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Abstract

Model editing aims to correct outdated or erroneous knowl-
edge in large models without costly retraining. Recent re-
search discovered that the mid-layer representation of the
subject’s final token in a prompt has a strong influence on
factual predictions, and developed Large Language Model
(LLM) editing techniques based on this observation. How-
ever, for Vision-LLMs (VLLMs), how visual representations
impact the predictions from a decoder-only language model
remains largely unexplored. To the best of our knowledge,
model editing for VLLMs has not been extensively studied
in the literature. In this work, we employ the contribution al-
location and noise perturbation methods to measure the con-
tributions of visual representations for token predictions. Our
attribution analysis shows that visual representations in mid-
to-later layers that are highly relevant to the prompt contribute
significantly to predictions. Based on these insights, we pro-
pose VisEdit, a novel model editor for VLLMs that effectively
corrects knowledge by editing intermediate visual represen-
tations in regions important to the edit prompt. We evaluated
VisEdit using multiple VLLM backbones and public VLLM
editing benchmark datasets. The results show the superior-
ity of VisEdit over the strong baselines adapted from existing
state-of-the-art editors for LLMs.

1 Introduction
With increasing number of LLM applications (Touvron et al.
2023; Roumeliotis et al. 2023; Zeng et al. 2023), there’s
a rising demand for updating the static knowledge inside
the LLM using model editing techniques (Cao et al. 2021;
Mitchell et al. 2022a; Yao et al. 2023). It aims to efficiently
correct knowledge within LLMs without the necessity for
retraining. This technology plays a key role in eliminating
illusions (Mishra et al. 2024; Yin et al. 2023), reducing bias
(Limisiewicz et al. 2023; Akyürek et al. 2023), and protect-
ing privacy (Ishibashi et al. 2023; Wu et al. 2023) for LLMs.

Recent model editing works primarily focus on the
text modality only. They can be broadly categorized into
three types: (1) Methods which directly modify parameters
(Mitchell et al. 2022a; Meng et al. 2022, 2023; Hu et al.
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2024) typically locate and modify the MLP weights impor-
tant for token prediction. (2) Methods which add extra mod-
ules (Huang et al. 2023; Hartvigsen et al. 2024; Yu et al.
2024) make response correction by constructing additional
bypass modules for the model. (3) Methods which use pre-
fix editing (Zheng et al. 2023; Jiang et al. 2024; Chen et al.
2024) aim to make the model follow editing instructions in-
serted before the input text.

Compared to single-modality cases, editing Vision-LLMs
(VLLMs) that incorporate both visual and text inputs poses
unique challenges, and have not been widely explored.
Cheng et al. (2023) attempted to adapt LLM editors to
VLLMs and established quantitative metrics for VLLM edit-
ing. Their experiments suggest that LLM editors are not very
suitable for VLLMs. They hypothesize that the cause of re-
sponse errors may not only stem from the weights of the
LLM decoder but also from the interactions between the two
modalities. In exploring the connections between text and
visual modalities, some efforts (Schwettmann et al. 2023;
Pan et al. 2023) focus on identifying visual neurons within
the LLM decoder. Basu et al. (2024) reveal that a few fi-
nal output representations of the visual encoder significantly
contribute to visual constraints in the prompt at the LLM’s
first layer. Nonetheless, it is still unknown how visual repre-
sentations affect the final predictions within the whole com-
putation graph of VLLMs. Understanding this can better elu-
cidate the response generation process of VLLMs and bene-
fit VLLM editing.

To address these challenges, we first analyze the impact of
visual representations on token predictions in VLLMs based
on contribution allocation and noise perturbation methods.
Based on the analysis results, we introduce a novel VLLM
editor named VisEdit. Our works are summarized below.
Visual Representation Attribution: The middle part of
Figure 1 illustrates the dependencies between hidden states
in the computation graph of a typical VLLM. Firstly, we
measure the contributions of each layer’s MLP and attention
modules to the key token (e.g., “bear”) prediction by map-
ping each module’s output to the predicted probability of the
key token. Subsequently, we employ a noise perturbation-
based attribution method (Ribeiro et al. 2016; Fong et al.
2017; Meng et al. 2022) to assess each visual representa-
tion’s contribution to the subsequent layer’s attention mod-
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Figure 1: Attribution analysis for LLaVA-V1.5 (Liu et al. 2023). E1: Measuring contributions of the attention and MLP outputs
at each layer to the prediction of a key token. Average results on E-VQA (Cheng et al. 2023) dataset are displayed in the bar
chart. E2: Measuring the contributions of visual representations to the attention module outputs. The results for four samples are
visualized in the heatmaps, where red indicates higher contributions and blue indicates lower. T* and L* respectively indicate
the test sample index and the layer index selected by the visual representations attribution analysis. In each sample, the italicized
bold text and the underlined text respectively represent the last token used for prediction and the key token to be predicted.

ule output. For one specific layer, we perturb one visual hid-
den state while fixing the others, and then compute a new
attention output. A smaller similarity between the new atten-
tion output and the original one indicates the change in the
selected visual representation affects the attention module
output more significantly, or makes a greater contribution in
simple terms. The brief results of these two steps are shown
on the right side of Figure 1, which indicate:

• Outputs of deep model layers contribute more signifi-
cantly to the key token compared with shallow layers.

• For high-contribution layers, the attention outputs are
mostly influenced by the visual region of the objects
mentioned in the prompts.

Based on the observations, we hypothesize that: In VLLMs,
the early layers tend to aggregate the information queried in
the prompt at the last token. This setup allows deeper lay-
ers to extract information from visual representations of key
regions, facilitating the generation of responses.
The Proposed VLLM Editor VisEdit: According to the
above results, we design an effective VLLM editor. Based on
the first attribution experiment, we place a trainable visual
representation adaptor before the high-contribution layer.
The adaptor applies cross-attention to infuse information of
the edit sample into the visual representations of a given in-
put sample. To ensure that the adaptation of visual repre-
sentations is applied to the most important regions, based
on the second experiment, we introduce an influence map-
per module to identify the key visual regions most relevant
to the edit prompt. In this way, the editor will focus on
the visual representations that are crucial for modifying key
responses, thereby enhancing the efficacy of editing while
leaving irrelevant visual representations mostly untouched.
We conduct editing experiments on three typical VLLMs,
including BLIP2-OPT (2.7B) (Li et al. 2023), MiniGPT-4
(7B) (Zhu et al. 2023), and LLaVA-V1.5 (7B) (Liu et al.
2023), with two VLLM editing datasets, E-VQA and E-IC
(Cheng et al. 2023). The experimental results demonstrate

that our method excels in reliability, text/modal generality,
and text/modal locality metrics, which follow standard eval-
uation protocols of the benchmark (Cheng et al. 2023). Fur-
thermore, comprehensive exploratory experiments have val-
idated the effectiveness of our module designs. Source codes
are available at https://github.com/qizhou000/VisEdit.

2 Related Works
2.1 Vision Language Models
Currently, VLLMs benefited from Vision Transformer (ViT)
(Dosovitskiy et al. 2021) and vision-language pre-training
(Radford et al. 2021) can be generally categorized into two
types (Wadekar et al. 2024), Modal Deep Fusion (MDF) and
Modal Early Fusion (MEF). MDF fuses visual and language
modalities within the internal layers of LLMs using cross-
modal attention (Lu et al. 2019; Alayrac et al. 2022; Dong
et al. 2024). MEF integrates visual modalities before feed-
ing them into the LLM by training specific encoding mod-
ules (Ye et al. 2023; Bai et al. 2023; Li et al. 2023; Zhu
et al. 2023; Liu et al. 2023). For example, BLIP2 (Li et al.
2023) and MiniGPT-4 (Zhu et al. 2023) compress visual rep-
resentations through a Q-Former, while LLaVA (Liu et al.
2023) directly trains an MLP layer after the visual encoder.
Due to its modular architecture, MEF offers greater exten-
sibility and has garnered more attention compared to MDF
(Wadekar et al. 2024). Therefore, this paper primarily fo-
cuses on model editing for MEF-based VLLMs.

2.2 Attribution Analysis
Attribution analysis enhances the interpretability of deep
learning models (Guidotti et al. 2019), with this section fo-
cusing on perturbation-based methods. For instance, Ribeiro
et al. (2016); Fong et al. (2017) use random masking or per-
turbation to assess contributions of image parts. Combining
feature perturbation with causal mediation analysis (Pearl
2001; Vig et al. 2020), Meng et al. (2022) identify LLM
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layers that significantly influence responses. For visual attri-
bution in VLLMs, methods like integrated gradients (Sun-
dararajan et al. 2017) are used to locate neurons recognizing
specific visual concepts (Schwettmann et al. 2023; Pan et al.
2023). Basu et al. (2024) demonstrate that the last few visual
representations significantly influence the visual constraints
of the prompt at the first model layer. However, these works
do not consider how the spatial semantics of visual repre-
sentations influence VLLM prediction.

2.3 Model Editing
Model Editing for LLMs: Model editing methods can be
categorized into three types: modifying parameters, adding
extra modules, and editing prefix. In modifying parameter-
based methods, KE (Cao et al. 2021) and MEND (Mitchell
et al. 2022a) generate model weight offsets according to edit
signals by training an auxiliary network. ROME (Meng et al.
2022) and MEMIT (Meng et al. 2023) utilize causal medi-
ation analysis (Pearl 2001; Vig et al. 2020) to locate FFN
weights that have a significant causal effect on the response
of LLMs, and then edit them. In adding extra modules-based
methods, SERAC (Mitchell et al. 2022b) trains a counterfac-
tual model to respond to redirected queries related to the edit
sample. TP (Huang et al. 2023) trains a piece of knowledge
to be edited as an additional neuron. GRACE (Hartvigsen
et al. 2024) maps the intermediate layer input of the query
to the output in editing space if the distance between their
representations is below a threshold. MELO (Yu et al. 2024)
adjusts LLM weights by adding query-related editing ma-
trices, retrieved through a mechanism similar to GRACE.
In editing prefix-based methods, IKE (Zheng et al. 2023)
uses in-context learning to modify LLMs’ responses. LTE
(Jiang et al. 2024) fine-tunes LLMs to follow editing instruc-
tions. RECIPE (Chen et al. 2024) trains a continuous prompt
generator to find the shortest editing prefix. Among them,
KE and IKE explored the feasibility of related technologies
in single editing. SERAC, GRACE, LTE, and RECIPE, ex-
tended single editing to multiple by incorporating retrieval
mechanisms. To avoid redundant discussions on editing re-
trieval, we primarily explore the contributing mechanisms
of visual representations in VLLM to response generation to
inspire the design of VLLM single editing.
Model Editing for VLLMs: To date, editing methods spe-
cific to VLLMs have not been widely studied. Cheng et al.
(2023) first attempts to migrate LLM editors to edit VLLM
and constructs VLLM editing datasets along with corre-
sponding evaluation metrics. Li et al. (2024) and Zhang et al.
(2024) expand the VLLM editing datasets related to en-
tity knowledge and modality consistency, which are not yet
open-sourced. To address the gap in VLLM editing research,
we analyze how spatial semantics of visual representations
influence VLLM responses and propose a VLLM-specific
editor to encourage further research on the generation and
correction of VLLMs.

3 Attribution Analysis
We evaluate the impact of the visual representations on to-
ken prediction in two steps. First, we compute the contribu-

tion of each layer’s module output to the predicted key to-
ken. Then, for a specific layer, we employ a noise perturba-
tion method to evaluate how changes in a visual hidden state
(synonymous with representation in the context) affect the
attention module output. Figure 1 displays the data flow of
VLLM response generation and the results of two attribution
experiments. For more attribution analysis results, please re-
fer to Appendix C.

Given a VLLM fθ : Xv × Xt 7→ O that maps an image-
prompt pair (xv, xt) into a text response o = fθ(xv, xt), we
set f̂θ : Ev × Et 7→ Y as the transformer in fθ that maps an
embedding sequence ε = εv⊕εt ∈ RN×dh to a probability
distribution y ∈ Y ⊂ R|V| predicting the next token based
on vocabulary V , where εv ∈ Ev ⊂ RNv×dh is the image
embedding and εt ∈ Et ⊂ RNt×dh is the prompt embed-
ding. Nv, Nt, N are the length of visual, text, and complete
embeddings, respectively. dh is the middle dimension of f̂θ
and ⊕ denotes concatenation. In our attribution experiments,
we represent each sample as a tuple (εv, εt, o

∗), contain-
ing the image embedding εv , the prompt embedding εt, and
the key token o∗ to be predicted. The symbols and notations
used in this paper are provided in Appendix A.

3.1 Module Output Attribution
In a transformer f̂θ, each hidden representation hl

n ∈ Rdh

of n-th token at l-th layer can be obtained from (Vaswani
et al. 2017):

hl
n = hl−1

n + aln +ml
n, l ∈ {1, ..., L}, n ∈ {1, ..., N} (1)

where h0 equals ε, and aln = Attnl(hl−1
1 , ..., hl−1

n ), ml
n =

MLPl(h
l−1
n + aln) are respectively the outputs of attention

and MLP modules. L is the layer count of f̂θ. Given an in-
put (εv, εt), the predicted probability distribution of the next
token is p = δ(hL

NWV), where δ is the softmax function,
and WV ∈ Rdh×|V| is the matrix mapping hidden states into
logits in vocabulary space V . Unrolling Equation 1, we have
hL
N = h0

N +
∑L

l=1

(
alN +ml

N

)
. Multiplying both sides by

WV gives:

hL
NWV = h0

NWV +
L∑

l=1

(
alNWV +ml

NWV
)

(2)

It shows that the token prediction distribution depends on
the sum of the outputs from all attention and MLP modules
across layers. Therefore, we quantify the contribution of a
module output r, which can be either alN or ml

N , to the pre-
diction of the key token o∗, as below:

Co∗(r) =
√
Cp

o∗(r) · Cv
o∗(r) (3)

Cp
o∗(r) = δ (rWV)o∗ (4)

Cv
o∗(r) =

(rWV)o∗
L

max
l=1

max
(
|(alNWV)o∗ |, |(ml

NWV)o∗ |
) (5)

The definition takes into account both the mapped probabil-
ity Cp

o∗(r) and the normalized logit value Cv
o∗(r). The ratio-

nale for this definition is that, a large mapping probability
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does not necessarily lead to a significant contribution to the
final prediction when the mapping logit value is small.

The bar chart in Figure 1 illustrates the average results for
LLaVA-V1.5 (7B) (Liu et al. 2023) on the E-VQA dataset
(Cheng et al. 2023), showing that the outputs from deeper
layers have a more substantial impact on the key token than
those from shallower layers.

3.2 Visual Representation Attribution
Noting that the contribution trend of the attention and
MLP modules across layers are similar, we primarily fo-
cus on the contributions of visual representations to the
next layer attention output. Given an attention output alN =

Attnl(hl−1
1 , ..., hl−1

Nv
, ..., hl−1

N ), we perturb each visual rep-
resentation by set:

h̃l−1
n = hl−1

n + ϵ, n ∈ {1, ..., Nv} (6)

where ϵ ∈ Rdh follows N
(
0; (3σ)2

)
(Meng et al. 2022) and

σ is the standard deviation of elements in hl−1
1:Nv

∈ RNv×dh .
Building on the insight that perturbing a significant module
input will noticeably alter its output (Ribeiro et al. 2016;
Fong et al. 2017), we quantify the contribution of each visual
representation hl−1

n to the attention output as follows:

Cal
N
(hl−1

n ) =
1

2

(
1− ãlN · alN

∥ãlN∥ · ∥alN∥

)
∈ [0, 1] (7)

ãlN = Attnl(hl−1
1 , ..., hl−1

n−1, h̃
l−1
n , hl−1

n+1, ..., h
l−1
N ) (8)

The heatmaps in Figure 1 display the visualization results
(For more results, please refer to Appendix C.2). It can be
observed that the model focuses on areas highly relevant to
the prompt at deep layers.

Combining the above two attribution experiments, we hy-
pothesize that the VLLM initially aggregates the semantics
of a given prompt into the last token representation at shal-
low layers, and then extracts key information from visual
representations at deep layers to generate responses.

4 The Proposed Editor
Inspired by the results of attribution analysis, we devise a
VLLM editor named VisEdit. In this section, we first intro-
duce the preliminaries of VLLM editing (Cheng et al. 2023).
Then, we elaborate on the basic structure of VisEdit. Specif-
ically, we introduce an Influence Mapper to help the editor
focus on key visual regions based on the prompt, thereby
reducing the negative impact on irrelevant visual represen-
tations and enhancing editing efficacy. Finally, we describe
the training process of VisEdit.

4.1 Preliminaries
For a VLLM fθ ∈ F , given an edit sample (xe

v, x
e
t , o

e)
such that fθ(xe

v, x
e
t ) ̸= oe, an VLLM editor ME : F ×

Xv × Xt × O 7→ F outputs an post-edit VLLM fθe =
ME(fθ, xe

v, x
e
t , o

e). A good ME should meet the following
three criteria (Cheng et al. 2023):

Reliability assesses the response accuracy of the post-edit
model on the edited samples:

E(xe
v,x

e
t ,o

e)∼De
I {fθe(xe

v, x
e
t ) = oe}

𝑥𝑥𝑣𝑣𝑒𝑒

𝑥𝑥𝑡𝑡𝑒𝑒

𝑜𝑜𝑒𝑒

𝑥𝑥𝑣𝑣𝑒𝑒

𝑥𝑥𝑡𝑡𝑒𝑒

𝜹𝜹

Edit Sample

Input Samples

𝑥𝑥𝑣𝑣
𝑔𝑔

𝑥𝑥𝑡𝑡
𝑔𝑔

𝑥𝑥𝑣𝑣𝑙𝑙

𝑥𝑥𝑡𝑡𝑙𝑙

ℎ {𝑙𝑙_𝑒𝑒 − 1}_{1:𝑁𝑁_𝑣𝑣}

Loss

𝝈𝝈

VEAD

IM

MLP

𝝈𝝈 SigmoidElement-product

Cross Attention

Element-plus

Dot Product

+

+

High Contribution Layers

MLP 𝝈𝝈 SigmoidElement-prod.Cross Att. Element-plus Dot Prod.

Figure 2: Architecture and training loss of VisEdit.

where De is edit sample set and I is the indicator function.
Generality requires the revised model to also make cor-

responding adjustments to the relevant neighborhoods (e.g.,
rephrased sentences) of the edited samples, including modal
generality and text generality:

E(xe
v,x

e
t ,o

e)∼De
Exmg

v ∼Dmg(xe
v)
I {fθe(xmg

v , xe
t ) = oe}

E(xe
v,x

e
t ,o

e)∼De
Extg

t ∼Dtg(xe
t )
I
{
fθe(x

e
v, x

tg
t ) = oe

}
where Dmg(x

e
v),Dtg(x

e
t ) respectively represent the neigh-

borhoods of the image xe
v and prompt xe

t .
Locality requires the revised model to make response

consistent with the original model for samples unrelated to
the edited samples, including modal locality and text local-
ity:

E(xe
v,x

e
t ,o

e)∼De
E(xml

v ,xml
t ,oml)∼Dml(xe

v,x
e
t )

I
{
fθe(x

ml
v , xml

t ) = fθ(x
ml
v , xml

t )
}

E(xe
v,x

e
t ,o

e)∼De
E(xtl

t ,otl)∼Dtl(xe
t )

I
{
fθe(∅, xtl

t ) = fθ(∅, xtl
t )
}

where Dml(x
e
v, x

e
t ),Dtl(x

e
t ) respectively represent the

multi-modal and text samples irrelevant to the edit sample.

4.2 Architecture of VisEdit
Based on attribution analysis, we observe that that the
VLLM aggregates the semantics of the prompt into the last
token in shallow layers; while in deep layers, it extracts in-
formation from visual representations related to the prompt
to generate responses. Inspired by this, we devise a VLLM
editor, namely VisEdit. Specifically, as shown in Figure 2,
it inserts a Visual Edit ADapter (VEAD) before the high-
contribution layers. The adapter modifies the visual repre-
sentations that the edit sample attends to. Below, we assume
that VEAD is inserted at the le-th layer of the VLLM and
specify two steps in detail: (1) Compute edit signal from an
edit sample. (2) Use the edit signal to adapt the model for
future inputs.
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Compute Edit Signals: Given an edit sample (xe
v, x

e
t , o

e),
VEAD feeds (xe

v, x
e
t ⊕ oe) into fθ and takes the le-th layer

output h̄le ∈ R(Nv+Ne
t +Ne

o )×dh as the edit signal. Here,
⊕ denotes string concatenation, and Nv, N

e
t , N

e
o are the di-

mensions of representations of xe
v, x

e
t , o

e respectively.
Adapt Hidden State with Influence Mapper: With the
edit signal h̄le defined, we now demonstrate how to edit the
original visual representation hle

1:Nv
∈ RNv×dh for a given

(xv, xt). Specifically, a cross-attention operation is applied
to integrate the edit signal into hle

1:Nv
, i.e.,

ḣle
1:Nv

= δ
(
hle
1:Nv

W1

(
h̄leW2

)T)
h̄leW3 (9)

where W1 ∈ Rdh×da ,W2 ∈ Rdh×da ,W3 ∈ Rdh×dh are
the projection matrices, with related biases omitted here. δ is
the softmax function, and da is the dimension of modules in
VEAD. To make sure that the edit signal is not applied to lo-
cality samples or visual regions irrelevant to the edit prompt
within relevant samples, we further incorporate an Influence
Mapper (IM) module fim to control the edit intensity of the
adaptation. Based on the previous attribution analysis, we
design IM to use the last token of the edit prompt to gener-
ate the edit intensity C̄im ∈ RNv×1 for the visual regions,
defined as follows:

C̄im = σ
(
fim

(
hle
1:Nv

, h̄le
Ne

vt

))
= σ

(
fµ1

(
hle
1:Nv

)
· fµ2

(
h̄le
Ne

vt

)⊤
) (10)

where Ne
vt = Nv +Ne

t , and thus h̄le
Ne

vt
∈ Rdh is the repre-

sentation according to the last token embedding of xe
t in h̄le .

fµ1 , fµ2 are two-layers MLPs, mapping dimension to da. σ
is the sigmoid function. Finally, the adapted visual represen-
tations ḧle

1:Nv
is formulated as:

ḧle
1:Nv

= hle
1:Nv

+ ḣle
1:Nv

× C̄im (11)

where × indicates element-wise product with broadcast.

4.3 Training Process of VisEdit
The training loss of VisEdit includes the editing loss and the
IM loss, designed to meet the editing requirements and en-
able IM to learn the edit intensity, respectively.
Editing Loss: Given an edit sample (xe

v, x
e
t , o

e), corre-
sponding generality samples xmg

v , xtg
t , and locality samples

(xml
v , xml

t , oml), (xtl
t , o

tl), the editing loss is the sum of the
reliability loss ℓrel, the generality loss ℓgen, and the locality
loss ℓloc, defined as follows:

ℓedit = ℓrel + ℓgen + ℓloc (12)

where

ℓrel = − log fθe (o
e|xe

v, x
e
t ) (13)

ℓgen=− log fθe (o
e|xmg

v , xe
t )− log fθe

(
oe|xe

v, x
tg
t

)
(14)

ℓloc=KL
(
fθ

(
oml|xml

v , xml
t

)
||fθe

(
oml|xml

v , xml
t

))
+ KL

(
fθ

(
otl|∅, xtl

t

)
||fθe

(
otl|∅, xtl

t

)) (15)

Here KL denotes the Kullback-Leibler divergence.
IM Loss: As shown in Eq. 11, IM controls the edit intensity.
For reliability and generality samples, the intensity should
be large, whereas for locality samples, it should be small.
Therefore, in each training iteration, we randomly sample a
portion of visual representations to compute the correspond-
ing loss:

ℓim↑ =
1

|Ns|
∑
n∈Ns

(
− log σ

(
fim

(
h́le
n , h̄

le
Ne

vt

))
− log σ

(
fim

(
h̀le
n , h̄

le
Ne

vt

))) (16)

ℓim↓ =
1

|Ns|
∑
n∈Ns

−log
(
1− σ

(
fim

(
h̆le
n , h̄

le
Ne

vt

)))
(17)

where Ns ⊂ {1, ..., Nv} is the sample index, and h́, h̀, h̆
are the representations of reliability, generality, and locality
samples, respectively. To guide IM to put attention on visual
regions highly relevant to the edit prompt, we regularize IM
to approximate the VLLM-focused visual regions, through
visual representation attribution on the sampled visual rep-
resentations based on the edit prompt. Assuming the set of
high-contribution layers is Lh ⊂ {1, ..., L}, we first replace
the visual representations of the edit sample, i.e., h̄, from
layers in Lh with the counterpart of h̊ randomly selected
from {h́, h̀}. Then, following Equation 7, we compute the
contribution of visual representations in h̊ to the edit prompt
as:

c̊ln = Cāl
Ne

vt

(̊
hl
n

)
∈ [0, 1], l ∈ Lh, n ∈ Ns (18)

where ālNe
vt

represents the l-th layer attention output at the
last token of the edit prompt. Then, we minimize the dis-
crepancy between IM’s mapping results and the attribution
results averaged across layers using cross-entropy loss:

ℓima
=

∑
n∈Ns
l∈Lh

−c̊ln
|Lh|

∑
j∈Ns

c̊lj
log δ

(
fim

(̊
hle
Ns

, h̄le
Ne

vt

))
n

(19)

where h̊le
Ns

∈ R|Ns|×dh indicates the sampled representa-
tions from le-th layer, and δ(·)n represents the n-th element
of the vector outputted from softmax. Thus, the IM loss is
formulated as ℓim = ℓim↑ + ℓim↓ + ℓima .

The total loss of VisEdit is: ℓtotal = ℓedit + ℓim. During
training, we freeze the parameters of the VLLM and only
the parameters in VEAD are updated.

5 Experiments
5.1 Experimental Settings
Datasets: Following Cheng et al. (2023), we employ E-
VQA (Editing Visual Question Answering) and E-IC (Edit-
ing Image Caption) as evaluation datasets.
VLLM Backbones: To ensure a comprehensive evaluation,
we consider both the parameter size and model architec-
ture when selecting VLLM backbones for editing, including
BLIP2-OPT (2.7B) (Li et al. 2023), LLaVA-V1.5 (7B) (Liu
et al. 2023), and MiniGPT-4 (7B) (Zhu et al. 2023).
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E-VQA E-ICBackbone Editor Rel. T-Gen. M-Gen. T-Loc. M-Loc. Average Rel. T-Gen. M-Gen. T-Loc. M-Loc. Average
FT-V 24.01 16.00 20.22 100.00 88.65 49.78(±0.47) 42.11 40.74 36.43 100.00 89.73 61.80(±0.40)

FT-L 24.86 16.39 20.57 98.92 89.61 50.07(±0.60) 41.61 40.31 37.41 99.35 88.70 61.48(±0.77)

KE 67.80 63.00 66.17 97.32 45.89 68.04(±0.00) 69.00 62.80 61.22 96.21 45.55 66.96(±0.00)

IKE 99.95 91.59 92.33 13.16 1.88 59.78(±0.00) 96.70 78.20 83.15 13.36 2.17 54.72(±0.00)

SERAC 91.20 91.40 89.81 100.00 0.33 74.55(±0.00) 94.40 96.00 91.49 100.00 0.47 76.47(±0.00)

MEND 92.60 90.80 91.94 96.07 65.15 87.31(±0.00) 65.00 38.00 36.19 92.67 55.72 57.52(±0.00)

TP 68.31 60.88 56.35 98.49 85.27 73.86(±0.99) 49.71 49.03 45.46 93.88 80.88 63.79(±1.11)

LTE 97.74 97.21 96.35 94.34 84.99 94.13(±0.97) 96.69 95.26 94.06 95.25 87.68 93.79(±1.05)

BLIP2-OPT
(2.7B)

VisEdit 98.83 98.63 97.90 100.00 92.30 97.53(±0.70) 97.06 96.83 94.85 100.00 91.74 96.10(±0.94)

FT-V 31.68 29.96 26.68 100.00 91.23 55.91(±0.71) 52.85 51.57 48.63 100.00 92.55 69.12(±0.29)

FT-L 31.78 30.02 26.91 99.94 92.03 56.14(±2.13) 53.00 51.02 49.29 98.91 94.89 69.42(±1.71)

KE 85.86 84.00 82.23 93.57 73.06 83.74(±1.25) 83.54 82.15 81.12 92.46 73.83 82.62(±0.88)

IKE 91.35 90.84 91.08 60.18 51.08 76.91(±1.42) 93.72 88.37 76.99 76.60 64.90 80.12(±1.18)

SERAC 82.51 81.60 80.05 100.00 57.48 80.33(±1.58) 43.08 42.37 42.85 100.00 7.63 47.19(±0.83)

MEND 92.30 92.16 92.10 90.30 81.13 89.60(±2.36) 93.76 93.46 92.14 91.60 87.59 91.71(±1.42)

TP 38.68 36.27 31.26 95.31 91.41 58.59(±1.32) 59.07 57.01 55.51 64.79 89.26 65.13(±1.85)

LTE 94.16 93.54 93.06 83.76 81.65 89.23(±1.90) 93.60 92.38 91.18 85.54 88.49 90.24(±1.90)

LLaVA-V1.5
(7B)

VisEdit 95.99 95.78 94.71 100.00 94.12 96.12(±0.97) 95.27 94.64 93.57 100.00 96.20 95.94(±0.90)

Table 1: Editing performance of BLIP2-OPT and LLaVA-V1.5 evaluated on E-VQA and E-IC datasets. “Rel.”, “T/M-Gen.” and
“T/M-Loc.” stand for reliability, text/modal generality, and text/modal locality, respectively. Results with a gray background
are taken from Cheng et al. (2023). The t-tests demonstrate our improvements are statistically significant with p < 0.05 level.

Baseline Editors: To the best of our knowledge, there
are currently no editors specifically designed for VLLMs.
Therefore, most existing works (Cheng et al. 2023; Li et al.
2024) applied LLM editors in the VLLM case, including FT-
V (Fine-tunes visual encoder), TF-L (Fine-tunes last layer of
the language model), KE (Cao et al. 2021), IKE (Zheng et al.
2023), SERAC (Mitchell et al. 2022b), MEND (Mitchell
et al. 2022a), TP (Huang et al. 2023), and LTE (Jiang et al.
2024). For experimental setup details, as well as the model
hyperparameters and training specifics, please refer to Ap-
pendix B.

Using the above experimental settings, we comprehen-
sively evaluate the editing performance and conduct in-
depth quantitative analyses of VEAD internals to validate
that it effectively incorporates insights from the attribution
analysis.

5.2 Analysis of Editing Performance
The overall editing performance is exhibited in Table 1 and
Appendix D.1. Here we analyze Table 1 from different per-
spectives.
From the perspective of editors, VisEdit demonstrates the
best performance. LTE also excels because it fine-tunes the
entire LLM. However, unlike pure language models, the
combination of visual and language representations makes
it harder for the model to learn the mode following editing
instructions.
From the perspective of backbones, VEAD performs
slightly better on BLIP2. We ascribe this to VEAD interven-
ing only in a local part of the VLLM’s data pathway, where
the effect of this intervention would be relatively more sig-
nificant in a smaller model.
From the perspective of datasets, most editors perform
better on E-VQA than on E-IC. This is due to E-VQA in-
volving the correction of a few key tokens, while E-IC re-
quires editing captions that convey complete image infor-

Layer Rel. T-Gen. M-Gen. T-Loc. M-Loc. Average
0 95.10 93.70 94.43 100.00 84.51 93.55
5 95.16 94.63 94.49 100.00 86.51 94.16
10 96.36 95.79 95.60 100.00 85.83 94.72
15 97.69 97.48 97.08 100.00 92.20 96.89
19∗ 98.83 98.63 97.90 100.00 92.30 97.53
25 97.54 96.97 95.87 100.00 88.63 95.80
30 86.22 84.18 83.62 100.00 85.98 88.00

Table 2: Editing results on E-VQA when VEAD is attached
to different layers of BLIP2-OPT (2.7B), where the layer
marked with an asterisk represents our selection based on
the first attribution experiment.

mation, making it more challenging.
From the perspective of metrics, editors with lower av-
erage scores often show that high reliability and general-
ity cannot coexist with locality. Additionally, because FT-
V and VisEdit only edit the visual component, and SERAC
uses classifiers to distinguish pure text input, they effectively
avoid interference from the editing process on the text local-
ity samples.

5.3 Analysis of VEAD Internals
We conduct three sets of experiments to demonstrate that
VEAD fully incorporates insights from the attribution analy-
sis. First, we compare VEAD’s editing performances across
different layers. Next, we visualize the outputs of IM to
demonstrate that it attends to the visual regions important for
the edit prompt. Finally, we verify whether VEAD success-
fully adapts the visual representations critical for response
generation.
Editing Performance in Different Layers: Table 2 dis-
plays the editing performance when VEAD is applied to var-
ious layers of BLIP2. We can observe that the editing per-
formance first gets better as we go deeper until layer 19, and
then gets worse for later layers. We hypothesize that the edit
signal in too shallow layers is prone to lose before reaching
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Figure 3: The visualization of IM module in VEAD inte-
grated into LLaVA-V1.5. In each test, VEAD is first edited
using the left image along with the prompt. Then, the out-
puts of IM are visualized for both images.
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Edit Prompt: The person in the picture is playing skateboarding → football
BE Rel. : The person in the picture is playing skateboarding
AE Rel./M-Gen. : The person in the picture is playing football
AE T-Gen. : The sport the man in the picture is playing is football
AE M-Loc. : The staple food in the picture is rice

AE Rel. L24 AE T-Gen. L21 AE M-Gen. L24BE Rel. L24 AE M-Loc. L20

Figure 4: Visualization of visual representation attribution
after VisEdit edits a counterfactual sample. “BE” and “AE”
indicate Before Editing and After Editing respectively. L*
indicates the layer index.

the deep layers that highly contribute to prediction, while for
cases in too deep layers, the signal cannot have a substantial
enough impact on the final prediction.
Visualization of IM Module: We visualize the outputs of
IM in Figure 3 (For more results and analysis, please refer
to Appendix D.2). Specifically, Test 1 and Test 2 indicate
that IM indeed picks the relevant visual region utilizing the
overall semantics of the edit prompt, even when the visual
objects in the edited samples are not entirely consistent with
those in the input samples, e.g., the peeled and unpeeled ba-
nanas in test 2. Test 3 demonstrates that the visual areas of
samples unrelated to the edit sample will receive low edit
intensities from IM, because of ℓima

and ℓim↓ .
Instance Analysis for VEAD: Figure 4 illustrates a coun-
terfactual edit example where VEAD forces LLaVA-V1.5 to
follow the knowledge even if it is incorrect (For more results
and analysis, please refer to Appendix D.3). We first com-
pare the visualization results of three cases: reliability sam-

Settings Rel. T-Gen. M-Gen. T-Loc. M-Loc. Average
VEAD 95.99 95.78 94.71 100.00 94.12 96.12
- ℓim↓ 95.50 94.38 93.87 100.00 86.72 94.09
- ℓim↑ 94.13 93.82 93.58 100.00 93.71 95.05
- ℓima 93.70 93.05 92.51 100.00 90.18 93.89
- IM 93.13 92.58 91.89 100.00 83.84 92.29
- CA 33.79 31.98 28.94 100.00 98.98 58.74

Table 3: Ablation study of VEAD.

ples before editing (BE Rel.), reliability samples after edit-
ing (AE Rel.), and generality samples after editing (AE T/M-
Gen.). We observe that the editing process does not signifi-
cantly change the visual regions VLLM focuses on for sim-
ilar prompts, even if the “skateboarding” is counterfactually
edited to “football”. The above observation indicates that
VEAD adapts the visual representations in the skateboard
region to new visual representations for football, and fur-
thermore alters the final prediction to football, thereby val-
idating the design objective of our model. Additionally, the
visualization of modal locality samples shows that VEAD
maintains VLLM’s original attention to visual objects unre-
lated to the edit.

5.4 Ablation Study
Table 3 shows the results of the ablation study for VEAD
editing LLaVA-V1.5 on E-VQA. Overall, the removal of
losses resulted in some degradation in reliability, generality,
and locality. Specifically, removing ℓim↓ caused significant
damage to modal locality, as it makes IM output a smaller
edit intensity for samples unrelated to the edit sample. ℓim↑
and ℓima encourage IM to apply higher edit intensities to vi-
sual objects that are consistent with the semantics of the edit
prompt; their removal leads to a relatively significant degra-
dation in both reliability and generality scores. Additionally,
removing the entire IM module fixes the edit intensity to 1,
preventing VEAD from focusing on specific visual regions
for modifications and increasing erroneous interventions in
unrelated samples. Since the CA (Cross-Attention) module
is the key component for integrating the edit signal, its re-
moval essentially caused VEAD to lose its editing capabil-
ity. These results show the effectiveness of the modules and
loss functions designed in VEAD.

6 Conclusion
This paper proposes a two-step attribution method combin-
ing contribution allocation and noise perturbation to mea-
sure the impact of visual representations on token prediction
in VLLM. Results reveal that mid-to-late layers of VLLM
focus on visual regions closely related to prompt seman-
tics. Leveraging these insights, we introduce VisEdit, a novel
VLLM editor with a visual editing adapter that integrates
editing information into high-contribution layers. The editor
incorporates an IM module to enhance relevant edit signals
while ignoring irrelevant ones. VisEdit achieves outstand-
ing performance in VLLM editing tasks. Future work will
explore deeper insights into VLLM attributions and extend
VEAD to broader editing scenarios.
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