new tuples.

6 Conclusion and Discussion

In this paper, we observe four knowledge graphs and two kinds of social networks
closely on their statistical characteristics. After our in-depth analysis on the
experiments, it is shown that:

(1) Different parts of a knowledge graph have different properties in some certain
statistical characteristics, such as clustering co-efficient, strongly connected
component.

(2) The different types of knowledge graphs have different properties in several
statistical characteristics, and their data distributions are different either,
such as out degree distributions and hops distributions.

(3) Knowledge graphs are different with social networks in several distributions,
such as strongly and weakly connected components. With their development,
new kinds of relationships could be discovered easily.

These empirical observations show that the existing synthetic graph gener-
ators can not generate the real-life knowledge graph data. Therefore, to build
a benchmark for testing and evaluating the different knowledge graph manage-
ment systems and techniques, an important task is to build generators that meet
the following requirements:
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– The generator should generate synthetic data of a knowledge graph in different
aspects, such as taxonomic knowledge and factual knowledge.

– The generator should take the semantic labels in knowledge graphs into con-
sideration and preserve the statistical characteristics of the real-life data.

– The generator should be able to not only generate the static synthetic data of
a certain knowledge graph, but also the different stages of knowledge graph’s
construction.

The empirical study conducted in this paper is the first effort on modelling
statistical characteristics of knowledge graphs. Our future work includes the
design and implementation of the data generators of knowledge graphs.
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15. Leskovec, J., Sosič, R.: SNAP: a general purpose network analysis and graph mining
library in C++, June 2014. http://snap.stanford.edu/snap

16. Ma, H., Wei, J., Qian, W., Yu, C., Xia, F., Zhou, A.: On benchmarking online
social media analytical queries. In: GRADES, p. 10 (2013)

17. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University
Press, New York (2011)

18. Singhal, A.: Introducing the knowledge graph: things, not strings. Official Google
Blog, May 2012

19. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications,
vol. 8. Cambridge University Press, New-York (1994)

20. Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393,
440–442 (1998)

http://snap.stanford.edu/snap

	On Statistical Characteristics of Real-Life Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Statistical Characteristics
	4 Data Description
	5 Empirical Studies
	5.1 Analysis for Statistics
	5.2 Analysis for Distributions
	5.3 Analysis for Labels' Relatedness

	6 Conclusion and Discussion
	References


