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Abstract

Neural sequence labeling (NSL) aims at assigning labels for
input language tokens, which covers a broad range of ap-
plications, such as named entity recognition (NER) and slot
filling, etc. However, the satisfying results achieved by tra-
ditional supervised-based approaches heavily depend on the
large amounts of human annotation data, which may not
be feasible in real-world scenarios due to data privacy and
computation efficiency issues. This paper presents SeqUST,
a novel uncertain-aware self-training framework for NSL to
address the labeled data scarcity issue and to effectively uti-
lize unlabeled data. Specifically, we incorporate Monte Carlo
(MC) dropout in Bayesian neural network (BNN) to perform
uncertainty estimation at the token level and then select reli-
able language tokens from unlabeled data based on the model
confidence and certainty. A well-designed masked sequence
labeling task with a noise-robust loss supports robust training,
which aims to suppress the problem of noisy pseudo labels.
In addition, we develop a Gaussian-based consistency regu-
larization technique to further improve the model robustness
on Gaussian-distributed perturbed representations. This ef-
fectively alleviates the over-fitting dilemma originating from
pseudo-labeled augmented data. Extensive experiments over
six benchmarks demonstrate that our SeqUST framework ef-
fectively improves the performance of self-training, and con-
sistently outperforms strong baselines by a large margin in
low-resource scenarios.

Introduction
Neural sequence labeling (NSL) is one of the fundamental
tasks in natural language processing (NLP) with a broad
range of applications, including named entity recognition
(NER) (Li et al. 2022) and slot filling (Liu et al. 2022), which
aims at classifying language tokens into a pre-defined set of
classes (Shen et al. 2021; Agarwal 2022). Previous works
have achieved satisfying performance by developing well-
designed deep architectures and/or fine-tuning pre-trained
language models (PLMs) (Ma and Hovy 2016; Li et al.
2020; Zhou, Li, and Li 2022; Zhang et al. 2022). Yet, these
approaches heavily depend on massive labeled data, which
could be even more bothersome in some real-world scenar-
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ios, such as over-fitting on limited labeled data and privacy
constraints.

Recently, a branch of the semi-supervised learning (SSL)
paradigm (Chawla and Karakoulas 2005; van Engelen and
Hoos 2020; Yang et al. 2021) arises to bypass the aforemen-
tioned issues, which aims to utilize effectively large-scale
unlabeled data in addition to the few-shot labeled data. Self-
training is one of the typical SSL techniques which can be
viewed as teacher-student training (Grandvalet and Bengio
2004; Amini et al. 2022). Concretely, a teacher model is
trained over the labeled data and then be used to generate
pseudo labels on the unlabeled data. After that, a student
model can be optimized by the augmented data, and be used
to initialize a new teacher.

Benefit from self-training, previous methods make a re-
markable success on a series of instance-level classification
tasks, such as image classification (Zhou et al. 2021; Wang
et al. 2022a; Liu et al. 2021) and text classification (Meng
et al. 2020; Mukherjee and Awadallah 2020; Yu et al. 2021;
Hu and Khan 2021; Tsai, Lin, and Fu 2022; Kim, Son,
and Han 2022). In contrast to instance-level classification,
we observe that there are two challenges in applying stan-
dard self-training to NSL. On one hand, the task of NSL is
based on the token-level classification, which requires the
model to capture the inherent token-wise label dependency.
On the other hand, the teacher model inevitably generates
some noisy labels that cause error accumulation (Wang et al.
2021a). Some sample selection strategies (e.g., model con-
fidence, uncertainty estimation) and consistency regulariza-
tion mitigate the effect of noisy labels and alleviate the prob-
lem of confirmation bias (Do, Tran, and Venkatesh 2021;
Cao et al. 2021; Rizve et al. 2021; Wang et al. 2021b; An-
dersen and Maalej 2022). However, it is unclear how these
methods can be applied to token-level classification.

To remedy this dilemma, we develop SeqUST, a novel
semi-supervised learning framework for NSL, which im-
proves standard self-training via two decomposed processes,
i.e., reliable token selection and robust learning. Specifi-
cally, we first pseudo annotate the unlabeled data. Then, a
Monte Carlo (MC) dropout technique, which is the approx-
imation technique in Bayesian Neural Network (BNN) (Gal
and Ghahramani 2016; Wang and Yeung 2016), is used to es-
timate the uncertainty of each language token derived from
the teacher model. We judiciously select the reliable tokens
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from each unlabeled sentence based on the model confi-
dence and certainty. Finally, we introduce two training ob-
jectives to improve the model robustness, i.e., Masked Se-
quence Labeling (MSL) and Gaussian-based Consistency
Regularization (GCR). In MSL, we generate a masked ma-
trix to make the model only focus on the selected reliable
tokens in each sentence. We also utilize partially huberised
cross-entropy (PHCE) loss to explicitly mitigate the effect
of label noises. In GCR, we assume each selected token
embedding follows the Gaussian distribution and perturbs
token embeddings to encourage consistency between per-
turbed embeddings and original representations. This tech-
nique effectively reduces the risk of over-fitting.

We perform extensive experiments over multiple bench-
marks with very few labeled data (10/20/50/100 examples
per class). We adopt BERT-base (Devlin et al. 2019) as
our backbone. Results show that our SeqUST outperforms
strong baselines by a large margin in low-resource settings.

In a nutshell, we make the following main contributions:

• We develop a novel semi-supervised neural sequence la-
beling framework SeqUST to alleviate the problem of
data scarcity in low-resource scenarios.

• We propose the token-level uncertainty estimation to
empower self-training. Furthermore, two training objec-
tives are introduced to improve the model robustness, in-
cluding Masked Sequence Labeling and Gaussian-based
Consistency Regularization.

• Extensive experiments over multiple benchmark datasets
demonstrate that our proposed framework achieves sub-
stantial performance improvement.

Related Work
Semi-supervised Learning and Self-training
SSL aims to utilize effectively unlabeled data in addition
to labeled data, which has been widely used in the NLP
community (Yang et al. 2017; Gururangan et al. 2019; Xie
et al. 2020; Chen, Yang, and Yang 2020). For instance, Yang
et al. (2017); Gururangan et al. (2019) utilize variational au-
toencoders (VAEs) for sequence classification and labeling.
Unsupervised data augmentation (UDA) (Xie et al. 2020)
generates augmented data by back translation, and leverages
consistency regularization for unlabeled data. Chen, Yang,
and Yang (2020) proposes MixText to mix labeled, unla-
beled and augmented data, and performs similar consistency
training as UDA.

Self-training is one of the earliest methods in SSL that has
recently shown state-of-the-art performances (Chen, Yang,
and Yang 2020; Meng et al. 2020; Li, Li, and Ouyang
2021). Recent works improve standard self-training by con-
sidering sample selection strategies, including model con-
fidence (Bengio et al. 2009; Kumar, Packer, and Koller
2010) and uncertainty estimation (Cao et al. 2021; Tsai,
Lin, and Fu 2022). For example, Cao et al. (2021) presents
uncertainty-aware self-training (UST) to sample pseudo-
labeled data by BNN. (Tsai, Lin, and Fu 2022) propose
CEST which aims to leverage graph-based contrast induc-
tion to solve the problem of confirmation bias and data

smoothness on the selected data. However, they focus on
instance-level classification, it would be highly desirable if
they can be applied to token-level classification.

Low-resource Neural Sequence Labeling
Low-resource NSL aims at classifying the input language
tokens with very few labeled data. Prior researches address
this problem via meta-learning (Ziyadi et al. 2020; Ma et al.
2022) and augmentation learning (Ding et al. 2020; Zhou
et al. 2022; Wang et al. 2022b). For instance, (Ziyadi et al.
2020) leverages prototypical network (Snell, Swersky, and
Zemel 2017) to learn adaptable knowledge from few-shot
episode data. Wang et al. (2022b) and Zhou et al. (2022) aim
to generate the in-domain augmented data through masked
language modeling (MLM) (Devlin et al. 2019).

Yet, these methods ignore the informative semantics of
unlabeled data. To reach this goal, a series of previous
works (Miller, Guinness, and Zamanian 2004; Peters et al.
2017) focus on token representations enhancement by pre-
training word embeddings on unlabeled data. Another line
of research focuses on latent variable modeling (Chen et al.
2018), adversarial training method SeqVAT (Chen et al.
2020) and cross-view training method CVT (Clark et al.
2018). Recently, MetaST (Wang et al. 2021a) attempts to
apply self-training to NSL by two techniques, i.e., adaptive
validation set construction by uncertainty estimation, and
noisy data re-weighting via student loss. In contrast, we per-
form reliable token selection by the joint estimations of the
teacher confidence and uncertainty, and two well-designed
training objectives support robust training. Compared with
previous methods, we achieve the best overall performance
with very few labeled data.

Preliminaries
We first present the notations and then introduce the back-
ground knowledge of the Bayesian neural network.

Notations
We represent a labeled dataset and an unlabeled dataset
as Dl = {Xi, Yi}Nl

i=1 and Du = {Xi}Nu
i=1, respectively.

Xi = {xij}Lj=1 denotes the input sentence with L language
tokens. Yi = {yij}Lj=1 is the label sequence and yij ∈ Y is
the tag of token xij ∈ X , X and Y denote the token vocabu-
lary of the PLM and the label space, respectively. Nl and Nu

represent the numbers of labeled and unlabeled data, respec-
tively (Nl ≪ Nu). The goal of semi-supervised NSL is to
learn a neural mapping function fW : X → Y over labeled
data Dl and unlabeled data Du, where W is the collection of
model parameters.

Bayesian Neural Network (BNN)
Similar to CEST (Tsai, Lin, and Fu 2022), in this part
we briefly describe BNN. Given a neural model fW , the
vanilla BNN assumes a prior distribution over its model
parameters W . In other words, BNN averages over all
the possible weights instead of directly optimizing for the
weights (Mukherjee and Awadallah 2020). Given a labeled
dataset Dl, the parameter can be optimized by the posterior
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Figure 1: The framework overview. 1) We first fine-tune a teacher model over the labeled data. Then, 2) we utilize MC dropout
to perform uncertainty estimation and select reliable tokens for each unlabeled sentence. 3) Two novel training objectives are
proposed to improve the model robustness and alleviate the over-fitting issue. (Best viewed in color.)

.

distribution p(W |Dl). During model inference, given one
unlabeled example Xi ∈ Du, the probability distribution of
each token xij ∈ Xi for class c ∈ Y is p(y = c|xij , Xi) =∫
W

p(y = c|fW (xij , Xi)p(W |Du)dW . Yet, it is intractable
in practice for calculation. To make it tractable, we can find a
surrogate tractable distribution qθ(W ) that makes the model
posterior easy to compute. Thus, we consider qθ(W ) to be
the dropout distribution (Srivastava et al. 2014) which aims
to sample T masked model weights {W̃t}Tt=1 ∼ qθ(W )
from the current model. The approximate posterior for each
token is:

p(y = c|xij , Xi) ≈
1

T

T∑
t=1

p(y = c|fW̃t(xij), Xi). (1)

Methodology
In this section, we propose the SeqUST framework to im-
prove the self-training paradigm for low-resource NSL. The
framework overview is illustrated in Fig 1.

Pseudo Annotation
In the initial stage, a vanilla PLM (e.g., BERT) can be fine-
tuned over the labeled dataset Dl to form a teacher model
fW∗

, where W ∗ is the collection of parameters. The hard
label ỹij of each token xij in the given unlabeled sentence
Xi ∈ Du can be pseudo annotated by the teacher model
fW∗

. Formally, we have:

ỹij = argmax
c

p(y = c|fW∗
(xij), Xi), (2)

where p(·) is the probability distribution, which can be mod-
eled as a softmax classifier or a conditional random field
(CRF) (Lafferty, McCallum, and Pereira 2001) layer.

Reliable Token Selection
Prior works (Mukherjee and Awadallah 2020; Tsai, Lin,
and Fu 2022; Rizve et al. 2021) improve self-training by

the instance-level selection strategy, which aims to utilize
BNN to perform uncertainty estimation for each example,
and then select the reliable examples from the whole unla-
beled dataset that the model is most certain about. Different
from them, we focus on the token-level uncertainty estima-
tion, and aim to select reliable tokens from each sentence.
Token-level Uncertainty Estimation. We assume that each
sentence is independent of another and can be measured in-
dividually. Specifically, we follow (Houlsby et al. 2011; Gal,
Islam, and Ghahramani 2017) to leverage information gain
of the model parameters to estimate how certain the model is
to the pseudo-labeled tokens with respect to the true labels.
Formally, given one input sentence Xi ∈ Du, we have:

B(ỹij ,W |xij ,Du) =H(ỹij |xij ,Du)−
Ep(W |Du)[H(ỹij |xij ,W )],

(3)

where H(·) is the entropy function, xij ∈ Xi and ỹij ∈ Ỹi

denote the token and tag, respectively. B(ỹij ,W |xij ,Du)
denotes the information gain which is the difference between
H(ỹij |xij ,Du) (the final entropy after seeing all tokens from
unlabeled sentences) and H(ỹij |xij ,W ) (the current entropy
for the token xij). p(W |Du) is the posterior distribution. As
the calculation of Eq. 3 is intractable, we utilize MC dropout
in BNN to perform approximation. Specifically, we assume
that the posterior distribution p(W |Du) can be replaced with
dropout distribution qθ(W ). Thus, we can sample T masked
model weight {W̃t}Tt=1 ∼ qθ(W ), and calculate the approx-
imation value of B as:

B̂(ỹij ,W |xij ,Du) =−
∑
c∈Y

(
1

T

T∑
t=1

p̂tc) log(
1

T

T∑
t=1

p̂tc)

+
1

T

T∑
t=1

∑
c∈Y

p̂tc log(p̂
t
c),

(4)

where p̂tc = p(ỹij = c|fW̃t(xij), Xi) is the predict proba-
bility for the token xij derived from the t-th masked model.
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Thus, a lower B̂(ỹij ,W |xij ,Du) value means that the model
is more certain about the prediction, as higher certainty cor-
responds to lower information gain.
Tokens Sampling. For reliable token selection, we jointly
consider the confidence and certainty value. For the confi-
dence of the prediction ỹij , we have:

scfij =
1

T

T∑
t=1

p(y = ỹij |fW̃t(xij), Xi). (5)

A higher confidence value scfij means the model is more
confident for the pseudo label ỹij . Theoretically, selecting
language tokens with high confidence predictions moves
decision boundaries to low-density regions, which is satis-
fied with the low-density assumption (Rizve et al. 2021).
However, many of these selected tokens with higher con-
fidence are incorrect due to the poor calibration of neural
networks (Guo et al. 2017), which brings the conformation
bias problem. To reduce the wrong labels, we additionally
design a certainty score sctij based on the uncertainty estima-
tion as:

sctij = 1− B̂(ỹij ,W |xij .Du), (6)

Intuitively, if the model is always certain about some tokens,
these tokens might be too easy to contribute any additional
information. To this end, we can obtain the final sampling
weight for each token as:

sij =
scfij × sctij∑

xij∈Xi
scfij × sctij

. (7)

Robust Learning for NSL
Masked Sequence Labeling (MSL). With the measure of
model confidence and certainty, we can use them to sam-
ple reliable tokens for each sentence. However, each token
has the location and label dependency constraint, we can not
directly remove the tokens that are not sampled. Thus, we
define a masked matrix to record the sampling results, i.e.,

Mi,j =

{
1 xij has been sampled;
0 xij has not been sampled; (8)

when Mij = 0, it means the corresponding label may be a
noise and should be masked during self-training.

Generally, we can define the following cross-entropy
function as the training loss:

l(Xi, Ỹi,Mi) =
1

L′
i

L′
i∑

j=1

I(Mij = 1) log pW (xij , ỹij), (9)

where pW (xij , ỹij) = p(y = ỹij |fW (xij), Xi) is the pre-
diction probability derived from the student model, L′

i =∑L
j=1 I(Mij = 1) is the number of the selected tokens in

Xi. I(·) denotes the indicator function. However, it is still
possible that the selected tokens could be wrong pseudo
annotated although the token with higher confidence and
certainty. To explicitly mitigate the effect of label noises,
we follow (Tsai, Lin, and Fu 2022) to utilize partially hu-
berised cross-entropy loss (PHCE loss) as our noise-robust

Algorithm 1: Self-training Procedure of SeqUST

Require: Neural model fW0 , labeled data Dl, unlabeled data Du.
1: Initialize a teacher model fW∗

= fW0 ;
2: while not converged do
3: Fine-tune the teacher model fW∗

over the labeled data Dl;
4: Pseudo annotate each unlabeled sentence Xi ∈ Du by Eq. 2

to obtain the hard labels Ỹi;
5: Initialize a student model fW = fW0 ;
6: for Xi ⊆ Du do
7: Obtain the confidence score scfij for xij ∈ Xi by Eq. 5;
8: Obtain the certainty score sctij for xij ∈ Xi by Eq. 6;
9: Sample reliable tokens by the sampling weight in Eq. 7,

and generate a masked matrix Mi;
10: Calculate the training loss l(Xi, Ỹi,Mi) in Eq. 10;
11: Calculate the regularization loss R(fW , Xi) in Eq. 14;
12: Update the model fW by reduce L(W ) in Eq. 15;
13: end for
14: Update the teacher model fW∗

= fW ;
15: end while
16: return The teacher model fW∗

.

loss, which is based on a simple variant of gradient clipping
for the classification loss, e.g. cross-entropy. Hence, the loss
function in Eq. 9 can be modified as:

l(Xi, Ỹi,Mi) =
1

L′
i

L′
i∑

j=1

I(Mij = 1)ϕ(xij , ỹij), (10)

where

ϕ(x, y) =

{
−τpW (x, y) + log τ + 1 pW (x, y) ≤ 1/τ ;

− log pW (x, y) pW (x, y) > 1/τ ;
(11)

is the PHCE loss function, τ > 1 is the hyper-parameter.
Thus, the model learned by Eq. 11 can be more robust to the
noisy labeled tokens than the common cross-entropy.
Gaussian-based Consistency Regularization (GCR). Dur-
ing iterative self-training, it is possible that the model biases
the sampling process toward picking easier tokens, which
have higher confidence and certainty. This inevitably leads
to the student model over-fitting on these frequently se-
lected samples. Previous methods (Chen, Yang, and Yang
2020; Xie et al. 2020) solve this problem by utilizing back
translation (Sennrich, Haddow, and Birch 2016) to gener-
ate instance-level augmented data, which aims to translate
each sentence into a different language and then translate it
back. However, it can not be directly applied to token-level
task (Lee et al. 2021). To reach this goal, we elaborately
design Gaussian-based consistency regularization (GCR) to
perturb token embeddings in the hidden space and make the
model prediction consistent.

Given one pseudo-labeled sentence Xi = {xij}Lj=1,
we can obtain the corresponding contextual representations
Hi = {hij}Lj=1 derived from the final hidden layer out-
put of the student model (i.e., BERT). hij ∈ Rh denotes
the representations of the token xij , where h is the hid-
den size. We assume that token embeddings follow Gaus-
sian distributions (Das et al. 2022; Lee et al. 2021), i.e.,
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hij ∼ N (µij ,Σij). Specifically, we use two projection
network Fµ(·) and FΣ(·) with ReLU activation to produce
Gaussian distribution µij and Σij for each token xij . For-
mally, we have:

µij = Fµ(hij),Σij = FΣ(hij), (12)

where µij ∈ Rh, Σij ∈ Rh represent mean and diagonal co-
variance of the Gaussian embedding, respectively. We lever-
age the reparameterization trick (Kingma and Welling 2014)
to perturb the input xij with the sampled noise without al-
tering its semantics. Specifically, we generate K perturbed
representations {ĥ(k)

ij }Kk=1, where

ĥ
(k)
ij = hij ⊙ (µij +Σij ⊙ ϵ(k)). (13)

Here, ϵ(k) ∼ N (0, Ih), and 0 ∈ Rh, Ih ∈ Rh are the vec-
tor with zeros and identity matrix, respectively. ⊙ denotes
the element-wise multiplication. Afterward, the KL diver-
gence objective can be used to control the probability distri-
bution consistency between the original semantic represen-
tation and the perturbations for each token of xij :

R(fW , Xi) =
1

L ·K

L∑
j=1

K∑
k=1

DKL
(
pW (y|hij)||pW (y|ĥ(k)

ij )
)

(14)
where DKL(·||·) denotes the KL divergence function, and
pW (y|·) is the probability distribution derived from the stu-
dent model. Finally, we update the student model by modi-
fying the following objective:

L(W ) =
∑

Xi∈Du

(
l(Xi, Ỹi,Mi) + λR(fW , Xi)

)
, (15)

where λ is the pre-defined hyper-parameter balancing the
regularization term.

Self-training Procedure
The training algorithm of our SeqUST framework is shown
in Algorithm 1. Specifically, at each iteration stage, we fine-
tune a teacher model fW∗

on the few-shot labeled data Dl,
and pseudo annotate the unlabeled data Du (Algorithm 1,
Line 3-4). Then, we select reliable tokens in each sentence
by the model confidence and certainty (Algorithm 1, Line
7-9), and use them to update the parameters of the student
model fW by modifying the final loss L(W ) (Algorithm 1,
Line 5, 10-12). Finally, the trained student model fW is used
to initialize a new teacher fW∗

, and repeat the above steps
till convergence.

Experiments
Datasets and Implementation Details
We choose six widely used benchmarks to evaluate our Se-
qUST framework, including SNIPS 1 (Coucke et al. 2018)
and Multiwoz 2 (Budzianowski et al. 2018) for slot filing,

1https://github.com/sonos/nlu-benchmark/tree/master/2017-
06-custom-intent-engines.

2https://github.com/budzianowski/multiwoz.

Datasets Domain Type #Class #Train #Test

SNIPS Dialogue Slot Filling 54 13.6k 0.7k
Multiwoz Dialogue Slot Filling 15 20.3k 2.8k
Movie Review NER 13 7.8k 2.0k
Restaurant Review NER 9 7.7k 1.5k
CoNLL-03 News NER 5 14.0k 3.5k
OntoNotes General NER 19 60.0k 8.3k

Table 1: The statistics of each dataset.

MIT Movie 3 (Liu et al. 2013b), MIT Restaurant 4 (Liu
et al. 2013a), CoNLL-03 (Sang and Meulder 2003) and
OntoNotes (Weischedel et al. 2013) for NER. The statistics
of each dataset are shown in Table 1. For each dataset, we
use a greedy-based sampling strategy to randomly select 10-
shot labeled data per class for the few-shot labeled training
set and validation set, while the remaining data are viewed
as unlabeled data.

During self-training, the teacher and student model share
the same model architecture. In default, we choose BERT-
base-uncased (Devlin et al. 2019) from HuggingFace5 with
a softmax layer as the base encoder. We use grid search to
search the hyper-parameters. We select five different ran-
dom seeds for the dataset split and training settings among
{12, 21, 42, 87, 100}. We report the averaged F1 scores with
the standard deviation on the whole testing set. We imple-
ment our framework in Pytorch 1.8 and use NVIDIA V100
GPUs for experiments.

Baselines
We adopt several state-of-the-art semi-supervised meth-
ods as our strong baselines 6. Standard self-training
(SST) (Huang et al. 2021) is the simple method that gen-
erates hard pseudo labels and uses them to train a stu-
dent model. VAT (Miyato et al. 2019) and SeqVAT (Chen
et al. 2020) utilize adversarial training method with consis-
tency learning to improve the robustness. CVT (Clark et al.
2018) is based on cross-view training for semi-supervised
sequence labeling. MetaST (Wang et al. 2021a) aims to se-
lect reliable validation data and trains the student model by
re-weighting strategy. We also choose the standard Fine-
tuning as the supervised learning-based baselines. We re-
produce their results with the same settings.

Main Results
Table 2 illustrates the main results of our framework Se-
qUST compared with other baselines. The results of fine-
tuning over full data are the ceiling performance. With only
10 labeled training data per class, we achieve the best av-
eraged F1 score of 77.78%. In addition, SeqUST outper-
forms the few-shot fine-tuning and standard self-training
by 7.99% and 6.36%, respectively. The vanilla fine-tuning

3https://groups.csail.mit.edu/sls/downloads/movie/.
4https://groups.csail.mit.edu/sls/downloads/restaurant/.
5https://huggingface.co/transformers.
6We do not consider N -way K-shot few-shot NSL baselines

because they have different learning settings with ours.
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Baselines SNIPS Multiwoz Movie Restaurant CoNLL-03 OntoNotes Avg. ∆

Full Data
Fine-tuning 97.00 88.00 87.30 79.00 91.90 89.20 88.73 -

Few Labeled Data (10-shot)
Fine-tuning 79.10±0.38 71.40±0.25 69.50±0.40 53.75±0.19 71.82±0.28 73.15±0.25 69.79 +0.00

Few Labeled Data (10-shot) + Unlabeled Data
SST 81.07±0.40 72.25±0.11 71.14±0.22 55.13±0.29 72.86±0.34 75.07±0.18 71.25 +1.46
VAT 79.70±0.22 72.08±0.30 68.80±0.39 54.26±0.33 72.60±0.33 73.38±0.27 70.14 +0.35
SeqVAT 79.62±0.41 72.17±0.34 68.83±0.35 54.02±0.40 73.18±0.28 73.71±0.30 70.23 +0.44
CVT 79.22±0.44 71.42±0.38 69.03±0.51 54.17±0.42 71.70±0.72 73.88±0.40 69.90 +0.11
MetaST 86.74±0.33 77.34±0.51 77.52±0.39 63.02±0.29 76.88±0.41 77.69±0.24 76.53 +6.74

SeqUST 87.33±0.30 77.98±0.26 77.73±0.22 64.19±0.36 79.10±0.27 80.33±0.44 77.78 +7.99

Table 2: The performance comparison of F1 scores (%) with standard deviations on six benchmarks. ∆ denotes an improvement
over the few-shot fine-tuning method compared to our framework. All models (except fine-tuning with full data) are trained
with 10-shot labeled samples for each class and overall F1 aggregated over five different runs with different random seeds.

Models SNIPS Movie CONLL-03

SST 81.07±0.40 72.25±0.11 72.86±0.34
SeqUST 87.33±0.30 77.73±0.22 79.10±0.27

w/o. selection 82.37±0.39 70.12±0.29 73.40 ±0.37
w/o. confidence 86.98±0.33 76.99±0.29 77.60 ±0.29
w/o. certainty 83.33±0.30 72.29±0.33 73.16±0.31
w/o. PHCE 87.01±0.34 77.32±0.27 78.31±0.35
w/o. GCR 87.11±0.31 77.25±0.23 77.93±0.31

Table 3: The 10-shot ablation study (F1 score %).

method without any unlabeled data performs worst than ex-
pected since the number of labeled data is extremely insuffi-
cient for the parameter modification. The performance of the
self-training-based approaches (including SST, MetaST, and
SeqUST) is consistently better than others, which indicates
the effectiveness of the self-training paradigm. MetaST is
a strong baseline that performs a token-level re-weighting
strategy in self-training. Yet, MetaST ignores the robust
learning of some noisy labels even though they have higher
weights, and does not consider the consistency regulariza-
tion, its performance can be considered sub-optimal in con-
trast with ours. Results show that SeqUST achieves high im-
provement over the state-of-the-art MetaST by 1.25%.

Ablation Study
In Table 3, we randomly choose three datasets to conduct
an ablation study to investigate the characteristics of the
main components in SeqUST. The results show that no mat-
ter which module is removed, the model performance is af-
fected. All variants still outperform standard self-training,
even though removing some components. When removing
the reliable token selection (w/o. selection), the performance
declines a lot because that many noisy labels hurt the model
effectiveness. We also observe that the result of w/o. cer-
tainty is lower than w/o. confidence, which demonstrates

SeqUST MetaST
#-shot−→ 20 50 100 20 50 100
SNIPS 92.13 93.44 95.60 91.99 92.82 95.10
Multiwoz 79.70 82.05 83.36 79.45 81.34 84.27
Movie 80.80 83.16 84.98 80.29 82.75 84.35
Restaurant 69.02 73.95 75.70 67.93 72.83 75.28
CoNLL-03 81.74 83.20 85.59 78.54 82.34 85.10
OntoNotes 82.26 84.00 85.77 80.78 82.44 85.01

Table 4: The F1 score (%) with different numbers (20/50/100
examples per class) of labeled data.

Selection Strategy SNIPS MIT Movie CONLL-03

None 45.75 51.77 49.88
Confidence 43.18 48.06 45.22
Certainty 20.42 27.60 29.10
All 17.76 23.10 24.63

Table 5: The error rate (%) of different selection strategy.
None means does not select tokens.

that the model uncertainty is more useful for label denoising,
and greatly alleviate the conformation bias issue. Moreover,
the use of robust loss (i.e., the PHCE loss in MSL) and con-
sistency regularization consistently contribute to the robust-
ness improvement when training on pseudo-labeled data.

Further Analyses
Data Efficiency. We further explore the model effects with
different numbers of labeled data per class (#-shot) among
{20, 50, 100}. Results in Table 4 illustrate that the perfor-
mance gradually improves as the number of labeled data in-
creases, as expected. In addition, we also find that our Se-
qUST consistently outperforms the strong baseline MetaST
no matter how many labeled training examples. This can
be attributed to the introduction of uncertainty-aware self-
training with well-designed robust learning approaches.
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Peter Weller plays a reassembled indestructible cop in this futuristic   cop   movie directed by   Paul  Verhoeven
B-Actor I-Actor     O     O          O                     B-Plot          I-Plot O    O    B-Opinion  B-Genre  I-Genre        O        O    B-Director  I-Director

Unlabeled Text
Pseudo Labels
Ground Truth B-Actor I-Actor     O     O       B-Plot                 I-Plot           I-Plot O    O    B-Opinion  B-Genre       O            O        O    B-Director  I-Director

It quoted an Interior Ministry statement as saying Shabir Ahmad Muhammad Jalil was executed in Mecca
O      O         O     B-ORG       I-ORG              O         O       O         B-PER      I-PER             I-PER       I-PER   O           O          O   B-LOC

Unlabeled Text
Pseudo Labels
Ground Truth O      O         O     B-ORG       I-ORG              O         O       O         B-PER      I-PER             I-PER       I-PER   O           O          O   B-LOC

Figure 2: Cases of pseudo-labeled texts. The language tokens in bold are sampled as reliable tokens.
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Figure 3: The performance (F1 score %) of different self-
training iterations over six benchmarks.

Figure 4: The t-SNE visualization of SeqUST w/o. GCR
(left) and w/ GCR (right). (Best viewed in color.)

Effectiveness of Reliable Token Selection. To demonstrate
the effectiveness of reliable token selection, we choose three
datasets to investigate the error rate on the unlabeled data. As
shown in Table 5, we obtain the lowest error rate with both
token-level confidence and certainty, indicating the merit of
discarding noisy pseudo labels. In addition, we respectively
choose two cases from MIT Movie and CONLL-03 to show
the pseudo labels and selected tokens. The results in Fig. 2
show that 1) most tokens can be correctly predicted and 2)
our selection strategy can identify some noisy labels.
Effectiveness of the Robust Learning. We first demon-
strate the importance of PHCE loss for robust learning in
the masked sequence labeling task. As shown in Fig. 3,
our framework consistently outperforms the standard self-
training by a large margin, which does not use robust learn-
ing methods. Moreover, the performance of MetaST is not

Datasets BERT BiLSTM
SoftMax CRF SoftMax CRF

SNIPS 87.33±0.30 86.95±0.25 84.94±0.20 85.16±0.28
Multiwoz 77.98±0.26 78.20±0.38 73.13±0.19 73.92±0.20
Movie 77.73±0.22 78.02±0.24 72.05±0.26 73.12±0.31
Restaurant 64.19±0.36 66.17±0.26 60.83±0.42 61.11±0.47
CoNLL-03 79.10±0.27 78.21±0.35 75.53±0.22 75.22±0.23
OntoNotes 80.33±0.44 79.74±0.40 76.02±0.34 76.28±0.34

Avg. 77.78 77.88 73.75 74.14

Table 6: The F1 score (%) of different base encoders.

higher than ours, indicating that the model trained by the ex-
plicit noise masking and the PHCE loss is more robust than
the re-weighting strategy.

In Fig. 4, we choose the CoNLL-03 testing set and use t-
SNE (Van der Maaten and Hinton 2008) tool to demonstrate
the token representations in the semantic space. The model
trained with Gaussian-based consistency regularization can
make a clearer boundary between every two classes, corrob-
orating our conclusions that avoiding the over-fitting prob-
lem and yielding better generalization capability.

Performance of Different Base Encoders
We end this section with a comparison with other base en-
coders in Table 6, including BERT+SoftMax, BERT+CRF,
BiLSTM+SoftMax, and BiLSTM+CRF. Results show that
our framework can be applied to arbitrary encoders. In ad-
dition, CRF is able to exploit the label dependency among
the few data and further improves the overall performance
of BERT and BiLSTM by 0.10% and 0.39%, respectively.

Conclusion
We propose a novel SeqUST framework for semi-supervised
neural sequence labeling based on uncertainty-aware self-
training. We utilize token-level model confidence and cer-
tainty to judiciously select reliable tokens in each unla-
beled sentence. To mitigates the noisy labels, we introduce a
masked sequence labeling task with noise-robust PHCE loss.
We also present Gaussian-based consistency regularization
to alleviate the over-fitting problem. Extensive experiments
over multiple benchmarks show that our framework consis-
tently outperforms strong baselines in low-resource settings.
In the future, we will further improve the performance of de-
noising and apply our framework to other NLP tasks, such
as extractive question answering, event extraction, etc.
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