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Abstract

Enhancing computational efficiency and reduc-
ing deployment costs for large language mod-
els (LLMs) have become critical challenges in
various resource-constrained scenarios. In this
work, we present DistilQwen2.5, a family of
distilled, lightweight LLMs derived from the
public Qwen2.5 models. These distilled models
exhibit enhanced instruction-following capabil-
ities compared to the original models based on
a series of distillation techniques that incorpo-
rate knowledge from much larger LLMs. In
our industrial practice, we first leverage power-
ful proprietary LLMs with varying capacities
as multi-agent teachers to select, rewrite, and
refine instruction-response pairs that are more
suitable for student LLMs to learn. After stan-
dard fine-tuning, we further leverage a compu-
tationally efficient model fusion approach that
enables student models to progressively inte-
grate fine-grained hidden knowledge from their
teachers. Experimental evaluations demon-
strate that the distilled models possess signifi-
cantly stronger capabilities than their original
checkpoints. Additionally, we present use cases
to illustrate the applications of our framework
in real-world scenarios. To facilitate practical
use, we have released all the DistilQwen2.5
models to the open-source community. !

1 Introduction

Large language models (LLMs) have emerged as a
transformative technology in NLP, powering a wide
array of applications from machine translation to
conversational agents (Zhao et al., 2023). However,
the rise of LLMs has been accompanied by several
challenges, notably the substantial computational

* C. Wang and J. Yan contributed equally to this work.
Correspondence to: C. Wang.

'Our trained lightweight models and our processed
large instruction-following dataset are released in Hugging-
Face. Please refer to the four models DistilQwen2.5-
0.5B-Instruct, DistilQwen2.5-1.5B-Instruct, DistilQwen2.5-
3B-Instruct, DistilQwen2.5-7B-Instruct and the dataset
DistilQwen_100k.
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Figure 1: Brief comparison between original Qwen2.5
and DistilQwen2.5 models in terms of AlpacaEval 2.0
(Iength-controlled) and IFEval scores.

resource requirements and high deployment costs.
Reducing the parameter sizes of LLMs while main-
taining or even improving performance has become
a critical area of research.

Knowledge distillation (KD) is a promising ap-
proach to addressing these challenges by transfer-
ring knowledge from a larger model (the teacher)
to a smaller model (the student) (Xu et al., 2024).
Previous works have primarily focused on specific
KD techniques to develop more robust student mod-
els (Hsieh et al., 2023; Gu et al., 2024; Yue et al.,
2024b; Zhang et al., 2024). However, there is a lack
of studies investigating good industrial practices
that create a series of distilled lightweight LLMs
with varying sizes and capacities.

In this paper, we introduce DistilQwen2.5, a se-
ries of distilled LLMs derived from the Qwen2.5
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models?. In the beginning of the KD process, pro-
prietary teacher LLMs, serving as multiple agents,
are utilized to select, rewrite, and refine instruction-
response pairs, tailoring them to be more conducive
to learning by smaller student models. In particular,
a Chain-of-Thought (CoT) (Wei et al., 2022) rewrit-
ing approach is employed to significantly enhance
the reasoning abilities of the distilled models. Be-
yond standard fine-tuning, we further introduce a
model fusion approach to enable student models to
incrementally integrate fine-grained hidden knowl-
edge from their teacher models in a computation-
ally efficient manner. This approach enhances the
depth of understanding in student models beyond
what black-box distillation processes can achieve.

In our experiments, we demonstrate that the re-
sulting DistilQwen2.5 models show remarkable im-
provements in instruction-following performance
across various NLP tasks compared to their origi-
nal counterparts. Briefly, we present the AlpacaE-
val 2.0 (length-controlled) (Dubois et al., 2024)
and IFEval (Zhou et al., 2023) scores of the Dis-
tilP@wen2.5 models in Figure 1. To enhance the
public accessibility of our work, all models have
been made available to the open-source community.
Furthermore, we describe two use cases to demon-
strate the applications of our work in real-world
scenarios.

2 Related Work and Discussion

Knowledge distillation (KD), originally proposed
by Hinton et al. (2015), has emerged as a key tech-
nique for improving the efficiency of neural net-
works. Prior to the era of LLMs, several studies
successfully demonstrated the distillation of BERT-
based models (Sanh et al., 2019; Jiao et al., 2020;
Sun et al., 2020; Pan et al., 2021; Hou et al., 2023),
primarily focusing on specific NLP tasks. However,
distillation for LLMs presents unique challenges
due to the intricate dependencies among prediction
tokens. In the literature, f-Distill (Wen et al., 2023)
minimizes a generalized f-divergence function for
sequence-level KD. MiniLLM (Gu et al., 2024)
introduces a reverse Kullback-Leibler divergence
(KLD) objective to distill knowledge from white-
box LLMs to student models. Wu et al. (2025) pro-
pose an adaptive approach that allocates weights
to combine forward and reverse KLD objectives.
FuseLLM (Wan et al., 2024) merges multiple pow-

https://qwenlm.github.io/blog/qwen?.
5/
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Figure 2: Functionalities for LLMs/agents used in data
augmentation and black-box distillation. Disclaimer:
We use the Qwen logo in the figure; however, any LLMs
with sufficient capabilities can be used as well.

erful LLMs into a more capable student model.

Given that many powerful LLMs are accessible
only through APIs, KD from proprietary LLMs to
smaller open-source models (referred to as black-
box KD) has garnered significant attention (Hsieh
et al., 2023). To facilitate distillation from more
advanced LLMs, some researchers leverage these
models for data augmentation to fine-tune student
LLMs (Yue et al., 2024a). Li et al. (2024) utilize
the data selection capabilities of student LLMs to
refine instruction-tuning data. Lou et al. (2024)
generate multi-faceted instructions for diverse tasks
to enhance black-box KD. Additionally, Yue et al.
(2024b) propose a task-aware curriculum planning
framework to improve instruction refinement.

In contrast to prior work, our approach empha-
sizes industrial practices that leverage the strengths
of both black-box and white-box KD methods.
Moreover, efficiency remains a critical barrier in
industry, particularly for white-box KD. To address
this, our work incorporates an efficient algorithm to
integrate hidden knowledge from teacher models.

3 Ouwur Approach

In this section, we describe the industrial practices
for distilling the DistilQwen2.5 models.

3.1 Multi-Agent Data Augmentation as

Black-Box Knowledge Distillation

We first leverage multi-agent data augmentation as
black-box KD, where proprietary teacher models
serve as the sources of knowledge. This approach
is more computationally efficient than white-box
KD and allows us to select more powerful propri-
etary models as teachers. In our work, we employ
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Qwen-max® to process the Chinese texts due to
its strong capabilities in handling the Chinese lan-
guage, and GPT-4/GPT-4o for other languages. In
Figure 2, we can see that a controller coordinates
the entire pipeline of generating responses directly
from the teacher model and invoking LL.M agents
to augment the training data. The functionalities of
these LLM agents are described below.
Expansion Agent. The expansion agent is em-
ployed to generate a diverse set of instruction vari-
ations, ensuring that student models are exposed to
a comprehensive range of instructions. Importantly,
it preserves the original NLP task category of the
input instruction to prevent hallucinations and se-
mantic drift caused by LLMs. For example, given
the input “Provide a brief overview of Newton’s
First Law of Motion”, the output could be “Explain
the meaning of Kepler’s Third Law”, but not “Give
me a brief introduction to Albert Einstein’s life”.
After instruction expansion, we also call the teacher
model to generate responses for new instructions.
Rewriting Agent. The rewriting agent further en-
hances the quality and diversity of the training data.
Unlike the expansion agent, the rewriting agent op-
erates under stringent constraints to preserve the
semantic integrity of the tasks expressed in instruc-
tions, ensuring that the rewritten content remains
faithful to the original intent and task category. For
example, the instruction “Provide a summary of
the economic impacts of climate change” might be
rewritten as “Explain how climate change affects
the economy”. Regarding the generated responses,
we encourage them to be Chain-of-Thought (CoT)
outputs for complex tasks such as logical reason-
ing, mathematical problems, and code generation
(Wei et al., 2022), as this significantly enhances
the cognitive reasoning abilities of distilled, small
models (Hsieh et al., 2023; Yue et al., 2024b).
Selection Agent. The selection agent automati-
cally evaluates and chooses instruction-response
pairs that are highly valuable for training the stu-
dent model. This selection process is guided by var-
ious heuristic criteria, including informativeness,
helpfulness, and potential for generalization to sim-
ilar tasks. Additionally, we consider task balance
when selecting these pairs, following the approach
of Yue et al. (2024b). This guides the controller to
filter out less useful data instances.

Verification Agent. Different from the selection
agent, the verification agent is invoked each time

‘https://qwenlm.github.io/
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new instruction-response instances are generated
by LLMs to check the factual correctness. Specifi-
cally, we leverage the underlying LLMs to check
whether the instructions are reasonable and whether
the responses correctly solve the tasks expressed
by the instructions.

Overall, the augmented dataset leverages a black-
box KD method by encapsulating the distilled
knowledge from larger models into training exam-
ples for student models. The distillation training
process follows a supervised learning paradigm,
utilizing the augmented instruction-response pairs.

3.2 Efficient Model Fusion as White-Box
Knowledge Distillation

In contrast to black-box KD, white-box KD in-
volves having the student model mimic the dis-
tribution of the teacher model’s logits, providing
richer knowledge compared to learning from only
the token with the highest output probability. In
our work, we conduct white-box KD after the com-
pletion of black-box KD to maximize the utility
of computational resources and aim to further im-
prove the performance of student models by learn-
ing richer knowledge. We assume that the student
model, with learnable parameters 6, has a probabil-
ity function pg that is differentiable with respect
to 0. The token-level logits difference between pr
(from the teacher model) and pg (from the student
model) is defined as follows:

1
De(z,y) =

ol

L
> Do (- L yen, ) 5 [ y<n))
n=1

M
where x and y denote the input and output se-
quences, respectively, and L is the sequence length.
The function Dy(-) can be any divergence mea-
surement, such as KLD (Gu et al., 2024), reverse
KLD (Wu et al., 2025), etc. The KD loss aims
to minimize the divergence between the token se-
quences of the student and the teacher:
L(Q) - IEE(:/v,y)w(X,Y) [D@(l‘, y)] : 2
For industrial-scale implementation, it is infeasi-
ble to leverage existing white-box KD approaches
such as those by Gu et al. (2024) and Wu et al.
(2025). The reasons are twofold: 1) If the forward
pass of the teacher model is performed simultane-
ously with the training of the student model, the
GPU memory consumption becomes excessively
high, especially when the teacher model is very
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Model AlpacaEval 2.0 MT-Bench MT-Bench IFEval IFEval
(Length-Controlled) (Single) (instruct-loose)  (strict-prompt)
Qwen2.5-0.5B-Instruct 2.46 5.49 6.26 42.81 30.31
DistilQwen2.5-0.5B-Instruct” 4.72 5.71 6.74 51.44 37.15
DistilQwen2.5-0.5B-Instruct 4.89 5.78 6.83 52.61 37.82
Qwen2.5-1.5B-Instruct 6.69 7.09 7.66 55.40 40.11
DistilQwen2.5-1.5B-Instruct” 13.30 7.27 7.90 60.63 73.02
DistilQwen2.5-1.5B-Instruct 13.69 7.35 7.99 61.10 74.49
Qwen2.5-3B-Instruct 17.98 7.92 8.40 61.18 74.58
DistilQwen2.5-3B-Instruct™ 20.81 8.33 8.94 65.80 77.10
DistilQwen2.5-3B-Instruct 20.91 8.37 8.97 67.03 77.36
Qwen?2.5-7B-Instruct 3143 8.52 8.83 81.53 72.10
DistilQwen2.5-7B-Instruct™ 34.78 8.75 9.19 83.41 73.20
DistilQwen2.5-7B-Instruct 34.86 8.76 9.22 83.48 73.27

Table 1: Performance comparison between the original Qwen2.5 model and the DistilQwen2.5 models in terms of
instruction-following abilities across four parameter sizes: 0.5B, 1.5B, 3B, and 7B. Note: * indicates a variant of
our model utilizing black-box KD over processed datasets.

large (e.g., 32B/72B). ii) The vocabulary of the
teacher and student models may not match, leading
to a mismatch of the logits tensors of both models.

In our work, we observe that the sum of the prob-
abilities of the top-10 tokens is almost equal to 1.
This indicates that nearly all the knowledge of the
teacher model is contained within the top-10 to-
kens. Therefore, we build a scalable white-box KD
system that supports the following features: i) A
token alignment operation (Wan et al., 2024) is first
conducted if the logits tensors of both models do
not match. ii) A distributed computing process is
executed offline to generate the teacher model’s log-
its with top- K probabilities, where K = 10 is set
as default and adjustable for customized scenarios.
iii) A variant of Dy(-) is implemented where only
the top-K elements are calculated for divergence
minimization. Let

ar = [, 28 ) 3)
z5 = [Z,(S’l)a ng)’ o 7ZéK)] (4)

be the top-K logits from the teacher model, and
the corresponding logits from the student model
with matched indices in the vocabulary. The prob-
abilities for computing Dy(-) is then calculated as
follows:

pr = —2er/7) 5)
> k=1 exp(zp/T)
ps = s/ T) (©)

S ep(z§/T)
where 7 is the temperature hyperparameter. This
approach not only reduces computation time but
also improves the speed of storing and reading the
logits, alleviating the storage pressure of our cloud
computing system.

4 Experimental Evaluation

In this section, we present experimental setups
and evaluation results of the DistilQwen2.5 mod-
els. Due to the space limitations, case studies are
further presented in the appendix.

4.1 Experimental Setup

The initial dataset consists of instruction-response
pairs collected from several popular public datasets,
including OpenHermes 2.5%, the Cleaned Alpaca
Dataset’, and LCCD (Wang et al., 2020), together
with our in-house datasets. The pre-processing
steps follow the method presented in (Yue et al.,
2024a). Subsequently, the instruction-response
pairs are carefully expanded, rewritten, verified
and selected. To create a series of smaller stu-
dent LLMs, we utilize the Qwen2.5 series as
our backbone models, including their instruct ver-
sions with varying sizes: 0.5B, 1.5B, 3B, and 7B.
The white-box teacher models are selected from
Qwen2.5-14B/32B/72B-Instruct. For
student model distillation, the default learning rate
and the epochs are set to 1 x 1075 and 3, respec-
tively. We train all the models on a server equipped
with eight A800 GPUs, each with 80GB memory.

4.2 Evaluation Benchmarks

AlpacaEval 2.0 (Iength-controlled) (Dubois et al.,
2024) assesses the instruction-following capabil-
ities of LLMs across various domains. MT-
Bench (Bai et al., 2024) is utilized to evaluate the
multitasking abilities of our models. This bench-

*https://huggingface.co/datasets/
teknium/OpenHermes—-2.5

Shttps://github.com/gururise/
AlpacabDataCleaned
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mark challenges models with diverse tasks that
require an understanding of multiple domains and
the ability to quickly adapt to changing instructions,
under both single-turn and multi-turn conversation
settings. IFEval (Zhou et al., 2023) assesses how
models perform during dynamic user interactions.
For rigorous comparison, we report the results in
both instruct-loose and strict-prompt settings.

4.3 Main Experimental Results

The results of our experiments are summarized in
Table 1. As illustrated, the DistilQwen2.5 mod-
els demonstrate superior performance across all
benchmarks, outperforming both the baseline and
original models by significant margins. More-
over, the proposed model fusion technique en-
hances the models’ capabilities after the black-
box KD process. We further observe that the im-
provement is more pronounced for smaller stu-
dent backbones. Specifically, the improvement
of DistilQwen2.5-0.5B-Instruct com-
pared to Qwen2.5-0.5B-Instruct is larger
than that of DistilQwen2.5-7B-Instruct
compared to Qwen2.5-7B-Instruct. This
shows that the potential of smaller students is larger
in terms using KD. Overall, the experimental re-
sults empirically validate our distillation frame-
work, demonstrating its effectiveness in enhancing
the task-solving performance of lightweight LLMs.

4.4 Analysis on White-Box KD

Inference Speed of Teacher Logits Generation.
In our experiments, we measure the latency associ-
ated with generating logits across different sizes of
teacher models, as shown in Figure 3. Our imple-
mentation achieves a significantly accelerated in-
ference speed, obtaining a 3x to 5x speedup com-
pared to the vanilla implementation. Additionally,
the reduction in logits does not lead to any notice-
able decrease in the instruction-following abilities
of the distilled smaller models, as revealed by our
exploratory experiments.

Sum of Probabilities of Top-K Tokens. We fur-
ther adjust the value of K and compute the sum
of probabilities of the top-K tokens, with the re-
sults shown in Figure 4. It can be observed that
when K > 10, the sum of probabilities exceeds
0.97, which provides sufficient knowledge for the
student model to learn. Therefore, we recommend
setting K = 10 as the default value.

Analyzing the Parameter Sizes of Teacher
LLMs. We conduct the first set of experiments
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generation between our approach and the vanilla ap-
proach (average seconds per sample).
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Figure 4: Sum of probabilities of top-K tokens.

following the completion of black-box KD. The re-
sults, presented in Figure 7, demonstrate a trend of
diminishing returns as teacher sizes increase (from
14B to 72B), indicating that larger teacher models
offer limited improvements to the student model.
This finding suggests that teacher models should
not be excessively large to minimize computational
costs. The second set of experiments is conducted
on model checkpoints without black-box KD, with
results shown in Figure 5. We observe that as the
dataset size increases, the improvement also gradu-
ally diminishes, indicating a diminishing return on
additional data. However, notable improvements
are observed with larger teacher models when the
dataset comprises between 10K to 100K samples,
suggesting that it can be more beneficial within the
specific range.

4.5 Fine-grained Model Capacity Analysis

In this section, we provide a detailed capacity anal-
ysis of the DistilQwen2.5 models, leveraging the
MT-bench benchmark (Bai et al., 2024) to quantify
their performance across a diverse array of NLP
tasks. Due to space limitations, we show the results
for two smallest models, with other models exhibit-
ing similar trends. These results are detailed in
Table 2. Our analysis not only showcases the broad
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Figure 5: Performance of white-box KD with varying teacher/student model sizes and dataset sizes.

Task Type 0.5B 0.5B* | 1.5B 1.5B°
Writing 6.08 6.68 8.38 8.38
Roleplay 7.07 7.43 7.26 8.13
Reasoning 4 4.2 39 4.8

Mathematics | 4.65 4.65 6.85 6.98
Coding 4 4.08 4.6 5.04
Extraction 3.55 4.5 6.4 6.6

STEM 6.55 6.83 9.65 9.28
Humanity 8.1 7.95 9.73  9.83

Table 2: Detailed task-specific score comparisons be-
tween the original Qwen2.5 and DistilQwen2.5 models
(0.5B and 1.5B, marked as *) on MT-bench.

applicability of our DistilQwen2.5 models but also
proves their enhanced capabilities and performance
improvements over the original models.

4.6 Comparison Against Other Small Models

To compare the performance against other mod-
els, we present the ranking in Figure 6. Notably,
the DistilQwen2.5 series demonstrates remark-
able cost-effectiveness, achieving performance that
closely rivals models with parameter sizes either
approaching or exceeding double its own.

5 Industrial Use Cases

In addition to the DistilQwen2.5 models presented,
we outline two industrial use cases that illustrate
the practical utility of our framework and models.

5.1 SQL Completion for Big Data Platform

In addition to instruction following, our framework
can also address other tasks, such as code com-
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Figure 6: Comparison between various small models
(<10B) based on AlpacaEval 2.0 (length-controlled).

pletion, which is also an auto-regressive task for
LLMs. Here, we present a real-world application
w.r.t. SQL completion. It helps users to formulate
complex queries, optimize SQL statements, add
conditions, or join tables based on existing queries.
This technique significantly improves both the effi-
ciency and accuracy of query composition and is
widely utilized in our online big data platforms.

In the context of SQL completion for our big
data platform, the primary evaluation metrics are
Latency, Pass@ ] and Adoption Rate. Latency mea-
sures the system’s speed in generating real-time
suggestions as users input queries, whereas Pass@ /
and Adoption Rate reflect the utility and accuracy
of the model’s output based on automatic evalua-
tion and human feedback. A key challenge is the
trade-off between model scale and the performance
metrics: although larger models can achieve higher
adoption rates, they often result in increased infer-



7.0

Il Black-box KD Only
White-box KD (14B)

B White-box KD (32B)

B White-box KD (72B)

6.5

6.0

5.54

5.0

4.5
AlpacaEval 2.0

MT-Bench

MT-Bench (Single)

(a) Student size: 0.5B

14

N Black-box KD Only
White-box KD (14B)

B White-box KD (32B)

mmm \White-box KD (72B)

13

12

11

10

9

8

7
AlpacaEval 2.0 MT-Bench MT-Bench (Single)

(b) Student size: 1.5B

Figure 7: Comparison between black-box KD and white-
box KD with varying teacher model sizes after black-
box KD, in terms of AlpacaEval 2.0 (length-controlled)
and MT-Bench scores (both full and single).

ence time, which adversely affects latency. There-
fore, the central optimization challenge for SQL
completion in big data platforms lies in enhancing
completion efficacy while maintaining a relatively
compact model size.

During the initial deployment phase, we utilize
the fine-tuned Qwen2.5-7B model for deploy-
ment, which is quantized to int4 precision. By
applying KD on a fixed dataset (i.e., an in-house
SQL corpus), we obtain a Qwen?2 . 5-3B model.
This model achieves a significant improvement,
closely matching the performance of the 7B model,
while increasing the inference speed by 1.4x. The
online performance of these models is shown in
Table 3, where Adoption Rate is obtained through
online A/B testing on the big data platform. Hence,
our KD technique effectively balances performance
and computational efficiency.

5.2 KD Functionalities on AI Platform

It should be acknowledged that our DistilQwen2.5
models are primarily designed for general domains.
For domain-specific applications, further enhance-
ment is necessary (as in the SQL completion case).
To enable business users or LLM developers to dis-
till their own models, we have integrated the con-
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Instruction
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Seed Response/Logits }

Generation

Model Size | Latency Pass@1 Adoption Rate
(ms) (%)

7B (teacher) 384 18.8 26.5

3B (student) 148 17.9 25.5

Table 3: Performance evaluation for SQL completion.

tinual KD feature together with the DistilQwen2.5
models into a cloud-native Al platform.

To facilitate seamless model optimization and
customization, our Al platform provides robust KD
functionalities, as shown in Fig. 8. It allows users
to iteratively refine and tailor the DistilQwen2.5
models to specific domains. Key pipelines include:
(1) the Knowledge Production Pipeline (KPP) and
(2) the Distillation Training Pipeline (DTP). In KPP,
optimal steps of instruction expansion and refine-
ment can be applied to user-provided seed instruc-
tions from arbitrary domains. The teacher LLMs
are then leveraged to generate responses or output
logits according to user settings. In DTP, users can
define custom training settings for either black-box
or white-box distillation trainers, leveraging cloud
resources for scalable distillation training. After
that, the student model can be utilized for evalua-
tion and deployment.

6 Conclusion and Future Work

In this paper, we introduce DistilQwen2.5, a fam-
ily of distilled lightweight LL.Ms derived from the
Owen2.5 models. By leveraging both black-box
and white-box KD techniques and efficient imple-
mentations and multiple agents, we demonstrate
substantial improvements in model performance
and real-world applications. For future work, we
plan to investigate more diverse domain-specific
applications to extend the practical impact of our
framework. We also aspire to enhance the collab-
orative aspects of model fusion to allow for more
dynamic knowledge transfer.



Limitations

While the DistilQwen2.5 models demonstrate sig-
nificant enhancements, several limitations remain
that warrant further investigation. The distillation
process hinges on the quality of the teacher mod-
els. Biases or errors inherent in the teacher models
could propagate into the student models, poten-
tially affecting their performance and fairness in
specific contexts. Additionally, while we showcase
domain-specific applications, the generalizability
of our framework across diverse domains and lan-
guages remains to be thoroughly evaluated, which
is beyond the scope of this work. Addressing these
limitations will contribute to more robust LLMs
tailored to a wider array of applications.

Ethical Considerations

Distillation techniques make it feasible to deploy
LLMs in resource-constrained environments, they
also introduce the potential for bias and misinfor-
mation inherited from the teacher models. Addi-
tionally, the open-sourcing of DistilQwen2.5 mod-
els facilitates accessibility, but also raises concerns
regarding misuse. Responsible use of the models
requires establishing guidelines to prevent appli-
cations that may cause harm, violate privacy, or
amplify malicious behavior.
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A Case Studies
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Question

Problem:

If the system of equations: 6x-4y=a, 6y-9x=b. has a solution (z, y) where = and y are both nonzero, find £,
assuming b is nonzero.

Solution:

Ground Truth

‘_2

3

Qwen2.5

To find the value of a/b, we start by solving the system of equations for x and y in terms of a and b.
Given the system of equations 6x - 4y =a 6y - 9x = b,

First we can simplify these equations, Equation 1 can be written as 3x - 2y = a/2

Equation 2 can be written as -3x + 6y = b,

Next we add equations 3 and 4 to eliminate x, (3x - 2y) + (-3x + 6y) =a/2 + b

which simplifies to 4y = a/2 + b. Solving for y, we get y = (a + 2b)/8.

Next we subtract equation 4 from equation 3 to eliminate y,

(3x - 2y) - (-3x + 6y) = a/2 - b, which simplifies to 6x - 8y =a/2 - b

Substituting the value of y from equation 5 into this equation, we get 6x - 8((a + 2b)/8) =a/2 - b
which simplifies to 6x - (a+ 2b) =a/2-borb6x=a+2b+a/2 - b,

which further simplifies to 6x = (2a + 4b + a - 2b)/2 = (3a + 2b)/2.

Solving for x we get x = (3a + 2b)/12 = (a + (2b)/3)/4,

Now we need to find the ratio a/b From equation 5. We have y = (a + 2b)/8 From equation 6 we have
x = (3a+2b)/12

We substitute these expressions into the original equations.

Using equation 1 6x - 4y = a we substitute x = (3a + 2b)/12

and y = (a + 2b)/8 6((3a + 2b)/12) - 4((a + 2b)/8) = a, which simplifies to

(6(3a +2b))/12 - (4(a+2b))/8 =a

or (3a + 2b)/2 - (a + 2b)/2 = a, which further simplifies to (3a +2b-a-2b)/2=aor (2a)/2 =a,
which is true This confirms our expressions are correct. From the simplified equations

we derive the ratio a/b = 2.

Thus the value of a/b is 2.

DistilQwen2.5

To solve the given system of equations and find £, we start with the equations:
6x -4y =a,

6y - 9x =b.

First, we express X and y in terms of a and b. We can rewrite the equations as:
6x -4y =a,

-9x + 6y =b.

To eliminate one of the variables, we can multiply the first equation by 3 and the second equation by 2:
18x - 12y = 3a,

-18x + 12y = 2b.

Now, we add these two equations together:

(18x - 12y) + (-18x + 12y) = 3a + 2b.

This simplifies to: 0 = 3a + 2b.

From this, we can solve for % = -%

Table 4: Output comparison between original Qwen2.5 and DistilQwen2.5 models.

Question

| What breed dog is smallest?

Qwen2.5

The smallest breed of dog is generally considered to be the Chihuahua.

However, there are other very small breeds that are often mentioned, such as the Yorkipoo

(a mix between a Yorkshire Terrier and a Poodle),

Morkie (a mix between a Maltese and a Yorkshire Terrier), and Puggle (a mix between a Pug and a Beagle).
But in terms of pure breeds, the Chihuahua is the smallest.

Chihuahuas typically weigh between 2 and 6 pounds (0.9 to 2.7 kg)

and stand about 6 to 9 inches (15 to 23 c¢m) tall at the shoulder.

DistilQwen2.5

| The Chihuahua is generally recognized as the smallest dog breed in the world.

Table 5: Output comparison between original Qwen2.5 and DistilQwen2.5 models.

41



Question

Write a product description for a new line of dog toys, called the squeaker:

It’s made of latex, and is designed for dogs of all ages and species.

It’s also available in a variety of colors and shapes.

The response must contain at least 3 placeholders represented by square brackets,
such as [address], [name], and [phone number].

Qwen2.5 Introducing the [address] Pet Supply’s newest addition to our toy line: the Squeaker!
Designed with love and play in mind, our Squeakers are crafted from high-quality,
durable latex that stands up to even the most enthusiastic chewers.
Whether your [name] is a playful puppy or a seasoned senior, our Squeakers are perfect for dogs
of all ages and species, providing endless hours of fun and stimulation. Available in a vibrant array of colors
and shapes, our Squeakers are not just toys; they’re companions for playtime.
From the classic [shapel] to the whimsical [shape2], each design is carefully chosen to engage your [name]’s
curiosity and keep them entertained.
The unique squeaker mechanism ensures that every play session is filled with excitement and joy.
Order your [name]’s new favorite toy today by visiting our website or giving us a call at [phone number].
We’re here to help you find the perfect Squeaker to keep your [name] happy and healthy. Happy playing!
DistilQwen2.5 | Introducing The Squeaker — the ultimate playtime companion for your furry friend!

Crafted from durable, high-quality latex,

The Squeaker is designed to provide endless entertainment for dogs of all ages and breeds.

Available in a vibrant array of colors and fun shapes,

this toy is perfect for keeping your pet engaged and happy.

Each Squeaker features a built-in squeak mechanism that will capture your dog’s attention

and stimulate their natural instincts to play and explore.

Whether your dog loves to chew, fetch, or simply cuddle with their toys, The Squeaker is sure to

become their new favorite.

Order yours today and watch your dog’s tail wag with joy!

For more information, visit our website at [website], or contact our customer service team at [phone number].
Don’t miss out on the fun — make playtime special with The Squeaker![PetJoy] — Bringing joy to pets and
their owners.

Table 6: Output comparison between original Qwen2.5 and DistilQwen2.5 models.
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