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Abstract. Clinical named entity recognition (NER) is a foundational
technology to acquire the knowledge within the electronic medical
records. Conventional clinical NER methods suffer from heavily fea-
ture engineering. Besides, these methods treat NER as a sentence-level
task and ignore the long-range contextual dependencies. In this paper,
we propose an attention-based neural network architecture to leverage
document-level global information to alleviate the problem. The global
information is obtained from document represented by pre-trained bidi-
rectional language model (Bi-LM) with neural attention. The parameters
of pre-trained Bi-LM which makes use of unlabeled data can be trans-
ferred to NER model to further improve the performance. We evaluate
our model on 2010 i2b2/VA datasets to verify the effectiveness of lever-
aging global information and transfer strategy. Our model outperforms
previous state-of-the-art method with less labeled data and no feature
engineering.

Keywords: Clinical named entity recognition · Neural attention
Language model

1 Introduction

The clinical text in electronic medical records has the potential to make a sig-
nificant impact in many aspects of healthcare research such as drug analysis,
disease inference, clinical decision support, and more. To analyze such clinical
free text, one sequence labeling application namely NER plays a crucial role to
identify medical entities at first step. Table 1 shows a clinical snippet containing
such medical entities.

NER is still a challenging task in the clinical domain due to the distinctive
characteristics of language. Dictionary-based methods fail to tag abbreviated
phrases and acronyms which are common in clinical text. Rule-based systems
are laborious to implement and trend to miss a number of misspellings that
have their specific meaning. To overcome these limitations, various machine
learning algorithms have been proposed to improve the performance. However,
traditional machine learning approaches rely heavily on hand-crafted features,
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it is especially tough to design features in the clinical-specific domain where
specialized knowledge is needed. In the past few years, due to the simple but
effective pre-trained word embedding [3,20,23], neural network models with as
input distributed word representations achieve competitive performance against
traditional models. Thus, current sequence labeling models typically include a
RNN-based network that encodes each token into context vector and a CRF
layer that decodes the representation to make predictions [10,15,21].

Table 1. A snippet of clinical text containing medical concepts, such as disease entities
(in red), test entities (in blue) and treatment entities (in green).

Above-mentioned methods in practice treat NER as a sentence-level task
where sentences in the same document are viewed as independent. However,
clinical documents which are generated by physician to record the process of
patients’ treatments are centered on one or a few diseases. As shown in Table 1,
the medical entities are topic-related to describe the condition of patients, for
example, “Vasotec” (treatment entity) is used to control the “blood pressure”
(test entity) due to his “hypertension” (disease entity). Thus, the long-range
contextual dependencies are useful to improve the performance of sentence-level
NER methods. Besides, ignoring the long-range contextual dependencies will
lead to tagging non-consistency problem that the same mentions separated in
different sentences from a document are tagged with different labels.

In this paper, we propose an attention-based stacked bidirectional long short-
term memory with conditional random field (Att-BiLSTM-CRF) for clinical
named entity recognition. Our model leverages global information within docu-
ment and makes use of unlabeled data to achieve better performance. Inspired
by the work of Peters et al. [24], we first pre-train a word embedding model and
a bidirectional neural language model (Bi-LM) on unlabeled corpus in unsu-
pervised learning (Sect. 3.2). Thus, the pre-trained Bi-LM can represent the
sentences from document containing the global information. Then, we adopt
stacked BiLSTM to encode the input sentence which consists of word embed-
dings, and incorporate all the representation of sentences within the document
which the input sentence in with neural attention (Sect. 3.3). Finally, we use a
CRF layer [14] to decode the representations to make sequence decision. The
main contributions of this paper can be summarized as follows:
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– We propose an attention-based neural network architecture namely Att-
BiLSTM-CRF to incorporate global information to alleviate the problem of
ignoring long-range contextual dependencies for clinical NER task.

– We transfer the parameters of pre-trained Bi-LM which makes use of unla-
beled data to BiLSTM and show the advantages of transfer strategy than
random initialization.

– Combining the global neural attention and pre-trained Bi-LM, our model
outperforms previous state-of-the-art method on 2010 i2b2/VA datasets [25]
with less labeled data and no feature engineering.

The rest of this paper is organized as follows: Sect. 2 discusses related
research. Section 3 formulates the task and describes the architecture. Section 4
describes the datasets, training, experiments and results. Section 5 summarizes
the paper.

2 Related Work

Our method is based on two lines of research which are sequence labeling and how
to improve it with global information. Therefore, we mainly outline the recent
work on NER and previous efforts in clinical domain. Then we will review the
related work which aims to capture global information.

2.1 Named Entity Recognition

NER is a widely studied sequence labeling task, and many different approaches
have been proposed. Among them, neural network models have been rapidly
growing in popularity as they can be trained end-to-end with no feature engineer-
ing and task-specific resources. Taking inspiration from research of feed-forward
network presented by Collobert et al. [3], Huang et al. [10] use a BiLSTM over
a sequence of word embeddings and other hand-crafted spelling features with a
CRF layer on top. Chiu and Nichols [4] also propose a similar model, but instead
use CNN to learn character-level features. Lample et al. [15] also employ a similar
architecture, but utilize LSTM to learn character-level features instead. Similar
to Chiu and Nichols [4], Ma and Hovy [21] also use CNN to model character-level
information, but without using any data preprocessing and achieving better NER
performance. To relieve the limitation of relatively little labeled data, Peters
et al. [24] explore a general semi-supervised approach which uses pre-trained
neural bidirectional LM to augment context sensitive representation from large
unlabeled corpus to improve previous methods.

Our architecture is based on the success of BiLSTM-CRF model [10,15,21],
and is further modified to better incorporate global information with neural
attention. Our model employs stacked BiLSTM to effectively model the context
and excluding character-level information for simplicity. Furthermore, the Bi-
LM can make use of unlabeled data and a simple transfer strategy can further
improve the performance.
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In clinical domain, there are a number of traditional machine learning algo-
rithms based on hand-crafted features and domain-dependent knowledge or
resources. Uzuner et al. [25] overview performance of systems on 2010 i2b2/VA
challenge in detail. Among the all submitted systems in the evaluations, de Brui-
jin et al. [6] ranked first, and they trained a hidden semi-Markov model based
on unsupervised feature representations obtained by Brown clustering and other
text-oriented features. Subsequent work can be roughly divided into two direc-
tions. On the one hand, researchers focus attention on better feature representa-
tions. Jonnalagadda et al. [11] explore the use of distributed semantics derived
empirically from unannotated text to improve the performance of clinical NER.
Wu et al. [26] systematically compare two word neural embedding algorithms
and show that low-cost distributed feature representations can be better than
Brown clustering. On the other hand, researchers concentrate on appropriate
data-preprocessing. Fu and Ananiadou [8] show that truecasing and annotation
combination can best increase the NER system performance. Boag et al. [1]
develop a lightweight tool by cascading CRF and SVM classifiers for clinical
NER. Until recently, Chalapathy et al. [5] explore the effectiveness of BiLSTM-
CRF based on off-the-shelf word embedding without any hand-crafted features.
In contrast, the most advantage of our architecture is requiring no task-specific
knowledge or feature engineering, and meanwhile achieving better performance
with augmented global information.

2.2 Leveraging Global Information

Several studies have noticed the importance of global information to aid
sentence-level NER. Finkel et al. [7] take non-local information into account
while preserving tractable inference with Gibbs sampling. Krishnan and Man-
ning [13] propose a two-stage model for exploiting non-local dependency. They
use first CRF-based NER model using local features to make predictions and
then train second CRF based on the output of the first CRF to maintain label
consistency. Recently, Liu et al. [16] propose an extension to CRFs by integrating
external memory to capture long-range contextual dependencies. Luo et al. [18]
regard the whole document as input into BiLSTM-based NER model with self-
attention mechanism. However, the method is only effectively applied to short
text because RNN-based (including LSTM) models perform poorly as the length
of input sentence increases [2,17].

Inspired by these earlier work, we also leverage global information to improve
performance of clinical NER. In contrast, we propose a neural network archi-
tecture to combine the local and global information with neural attention.
The stacked BiLSTM has its advantage over encoding sequential inputs than
plain linear-chain CRF based on hand-crafted features. The performance of our
method is not suffer from the variant length of document.
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3 Neural Network Architecture

In this Section, we first provide the task definition and flow of our method for
the problem of clinical NER. Then we illustrate the approach to pre-train the
word embedding model and Bi-LM which is a key component in our architecture.
Finally, we describe attention-based neural network architecture from bottom to
up in detail.

3.1 Overview

Task Definition. We formally describe the Clinical NER task as follows: Given
a sentence, s = (w1, w2, ..., wn) where n is the length of the sentence, find the
medical entities o = (y1, y2, ..., yn) where y is the predefined label. The problem
is a typical sequence labeling task. We use the BIO format to tag the entities.
In particular, there are three medical entity categories: Disease (Dise for short),
Test (Test for short), Treatment (Trea for short). If the word is the first word in
medical entities, the word is labeled B-X (X is the entity category). The word is
labeled I-X if the word is inside but not the first position of the medical entities.
Otherwise, the word is labeled O.

For instance, which is shown in Fig. 1, the input sentence is (a, long, history,
of, hypertension), then the model can output the sequence tag (O, O, O, O,
B-Dise).

Fig. 1. An example for sequence labeling task.

In contrast to previous work, we additionally leverage the global information
from the document D = (s1, s2, ..., sm) where the input sentence s is located to
improve the performance. Thus, all of the representation of sentences in docu-
ment will be utilized to complement the single input sentence. In a nutshell, the
input to our model not only contains the single sentence, but also incorporates
all of the sentences from the same document.

Flow of the Method. As illustrated in Fig. 2, the main components in our
architecture are Pre-Training, Encoder, Neural Attention, Decoder respectively.
First of all, we use unlabeled corpus to pre-train word embedding model and Bi-
LM. Secondly, the first BiLSTM takes the word embeddings of single sentence
as input, and then the pre-trained Bi-LM represents all the sentences within the
same document which the input sentence in. Next, the second BiLSTM integrates
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Fig. 2. The flow of our method for clinical NER.

the outputs of first BiLSTM and representations from Bi-LM that includes the
global information from document with neural attention. Lastly, the CRF layer
plays a decoding role to make sequence decision over the encoding of input.

3.2 Pre-training

Word Embedding Model. Word embedding is ubiquitous in NLP tasks since
Mikolov et al. [20] propose an efficient method called Word2Vec for learning
distributed representation of words. It is commonly believed that the word
embedding captures useful semantic and syntactic information. Therefore, we
use skip-gram algorithm [20] to train word embedding as input instead of heav-
ily hand-crafted features.

Bi-LM. The Bi-LM is a vital component in our neural network architecture.
On the one hand, pre-trained Bi-LM encodes the representation of sentences to
enable the BiLSTM to look beyond the local context of sentence and extent to
the global context of document. On the other hand, Bi-LM can make use of
unlabeled data and its learned parameters can be transferred to first BiLSTM
in NER model to improve performance. Now we describe the Bi-LM in detail.

Language model is proposed to learn a probability distribution over sequences
of token pertaining to a language. Instead of count-based N-grams language
model, we choose neural language model which has been shown to better
retain long term dependencies. We use LSTM to model joint probabilities over
word sequences which represented by word embeddings. Give a word sequence
(w1, w2, ..., wn), LM computes the probability of the next word given all the pre-
vious words at each step. Here it can be called forward LM since we obtain the
next word depending on the forward words, and LSTM is called forward LSTM
as well. Thus, the overall probability can be written as:
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p(w1, w2, ..., wn) =
n∏

i=2

p(wi|w1, w2, ..., wi−1) (1)

At each step, forward LSTM encode the history (w1, w2, ..., wi−1) into a fixed
dimensional vector

−→
h LM

i−1 which is the hidden state of forward LSTM at position
i− 1 actually. Then, a softmax layer predicts the probability of next word wi in
the vocabulary. We train the forward LM model which maximizes the likelihood
of given sentences in corpus.

A backward LM can be implemented in an analogous way if we reverse the
word sequence. Thus, we obtain the similar overall probability:

p(wn, wn−1, ..., w1) =
1∏

i=n−1

p(wi|wn, wn−1, ..., wi+1) (2)

The backward LM predicts the previous word given the future sequence. Also,
we utilize a backward LSTM to build the backward LM.

The forward and backward LSTM share the same input layer (word embed-
ding layer) and output layer (softmax layer). After pre-training, the pre-trained
Bi-LM can be used to represent sentences of document in training corpus. We
concatenate the last cell state of forward and backward LSTM to represent the
input sentence, i.e., s = [−→c LM

n ;←−c LM
1 ].

Transfer Strategy. In NLP, pre-trained word embedding like Word2Vec [20]
and GloVe [23] has been common initialization for the input layer of neural
network models. The word vectors obtained from training on large amounts
of unlabeled corpus achieve better performance than random initialization on
a variety of NLP tasks. However, the form of transfer learning is not limited
to word vectors, but also includes weights from pre-trained recurrent neural
networks [22,27].

Inspired by above ideas, we propose a transfer strategy to further improve
the performance of NER model. We let Bi-LM and first BiLSTM in Encoder
component of NER model have the same architecture. Therefore, the parameters
of pre-trained Bi-LM can be shared to the first BiLSTM. The well-trained Bi-LM
from large, unlabeled corpus can help the NER model have a better initialization,
thus leads to better performance.

3.3 Att-BiLSTM-CRF Model

Encoder. As depicted in Fig. 3, this architecture is similar to the ones presented
by Huang et al. [10], Lample et al. [15] and Ma et al [21]. In contrast, we use
stacked BiLSTM to encode sequential input for incorporating global information
with neural attention.

For a given sentence s = (w1, w2, ..., wn) containing n words in a document
D = (s1, s2, ..., sm) including m sentences. At first, the sentence is represented
as a sequence of vectors X = (x1, ...,xt, ...,xn) through the embedding layer.
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Fig. 3. The architecture of our Att-BiLSTM-CRF model.

Next, a forward LSTM in first BiLSTM computes a representation
−→
h 1,t of the

left context of the sentence at each word t, and a backward LSTM computes a
representation

←−
h 1,t of the same sequence in reverse. Then, the representation of

each word t is obtained by concatenating its left and right context representa-
tions, h1,t = [

−→
h 1,t;

←−
h 1,t].

In most previous NER methods, the representation of each word will be fol-
lowed by a transformation layer and CRF layer to make prediction without con-
sidering the long-range contextual dependencies. While we introduce the Neural
Attention component to leverage all the sentences in the document D. We use
pre-trained Bi-LM to represent all the sentences which can be regard as global
context. Then we apply the neural attention to seek the related global context
based on the representation of each word which can be regard as local context.
The global context in the document can supply extra useful information to each
word. As a result, the extended representation of each word consists of the local
context in sentence and the global context in document.

Every sentence in document D can be represented by pre-trained Bi-LM,
thus we get a another sequence of vectors D = (s1, ..., sj, ..., sm) for sentences.
Firstly, we use an attention matrix A to calculate the similarity between the local
context in sentence and global context in the document. The attention weight
value at,j in attention matrix A is computed by comparing the local context h1,t

with each sentence embedding sj :

at,j =
exp(score(h1,t, sj))∑
k exp(score(h1,t, sk))

(3)
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Above score is referred as a bilinear function which is borrowed from Bahdanau
et al. [2] and Luong et al. [19]:

score(h1,t, sj) = hT
1,tWasj (4)

here the weight matrix Wa is a parameter of the model. Secondly, the global
context g1,t is computed as a weighted sum of each sentence embedding sj :

g1,t =
m∑

j=1

at,jsj (5)

Thirdly, we concatenate the global context and local context into a vector
[h1,t;g1,t] to represent each word. Next, the extended representation of each
word become a sequential of intermediate representation, which can be sent into
second BiLSTM.

Decoder. After process of encoding, it is simple to use a linear layer to predict
a score for each possible label independently based on the output of the second
BiLSTM. But there are strong dependencies across output labels, for example,
I-Dise cannot follow B-Test. Therefore, instead of modeling tagging decisions
independently, we add another CRF layer to decode the best label path in all
possible label paths. Followed by Lample et al. [15], we only consider the relations
between labels in neighborhoods and jointly decode the best chain of labels.

We considerP ∈ Rn×k to be the matrix scores output by the second BiLSTM,
where the n is length of input sentence and the k is the number of distinct labels.
The element Pi,j in the matrix is the score of jth label of the ith word in the
sentence. We introduce a label transition matrix T, where element Ti,j represents
a score of a transition from the label i to label j. After that, the whole input
sentence X gets a sequence of predictions y = (y1, y2, ..., yn) from model, we can
define its score to be

s(X,y) =
n∑

i=1

(Tyi−1,yi + Pi,yi) (6)

where the transition matrix T ∈ R(k+2)×(k+2) is the parameter of our model.
In above equation, y0 and yn are the start and end labels of a given sentence.
Therefore, the transition matrix T is a square matrix of size k + 2.

During training, we use the maximum conditional likelihood estimation.
First, as shown in Eq. (7), a softmax function is used to normalize the above
score over all possible label paths ỹ to form the conditional probability of the
path y. Then, the log-likelihood of the conditional probability of the correct tag
sequence is given in Eq. (8). We train the model to maximize the log-likelihood
of the probability of all the correct tag sequences in labeled data to obtain the
final parameters.

p(y|X) =
exp(s(X,y))∑
ỹ exp(s(X, ỹ))

(7)
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L = log(p(y|X)) (8)

During inference, as given in Eq. (9), the best label path y∗ is predicted
through computing the maximum score among all the possible label paths.
Because we only consider the interactions between two successive labels, dynamic
programming such as Viterbi algorithm can be applied to effectively computes
the scores.

y∗ = argmaxỹ s(X, ỹ) (9)

4 Experiments

4.1 Datasets

In this paper, we use datasets from 2010 i2b2/VA Natural Language Processing
Challenges for Clinical Records1 containing a concept extraction task focused
on identifying medical concepts from realistic clinical narratives. Because of the
restrictions introduced by Institutional Review Board (IRB), only part of original
datasets is available. The challenge requires the systems to predict the exact
boundary of medical concepts and classify them into specified category including
problem, test, treatment and other. Table 2 summarizes the statistics of labeled
datasets which we have used in our experiments. In addition, we get a number
of unlabeled clinical notes from MIMIC-III corpus2 [12] for pre-training word
embedding model and Bi-LM.

Table 2. A basic statistics of datasets.

Training data Test data Unlabeled data

# Documents 170 256 5000

# Sentences 16315 27626 1042534

# Mentions 16525 31161 -

4.2 Model Training

Preparation and Evaluation. We split the training data into two parts, 130
documents (about 80%) for training set and 40 documents (about 20%) for
development set. We tune the hyperparameters of our model on development set
and report the results on the test set. Note that, to compare to other existing
methods (Sect. 4.5), the final training is done on both the training and develop-
ment sets. We don’t do any feature engineering except using a special token for
numbers. For evaluation, we do exact matching of entity mentions to compute
micro-precision, micro-recall and micro-F1.

1 https://i2b2.org/NLP/DataSets/Main.php.
2 https://mimic.physionet.org.

https://i2b2.org/NLP/DataSets/Main.php
https://mimic.physionet.org
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Model Architecture Details. Dimensions of word embedding are set 300.
For language model, the hidden state of LSTM has 300 dimensions. For first
BiLSTM in NER model, the hidden state of LSTM also has 300 dimensions. In
consideration of the transfer strategy, the first BiLSTM and Bi-LM have iden-
tical parameter setting. For second BiLSTM in NER model, as it concatenates
the output of first BiLSTM and the representations of global information, the
dimensions of the hidden state of LSTM are 600.

Training Details. For word embedding model, we use skip-gram algorithm [20]
to obtain word vectors on unlabeled data. For Bi-LM, the input embedding layer
is initialized with the weights from word embedding model and other parameters
are initialized with Xavier initialization [9]. Once the pre-training is done, we use
pre-trained Bi-LM to represent the sentences in document and the parameters
of Bi-LM also can be transferred to first BiLSTM in NER model. For NER
model, the input embedding layer is also initialized with the weights from word
embedding model and other parameter are initialized with Xavier initialization
as well. We use SGD with momentum of 0.9 to train the NERmodel. We train our
networks using back-propagation algorithm updating parameter on a batch size
of 10. The initial learning rate is 0.01 and decay the learning rate by multiplying
it by 0.9 if the F1 score does not improve on development set for one epoch. We
use a gradient clipping of 5.0 to avoid gradient exploding problem. We train the
model for 30 epochs and use early stopping to avoid over-fitting.

4.3 Effectiveness of Leveraging Global Information

In this part, we verify the effectiveness of global neural attention augmented
BiLSTM (Att-BiLSTM) compared with plain BiLSTM. In previous work, most
methods treat NER as a sentence-level task. In Contrast, we incorporate the
global information in document to capture the long-range contextual dependen-
cies. As shown in Table 3, in irrespective of the impact of CRF, we perform the
contrast experiments based on only BiLSTM to evaluate the ability of presen-
tations for each input word. From the results, we see that the number of layers
affects the performance. In both of Att-BiLSTM and BiLSTM, the stacked BiL-
STM outperforms the BiLSTM with single layer. Also, the global neural atten-
tion gives an improvement over the plain BiLSTM due to the leveraging of global
information. We observe that the F1 of stacked Att-BiLSTM is 81.62%, which
is an absolute improvement of 1.01% over the plain stacked BiLSTM with no
global neural attention.

To be honest, global neural attention don’t show obvious effects when the
Att-BiLSTM only has one layer. It is because the final tagging predictions mainly
depend on local context for each word, while global context only supplements
extra information. Therefore, our model need another layer to encode the sequen-
tial intermediate vectors containing global context and local context. In other
words, the architecture needs second BiLSTM to learn the differences between
the two contexts.
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Table 3. Performance of leveraging global information.

Model Layers Precision (%) Recall (%) F1(%)

BiLSTM 1 77.53 81.63 79.53

2 80.50 80.71 80.61

Att-BiLSTM 1 78.25 81.17 79.68

2 80.62 82.65 81.62

4.4 Effectiveness of Transfer Strategy

In this part, we verify the effectiveness of transfer strategy. The baselines are
stacked BiLSTM and stacked Att-BiLSTM obtained from above experiments.
In baseline methods, we initialize the parameters of their stacked BiLSTM with
Xavier initialization [9] which has been regarded as an effective initialization
strategy. In comparison to Xavier initialization, we initialize the parameters of
first BiLSTM from the parameters of pre-trained Bi-LM. The results is showed
in Table 4, the simple transfer strategy gives an additional improvement over
baselines. For stacked BiLSTM, the F1 gets an absolute improvement of 0.53%.
Also for stacked Att-BiLSTM, the absolute improvement is 0.71% in F1 score.

Table 4. Performance of transfer strategy.

Model Transfer Precision (%) Recall (%) F1(%)

BiLSTM No 80.50 80.71 80.61

Yes 80.16 82.15 81.14

Att-BiLSTM No 80.62 82.65 81.62

Yes 81.58 83.08 82.33

Fig. 4. Comparison between plain stacked BiLSTM and stacked BiLSTM with transfer
strategy.
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To further verify the effectiveness of transfer strategy, we train the model
with different random seeds. At first, we respectively train the stacked BiLSTM
and stacked BiLSTM with transfer strategy for ten times in different random
seeds. From the results in Fig. 4(a), it shows that the transfer strategy always
increases the performance of plain stacked BiLSTM more or less. We compute
the mean F1 score of stacked BiLSTM with transfer strategy is 81.22%, and
its variance is 0.15%. In contrast, the mean F1 score of plain BiLSTM is only
80.52%, and its variance is 0.08%. Then we randomly select one example to draw
the convergence of the two models. As depicted in Fig. 4(b), transfer strategy
accelerates the model training especially at the first several epochs. Also the
transfer strategy helps the model achieve the better performance at last. Above
comparisons prove the effectiveness of transfer strategy, we believe that it can
promote other similar models which contain LSTM.

4.5 Comparison to Other Methods

In this part, we compare the performance of our model with other existing
methods on the 2010 i2b2/VA datasets. The results are shown in Table 5, the
name of other methods followed by Chalapathy et al. [5]. We have implied the
main ideas of other methods in related work (Sect. 2.1). Form the results, our
model obtains the state-of-the-art performance than others. Although we only
get nearly 0.5% F1 score higher than the previous state-of-the-art method which
is the best submission from the 2010 i2b2/VA challenge, their model is based on
original dataset which has more than twice labeled data than ours.

To understand the importance of leveraging global information and trans-
fer strategy, we implement the common BiLSTM-CRF model as baseline. The
results confirm that leveraging global information increases F1 score by 0.53%
(from 84.66% to 85.19%) and increases F1 score by 1.05% (from 84.66% to
85.71%) with additional transfer strategy. We conclude that our model relieves

Table 5. Performance comparison with other existing methods on the 2010 i2b2/VA
datasets. * indicates models trained with the use of original larger labeled data.

Model Precision (%) Recall (%) F1(%)

Distributional semantics CRF * [11] 85.60 82.00 83.70

Hidden semi-markov model * [6] 86.88 83.64 85.23

Truecasing CRFSuite [8] 80.83 71.47 75.86

CliNER [1] 79.50 81.20 80.00

Binarized neural embeding CRF [26] 85.10 80.60 82.80

Glove-BiLSTM-CRF [5] 84.36 83.41 83.88

BiLSTM-CRF 86.21 83.17 84.66

Att-BiLSTM-CRF 85.51 84.87 85.19

Att-BiLSTM-CRF+Transfer 86.27 85.15 85.71
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the problem of ignoring the long-range contextual dependencies and the pre-
trained Bi-LM makes use of unlabeled data to further improve the performance.

5 Conclusion

In this paper, we propose an attention-based neural network architecture to
leverage document-level global information to alleviate the problem of ignor-
ing long-range contextual dependencies for clinical NER task. In addition, we
explore a transfer strategy to further make use of unlabeled data using pre-
trained Bi-LM. Our results of experiments show that the transfer strategy consis-
tently improve the performance. Owing to the above two advantages, our model
achieves the state-of-the-art performance on public 2010 i2b2/VA datasets.

Although we use clinical data to verify the effectiveness of our method, the
Att-BiLSTM-CRF model can be adapted to other domain where global con-
text is useful. Moreover, the transfer strategy using Bi-LM has generalization
performance.
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